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Sammendrag: I denne rapporten presenterer THEMA og Expert Analytics sitt arbeid 
med å identifisere og modifisere algoritmer for å samle forbruk i 
klynger eller til fiktive noder. Dette er relevant i utviklingen av nye 
oppgavevariabler, herunder effekt- og energidistanse. Konsulentene 
ser på tre hovedtyper av klyngealgoritmer: K-means, Gaussian Mixture 
Models og DBSCAN. Algoritmene kan i større eller mindre grad tilpasses 
og modifiseres. Algoritmene scorer ulikt langs ulike kriterier som 
eksogenitet, kompleksitet og fleksibilitet. Algoritmene er testet på 
faktiske data fra Elhub og fra et lite utvalg nettselskaper. Dette 
innebærer at konsulentene har beregnet effektdistanse basert på 
noder. Når det gjelder hvilken algoritme som er mest egnet for vårt 
bruk så vil dette være noe RME må vurdere nærmere.
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Forord 

Reguleringsmyndigheten for energi (RME) regulerer nettselskapenes inntekter. Formålet er å bidra 
til effektiv drift, utnyttelse og utvikling av nettet. RME gjennomfører hvert år en 
effektivitetsanalyse som måler selskapene mot hverandre, og rangerer dem ut fra hvor mye 
ressurser de bruker på å bygge, drifte og vedlikeholde nettinfrastrukturen. Nettselskapenes 
avkastning bestemmes deretter av hvor kostnadseffektivt de løser sine oppgaver.

RME har i de senere årene utforsket nye oppgavevariabler i effektivitetsanalysen for 
distribusjonsnettet. Mulige nye oppgaver inkluderer effekt- og energiavstand, som er ment å skulle 
være et mer eksogent og representativt mål på oppgavene som nettselskapene utfører. Effekt- og 
energidistanse skal beskrive avstanden som kraften må transporteres for å nå den enkelte kunden.

Effekt- og energiavstand kan beregnes fra hvert innmatingspunkt og til hvert enkelt målepunkt 
hos sluttkunde. En slik tilnærming kan imidlertid være krevende når vi tar i betraktning at det er 
3,2 millioner individuelle målepunkter i nettet. Et alternativ til å bruke individuelle målepunkter er 
å aggregere disse i klynger eller til virtuelle målepunkter.

RME har bedt THEMA og Expert Analytics om å analysere ulike algoritmer for å etablere klynger av 
målepunkter og deretter vurdere hvordan disse kan brukes i beregningen av en effektdistanse. 
Algoritmene som er analyser er K-means, Gaussian Mixture Models og DBSCAN. Algoritmene kan i 
større eller mindre grad tilpasses og modifiseres ut ifra brukerbehov. Algoritmene er testet ut på et 
datasett fra Elhub supplert med ytterligere nettdata fra enkelte nettselskaper.

Studien konkluderer med at det er gode argumenter for å bruke en klyngetilnærming i beregning 
av effekt- og energidistanse. Når det gjelder hvilken algoritme som er mest egnet må dette 
vurderes ut ifra kriteriene eksogenitet, kompleksitet og fleksibilitet. Dette må RME vurdere 
nærmere.

Alle vurderingene og konklusjonene i rapporten er konsulentenes egne.

Vi inviterer alle til å komme med innspill til arbeidet. Tilbakemeldinger merkes med 
referansenummer 202205739 og sendes til rme@nve.no innen 1. juni.

Oslo, mars 2022

Tore Langset
Direktør
Reguleringsmyndigheten for energi 

Roar Amundsveen 
Fung. seksjonssjef
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Executive Summary

The Norwegian Energy Regulatory Authority (RME)
is responsible for the economic regulation of Nor-
wegian electricity grid companies. A key element
in the regulation is a cost norm determined by a
DEA benchmarking model (Data Envelopment Ana-
lysis). In the distribution grid, the DEA model is
designed to compare the performance of grid com-
panies by benchmarking the total costs against a
set of output parameters that serve as a proxy for
the task of supplying electricity in the respective
grid areas.

In recent years RME has investigated possible
new output parameters in the DEA Model for the
distribution grid. The current model uses the num-
ber of customers, the number of substations and
length of lines in the high voltage distribution grid
(>1 kV). Possible new outputs include the power
and energy distance that are intended to serve as
a more exogenous and representative measure of
the tasks of grid companies by accounting for the
distance over which power needs to be transferred
to reach each customer. In these analyses several
approaches have been used, including using the
real grid and an artificial grid method based on
metering data and geographical information on the
grid. A drawback of these methods is that the
power distance calculation needs to be applied to
all metering points and substations to capture the
total power distance in both the low voltage and
high voltage distribution grid.

An alternative approach to using individual
metering points is aggregation of metering points
into clusters or virtual nodes in the grid. These
clusters can contain information on e.g. distance
to metering points from substations, installed ca-
pacity, annual and hourly demand and the number
of metering points included in the clusters. Such
an aggregation can enable a more efficient com-
putation of the power distance and also improve
the incentives by removing the bias towards the
existing grid solutions (230V vs. 400V in the low
voltage grid). On this background, RME has com-
missioned a study by THEMA and Expert Analytics

to investigate different clustering algorithms and
their possible role in the computation of a power
distance parameter.

A clustering analysis essentially involves the
task of labeling objects in such a way that nodes
with the same label (i.e. belong to the samecluster)
are considered to be physically close to each other.
Clustering algorithms can be distinguished by a
number of secondary criteria. A key feature is
whether the clusters are anchored. Cluster anchor-
ing involves the allocation of a root node to each
cluster. In our analysis, one possibility is to use
the actual substations in the grid as the root node.
Other distinguishing features can be whether the
number of clusters is determined by the algorithm
or not and the size of each cluster. For instance,
cluster size can be linked to energy consumption or
capacity. Finally, algorithms can differ with respect
to the stability of the results, model complexity and
computational cost.

We have considered a set of algorithms that
differ along the dimensions described above. Spe-
cifically, we have used three basic types of al-
gorithmswith some variations: K-means, Gaussian
Mixture Models and DBSCAN.

K-means is a simple method that is built on
two principles: Each cluster is defined by its
centroid, and each node belongs to the cluster
which centroid is the closest. The clustering is then
carried out through an iterative procedure.

The Gaussian Mixture Model (GMM) involves
selecting a set of parameters defining an underly-
ing probability distribution from the data available
so that the joint probability density of the data Is
maximized, again utilizing an iterative procedure
to arrive at the most feasible distribution where
data to the largest extent possible are produced in
high probability areas. GMM can be customized
to include e.g. anchoring or weights to determine
cluster size that are set outside the model.

Finally, the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm
builds on a principle where each node is character-
ized according to its surroundings and a set of user-
defined parameters. For instance, the user can
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define a threshold value for the Euclidian distance
to identify whether a node is in the neighborhood
of another node. This can then be used to identify
core nodes that form a cluster together with nodes
that are reachable from the core node, as well as
outlier nodes.

To investigate the properties of the different
algorithms we have used a dataset from Elhub with
supplementary grid data from companies that have
participated in the previous analysis of the power
distance parameters. The Elhub data exhibited low
quality with respect to geographical location, how-
ever, including missing or incorrect coordinates for
the metering points. Several measures were taken
to correct the data, in addition to pre-processing.

We have carried out two case studies to illus-
trate the properties of the algorithms: Klepp, using
Elhub and actual grid data, and Mørenett, using
Elhub data only. We have looked at parameters
such as the number of clusters, line lengths and
a power distance calculation using the artificial
grid method developed in previous work. For both
cases DBSCAN differs with respect to the number
of clusters as it is the only method considered
where this number is not a direct input parameter.
DBSCAN tends to group data with a high density
of nodes (metering points) into large clusters. DB-
SCAN also tends to give longer line lengths, in part
due to the treatment of outlier nodes as separate
clusters. This also results in the power distance
being significantly longer with DBSCAN in both
case studies. In the Klepp case, we find that the
methods using anchoring yield power distances
fairly close to the baseline in the actual grid (as
we have data available to benchmark against the
baseline). In the Mørenett case, which is more
geographically complex, we find examples of grid
lines crossing geographical obstacles such as wa-
ter. A final observation is that the computational
time of the power distance calculation favors the K-
means method, as this method yields more evenly
distributed cluster sizes.

Overall, we consider that there are strong argu-
ments in favor of using clustering methods in the
power distance calculations. Clustering yields a

higher degree of exogeneity compared to alternat-
ives such as using the real grid or the simple hybrid
approach investigated in a previous study where
each metering point is allocated to the nearest
existing substation. With clustering, the separation
between the low voltage and high voltage distribu-
tion grid are decided by an algorithm rather than
any decisions by the grid companies. Anchoring
can be used as an intermediate solution between
the real grid and the non-anchored methods (with
some loss of exogeneity). On the question of which
clustering algorithm to use, this should be done
according to a closer consideration of the criteria
of exogeneity, complexity and tuneability (or flex-
ibility). Tuneability is needed to bridge the gap to
the real grid using available information, butmay on
the other hand lead to overly complex models. The
weighing of different criteria should be considered
further by RME.

IV ©THEMA Consulting Group (2021)



Sammendrag

Reguleringsmyndigheten for energi i NVE (RME)
er ansvarlig for den økonomiske reguleringen
av norske kraftnettselskaper. Et sentralt ele-
ment i reguleringen er en kostnadsnorm som be-
stemmes ved hjelp av benchmarking i en DEA-
modell (Data Envelopment Analysis). I dis-
tribusjonsnettet er DEA-modellen utformet for å
sammenligne nettselskapenes prestasjoner ved å
benchmarke totalkostnadene mot et sett av opp-
gavevariabler som til sammen skal utgjøre et mål
på oppgavenmed å forsyne ulike nettområder med
elektrisitet.

I de senere årene har RME utforsket mulige
nye oppgavevariabler i DEA-modellen for distribus-
jonsnettet. Oppgavene i den nåværende modellen
er antall kunder, antall nettstasjoner og lengden
på linjer og kabler i høyspent distribusjonsnett (>1
kV). Mulige nye oppgaver inkluderer effekt- og en-
ergiavstand, som er ment å skulle være et mer
eksogent og representativt mål på oppgavene som
nettselskapene utfører. Effekt- og energidistanse
skal reflektere avstanden som kraftenmå transpor-
teres for å nå den enkelte kunden. I disse ana-
lysene er flere metoder blitt benyttet, herunder å ta
utgangspunkt i det faktiske nettet og metoder med
syntetiske nett basert påmåleverdier og geografisk
informasjon om nettet. En ulempe med disse met-
odene er at beregningene av effektdistanse må
gjøres for alle målepunkter og nettstasjoner for
å fange opp den samlede effektdistansen i både
lavspent og høyspent distribusjonsnett.

Et alternativ til å bruke individuellemålepunkter
er å aggregeremålepunktene i klynger eller virtuelle
noder i distribusjonsnettet. Disse klyngene kan
inneholde informasjon omeksempelvis avstand fra
målepunkt til nettstasjon, installert kapasitet, for-
bruk på års- og timebasis og antall målepunkter
som inngår i klyngene. Slik aggregering kan gjøre
det mulig å beregne effektdistanse på en mer ef-
fektiv måte og også styrke incentivene ved å fjerne
favoriseringen av eksisterende nettløsninger (230V
vs. 400V i lavspentnettet). På denne bakgrunnen
har RME bedt THEMA og Expert Analytics om å

analysere ulike algoritmer for å etablere klynger og
vurdere hvordan de kan benyttes i beregningen av
en effektdistansevariabel.

Analyse av klynger (clustering analysis) in-
nebærer å merke objekter på en måte som gjør
at punkter med samme etikett (det vil si at de
tilhører den samme klyngen) vurderes å være fysisk
nær hverandre. Klyngealgoritmer kan skilles fra
hverandre gjennom flere sekundære kriterier. Et
nøkkelspørsmål er forankring av klyngene. For-
ankring av klynger handler om å allokere rotnoder
(root nodes) til hver klynge. I vår analyse er det
mulig å bruke de faktiske nettstasjonene som rot-
noder. Andre særtrekk ved algoritmene kan være
hvorvidt antall klynger bestemmes av algoritmene
eller ikke, og størrelsen på hver klynge. For ek-
sempel kan klyngestørrelsen relateres til energifor-
bruk eller kapasitet. Endelig kan algoritmene skille
seg fra hverandre med hensyn til stabiliteten i res-
ultatene, modellkompleksitet og beregningskost-
nader.

Vi har vurdert et sett av algoritmer som er
forskjellige langs dimensjonene vi beskrev ovenfor.
Konkret har vi brukt tre hovedtyper av algoritmer
med noen varianter: K-means, Gaussian Mixture
Models and DBSCAN.

K-means er en enkel metode som bygger på to
prinsipper: Hver klynge er definert ved sin sentroide
(det geometriske senteret i klyngen), og hvert punkt
tilhører klyngen som inneholder den nærmeste sen-
troiden. Konstruksjonen av klynger skjer deretter
gjennom en iterativ prosedyre.

Gaussian Mixture Model (GMM) innebærer at
man velger et sett av parametere som definerer
en underliggende sannsynlighetsfordeling for de
tilgjengelige dataene på en måte som maksimerer
den samlede sannsynlighetstettheten til dataene.
Dette skjer gjennom en iterativ prosedyre for å
komme fram til denmest passende fordelingen der
data i størst mulig grad produseres i områder med
høy sannsynlighet. GMM kan skreddersys for å
inkludere eksempelvis forankring eller vekter for å
bestemme klyngestørrelse som fastsettes utenfor
modellen.

Endelig bygger DBSCAN (Density-Based Spa-
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tial Clustering of Applications with Noise) på et
prinsipp der hvert punkt karakteriseres ut fra om-
givelsene og et sett av brukerdefinerte parametere.
For eksempel kan brukeren definere en terskelverdi
for den euklidske avstanden for å avgjøre hvorvidt
et punkt er i nærheten av et annet punkt. Dette kan
i sin tur brukes til å identifisere både kjernepunkter
som utgjør en klynge sammen med punkter som
kan nås fra kjernepunktet og ekstrempunkter (out-
liers).

For å utforske egenskapene til de forskjel-
lige algoritmene har vi brukt et datasett fra El-
hub og supplert med nettdata fra selskaper som
har deltatt i tidligere analyser av effektdistan-
sevariabelen. Elhubdataene har vist seg å ha lav
kvalitet med hensyn til geografisk informasjon, her-
under manglende eller feil koordinater for måle-
punktene. Flere grep ble tatt for å øke datakval-
iteten, i tillegg til pre-prosessering av dataene.

Vi har gjennomført to casestudier for å il-
lustrere virkemåten til algoritmene: Klepp Energi
(Elhubdata og faktiske nettdata) og Mørenett (bare
Elhubdata). Vi har sett på parameter som antall
klynger og linjelengder, og vi har gjort en beregning
av effektavstand ved hjelp av en metode basert på
syntetiske nett som er utviklet i tidligere prosjekter.
I begge tilfellene skiller DBSCANseg utmed hensyn
til antall klynger. Det skyldes at denne metoden
er den eneste hvor antall klynger ikke er en direkte
inputparameter. DBSCAN tenderer også til å gi
lengre linjer, delvis fordi metoden behandler ekstr-
empunkter som separate klynger. Dette resulterer
også i at effektavstanden blir vesentlig lengre med
DBSCAN i begge casestudiene. I Klepp-caset finner
vi at metodene med forankring gir effektavstander
som er relativt nær referansen i det faktiske nettet
(ettersom vi i dette caset har faktiske nettdata). I
Mørenett-caset, som er mer komplisert geografisk,
finner vi eksempler på at linjer krysser geografiske
hindre som vann. En siste observasjon er at
beregningstiden for effektavstand er kortest for K-
means ettersom denne metoden gir en mer jevn
fordeling av størrelsen på klyngene.

Samlet sett vurderer vi at det er sterke argu-
menter for å bruke klyngealgoritmer i beregningen

av effektavstand. Ved å bruke klyngealgoritmer
får vi en høyere grad av eksogenitet sammen-
lignet med alternativer som å bruke det faktiske
nettet eller den enkle hybride tilnærmingen i et tidli-
gere prosjekt der hvert målepunkt ble tilordnet den
nærmeste nettstasjonen. Med klyngealgoritmer
bestemmes skillet mellom lavspent og høyspent
distribusjonsnettet gjennom en algoritme i stedet
for nettselskapenes beslutninger. Forankring kan
brukes som en mellomløsning mellom det faktiske
nettet og metodene uten forankring (dog med noe
tap av eksogenitet). Når det gjelder spørsmålet om
hvilken algoritme som bør brukes, bør det avgjøres
ved en nærmere vurdering av kriteriene eksogen-
itet, kompleksitet og fleksibilitet. Fleksibilitet er
nødvendig for å redusere avstanden til det faktiske
nettet ved å bruke tilgjengelig informasjon, men
kan på den andre siden føre til at modellene blir
for komplekse. Vektingen av ulike kriterier bør
vurderes nærmere av RME.

VI ©THEMA Consulting Group (2021)
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1. Introduction

1. Introduction
In this chapter, we give a brief overview of previous
work related to developing the new power distance
output variable for benchmarking of grid compan-
ies, and the motivation for applying clustering al-
gorithms to the low-voltage distribution (LVD) grid.

1.1. Background and previous
work

The Norwegian Energy Regulatory AuthorityReg-
uleringsmyndigheten for Energi (Regulatory author-
ity for Energy, RME) within Norges Vassdrags- og
Energidirektorat (Norwegian Water Resources and
Energy Directorate, NVE), is responsible for regu-
lating the Norwegian grid operators [1]. As power
systems are changingwith new technologies, more
available data and different consumption patterns,
RME aims to design a fair and future-proof reg-
ulation for stakeholders on all grid levels. In re-
cent years, RME has put large efforts into updating
and improving the income regulation for network
companies in the distribution grid. Since 2018,
RME has commissioned several studies to design
new output parameters in the benchmarking of
grid companies. Previous work has investigated
possible ways of computing a so-called power dis-
tance parameter that accounts for the distance
over which power needs to be transferred to cus-
tomers. Several methods that relied on different
input data were analyzed, ranging from the min-
imal power distance using the full grid system and
hourly metering data to more simplified methods
such as artificial gridmethods that reliedmerely on
metering data aggregated to yearly level.

In the first study on theminimal power distance
in 2018 [2], computational methods were tested
on exemplary test grids. It was concluded that

the computational complexity was too high for the
method to be applied on real grid cases. In the
subsequent study [3], alternative approaches to
computing the power distance were proposed and
tested on sub-grids of a selection of Norwegian
grid companies. As a result of insufficient data
quality on grid infrastructure the study recommen-
ded to move forward with an artificial grid method.
Instead of using actual grid data from the high-
voltage distribution (HVD) grid, the developed al-
gorithm builds a synthetic radial grid based on the
location and demand of substations. As a first
step, the demand in the low-voltage distribution
grid was aggregated to substation level by sum-
ming the hourly metering data at all associated
metering points. Further work [4] on grid-freemeth-
ods investigated alternative methods to construct
a synthetic grid and proposed amethod to account
for demand distribution in the low-voltage distribu-
tion grid. In [4], it was highlighted that the low-
voltage distribution grid should be considered in
calculations of the power distance to avoid any
bias or skewed incentives that favor the choice of
230V lines. For combining all grid levels in the dis-
tribution network, several methods were proposed
of which a cost-weighting of low-voltage and high-
voltage distribution grid was considered the most
promising. In parallel, work on streamlining and
standardizing data sets needed for the power dis-
tance computation was performed by Multiconsult
[5]. The project worked with hourly metering data
and geographical data of four grid companies and
included tasks such as linking addresses to geo-
graphical coordinates, combining metering data to
asset metadata and handling of erroneous data
entries.

As work on alternative output parameters pro-
gresses, it has become clear that data plays a

©THEMA Consulting Group (2021) 1
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Figure 1.1.: Simplified illustration of different approaches to calculate the power distance on a test case.

crucial role in how the task of grid companies can
be reflected. Several points remain to be invest-
igated before any conclusion can be made about
the applicability of a power and/or energy distance
parameter in the Data Envelopment Analysis (DEA)
model and themost efficient ways of handling data
input. As the proposed methods have moved away
from using real grid data, the accuracy of reflecting
the distribution of demand through metering data
becomes even more important and merits special
attention.

1.2. Contributions and report
structure

In RME’s overarching ambition of designing a fair
and future-proof income regulation for distribution
system operators progress has been made along
two main axes - defining computational methods
and streamlining data handling. To compute the
power power distance of a grid, three main data
sets have been used:

Metering data per metering point and/or sub-

station with an hourly resolution.

Geographical information on the location of
metering points, substations and transformer
stations.

The physical topology of the distribution grid,
i.e. the links between metering points, substa-
tions and transformer stations.

Figure 1.1 is an illustration of past and expected
progress towards a more efficient computational
method for new power distance output variable.
The initial work on defining new output variables
focused on calculating the power distance based
on available grid data and metering data, including
geographical information and information about
the grid real grid topology. This approach, illus-
trated on the left of Figure 1.1, required all three
input data sets and, if applied to the entire distri-
bution grid, would use metering points and substa-
tions in the calculation. By removing grid data as
an input, the data requirements can be reduced. An
artificial grid method as suggested in [3], shown in
Figure 1.1 (middle), only requiresmetering data and
geographical information. The drawback of using
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both the real grid (left) and an artificial grid (right) is
that to cover the full grid system a power distance
calculationwould need to be applied to all metering
points and substations. Note that for simplicity
the same artificial grid method is illustrated in both
LVD and HVD grids in Figure 1.1. Previous studies
also investigated the possibility of using different
methods in the LVD and HVD grid.

In this report, commissioned by RME, THEMA
and Expert Analytics investigate the possibility of
aggregating metering points in clusters as shown
on the right of Figure 1.1. The resulting virtual
nodes defined by the clusters contain relevant in-
formation on associated metering points so that
an artificial grid method applied between trans-
former stations and the virtual nodes accounts for
the entire distribution grid. This has two main
advantages. Firstly, the computation of power
distance can potentially be simplified since the
computational method only relies on data on sub-
station level. The fact that the virtual nodes contain
relevant information on the low-voltage distribu-
tion grid makes it possible to capture the entire
value chain without additional weighting of grid
levels. Secondly, the use of virtual nodes is more
exogenous than the use of existing substations.
The position of existing substations is determined
by the choice of 230V or 400V lines in the low-
voltage distribution grid and may benefit those grid
companies with longer lines in the high-voltage
distribution grid. By using virtual nodes that are
based on underlying meter data, bias of existing
infrastructure can be eliminated. The aggregated
virtual nodes should contain information on

number of metering points associated to each
cluster by customer group

statistical measures describing the distance to
metering points

sum of annual demand for metering points as-
sociated to each cluster

sum of power limit for metering points associ-
ated to each cluster

It is important to note that any simplification

should not come at the expense of any bias in
the final output. All proposed methods for data
aggregation need to be analyzed with respect to
their implications on the benchmarking process.
We thus identify the motivation of this study to be
developing methods to establish virtual nodes in
the distribution grid that improve the computation
of new output parameters without negatively af-
fecting the fairness in the DEA model.

In the following sections, each of the bullet
points will be discussed in the context of input data
needs, algorithm features, and simulation results.
In Chapter 2 we present the proposed clustering
algorithms, including both technical descriptions
and practical description of the features relevant
for metering point clustering. Chapter 3 will give
an overview of the input data sources, data quality,
data requirements, and data pre-processing steps.
In Chapter 4, the proposed algorithms are applied
to real grid test cases provided by the data sources.
Finally, Chapter 5 includes some final remarks on
implications for the benchmarking process.

1.3. The Norwegian power grid

To describe the scope of the work presented in
this report, it is necessary to provide a basic under-
standing of the power grid in Norway. Figure 1.2
shows a schematic of the grid levels in the elec-
tricity network and their exchange points. The
grid levels marked in green are considered in this
study. The power grid in Norway is structured in
the following four levels [1]:

Transmission grid: The highest grid level, also re-
ferred to as grid level 1, typically operates at
a voltage of 300 kV or 420 kV and connects
producers and trade capacity with connection
points to lower grid levels across the country.

Regional grid: The regional grid, grid level 2, oper-
ates at a voltage of 33 kV-132 kV and serves
as an intermediate grid level between the trans-
mission grid and the distribution grid.
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Figure 1.2.: Schematic representation of the grid levels in Norway.

High-voltage distribution grid: Grid level 3 oper-
ates at a voltage of 1 to 22 kV. Some industrial
customers and small producers are connected
to the high-voltage distribution grid.

Low-voltage distribution grid: The low-voltage dis-
tribution grid, grid level 4, supplies final con-
sumers at a voltage of 230V or 400V.

Note that each transformer between two
voltage levels is associated to the grid level with
the higher operating voltage. As an example, a
transformer between the regional grid and the high-
voltage distribution grid will be classified as grid
level 2, the same level as all other assets in the
regional grid. Metering points, which represent
final consumers, operate in grid level 4.

1.3.1. Terminology

For clarification we define common terms and ex-
pressions thatwill be used throughout this report to
refer to grid assets and involved stakeholders. We
will refer to grid levels according to the definitions
of NVE, listed above and illustrated in Figure 1.2.

When speaking of the distribution grid, we refer to
assets in both the high-voltage and low-voltage dis-
tribution grid, spanning voltage levels from230V to
22 kV. In this context, we alsowant to introduce the
abbreviations HVD and LVD for the grid levels in the
distribution grid.

In practice all connection points between dif-
ferent voltage levels are transformers. To differen-
tiate between grid levels we will use the different
terms for assets in level 2 and those in grid level
3. Transformers between the high-voltage distribu-
tion grid and the low-voltage distribution gridwill be
referred to as substation, from the Norwegian term
nettstasjon. For transformers between the regional
grid and the high-voltage distribution grid the term
transformer stationwill be used. The termmetering
point refer to the point where final consumers are
connected to the low-voltage distribution grid on
grid level 4.

The term point is used to describe all line end-
point objects. I.e. commonly a metering point, a
substation or a transformer station in the LVD or
HVD grid. The clustering algorithms presented in
Chapter 2 can be used to label any type of points.
However, for the results presented in Chapter 4
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we will only apply the clustering algorithms to the
LVD grid for clustering of metering points, and we
will thus use the terms metering points and points
interchangeably. The term node is reserved for
connection points in the LVD grid, i.e. substations.
A virtual node, as introduced in Section 1.2, is the
single alternative connection point for all metering
points belonging to a given cluster of metering
points in the LVD grid.

The Norwegian term nettselskap will be trans-
lated as grid company or Distribution System Op-
erator (DSO) in this report. As the name implies,
a Distribution System Operator (DSO) operates the
distribution grid which includes the low- and high-
voltage distribution grids, or grid levels 3 and 4.

The area in which one grid company operates
the grid is called konsesjonsområde or nettområde
in Norwegian and will be referred to as grid area in
this report.
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2. Clustering algorithms

This chapter is devoted to describing and discuss-
ing a suite of clustering algorithms. We will start
by introducing the naming conventions used and
some desired properties we want from our cluster-
ing methods, before getting into the description of
the various algorithms explored in this study.

2.1. Preliminaries

Clustering is the task of labeling objects in such a
way that objects that have the same label are con-
sidered to be close to each other, in some sense.
The number of distinct labels should then be lower
than the number of objects under considerations,
and we say that the objects with the same label
belong to the same cluster.

Though theoretically the word close can be
interpreted in many ways, we will in the application
of clustering metering points together interpret the
word as being close in geographical dinstance.

However, we will here point out the potential
utility of clustering algorithms on other grid levels
than the LVD grid, and will therefore refer to the
objects that we want to label as points.

The clustering of a set of points is not in and of
itself enough to aid in the power distance calcula-
tion. As outlined in Section 1.2, the points belong-
ing to the same cluster should be represented by a
single virtual node. We call it virtual in this context
since it is created artificially and does not represent
a physical location. The power distance calculation
on these virtual nodes will then be computationally
a lot less expensive than a power distance calcula-
tion on the full set of points. In the following, wewill
call these virtual nodes cluster nodes to emphasize
that each one represents a cluster. Moreover, to
ascribe to each cluster node a geographical posi-
tion we have used a cluster’s centroid, which is the

the average geographical position of all points in
the cluster.

2.2. Desired features and selec-
tion criteria

As already stated, all clustering algorithms will
cluster together points that are physically close to
each other when using physical distance as a way
of determining how close two points are to each
other. This is the primary criterion that should be
upheld by any algorithm one chooses to use. How-
ever, there are usually other secondary properties
that can also be achievedwithout noticeably affect-
ing the closeness-criteria. These secondary criteria
are what distinguishes the various algorithms from
each other, as no single algorithm can achieve
everything. The subsections below will discuss
all secondary criteria considered. Later, when dis-
cussing the specific algorithms, the support for the
various secondary properties will be addressed.

2.2.1. Anchored clusters

As mentioned in Section 2.1, we need to be able
to form a cluster node from a cluster. That is,
construct a point that is to represent the whole
cluster, which will be used in the ensuing power
distance calculations.

However, we can consider the opposite per-
spective, and say that from a set of nodes we
want to cluster a set of points. In the context of
metering points and substations this is the problem
of assigning each metering point to one substa-
tion. Similar to the usual clustering problem, it is
reasonable that the points that are assigned to the
same cluster node should in some sense be close
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to each other, but also close to the provided cluster
node. For instance, when calculating the power
distance, this approach is suitable when trying to
consider how efficiently DSOs have connected their
metering points to substations.

Achieving this task requires us to move out-
side the canonical scope of clustering algorithms
that are typically presented in the literature, as this
approach of starting with a set of cluster nodes
and assigning points to each one is usually not
addressed.

As discussed in Chapter 3, we study two types
of data sets; sets that contain information about
the real grid topology, i.e. metering point – sub-
station connections and substation – transformer
station connections; and sets that do not contain
such information. For the LVD grid, which is mostly
a radial grid, eachmetering point has an associated
substation. We will refer to this substation as the
root node for all metering points connected to it.

Following the idea that all clusters have a root
node that they connect to, it stands to reason
that each cluster should have one and only one
root node. If one tries to naively run a classical
clustering algorithm without addressing the alloca-
tion problem, many clusters will either end up with
multiple or no root. In the context of clustering
metering points, this would mean that a straight-
forward application of some clustering algorithm
would almost surely lead to clusters where points
included in the same cluster are connected to dif-
ferent substations.

The reason that classical clustering algorithms
fail to assign points to a given set of cluster nodes
correctly is that they are designed to work with
a minimum number of assumptions. Adding the
restriction that points in a cluster should not only
be close to each other, but also close to some given
point is simply outside the scope ofmost clustering
algorithms. That does not mean that there are
no such algorithms, just that not all of them do
so canonically. With some algorithm adjustments,
many algorithms can be made to support cluster
node assignment. These will be discussed below.

For simplicity of notation we refer to the idea of

allocating each point to exactly one cluster node as
cluster anchoring or just anchoring.

From a practical point of view, the need for
anchoring only arises when the cluster node is
taken from a given data set. If a cluster node is not
provided, but instead created virtually, anchoring
is not necessary. Assignment can simply be done
after the clustering is completed by creating virtual
nodes, as described in Section 2.1, one for each
cluster. Note though, that creating a new virtual
cluster node should be done with care, as naive ap-
proaches like using the cluster center as substation
location can end up in impossible locations like in
the middle of water. This observation is discussed
in more detail in Section 5.1.

2.2.2. Algorithm determined cluster
count

When substations and their locations are not avail-
able from data, the idea of adding anchoring points
becomes moot, as assignment of cluster nodes
can be done after allocation of the clusters. Fur-
thermore, in such a context one might not even
want to fix the number of clusters, as there likely is
no single correct answer to this question. Instead,
it might be better to have algorithms that them-
selves determine the optimal number of clusters
according to some criteria.

2.2.3. Balancing the size of each cluster

By default, there are no limitations on how many
metering points should be in each cluster. One
rule that could be imposed is that each cluster
should have some specific size. In the context
where anchoring is in place, this size imposition
means that data about the clusters, like cluster
energy consumption or cluster energy capacity can
be included as a factor to converge towards. In
Chapter 4, the maximum daily consumption over a
year in each cluster node is used for this purpose.
Note that because this is a secondary requirement
below the primary one of low distance between
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samples inside a cluster, this rule can only be en-
forcedwhere it is not in contradiction to the primary
requirement.

It is also worth noting that assuming that an-
choring is not in place, we can no longer impose
restrictions on cluster location, individual cluster
sizes, or total demand in each cluster. The only
size restrictions thatmakes sense to impose is that
the clusters are of equal size or, in the case where
point weights are available, equal aggregated point
weights for each cluster. This is because clustering
is an exploratory tool and the label of a cluster is
not determined before the clustering is performed.
There are also few tools available for doing this in
practice, so only an anchored variant is considered
here.

2.2.4. Node stability

One important question to ask when looking at
the output of a clustering algorithm is how stable
the results are. If moving the location of a point
a small amount ends up in a different cluster as-
sociation the classification must be considered
unstable. Having a qualitative measure for each
node allows us to assess if this is the case without
doing manual and costly exploration of the data.
Some observations related to node stability for the
test cases studied in this report are discussed in
Section 5.2.

2.2.5. Model simplicity and computa-
tional cost

All the features described in the previous subsec-
tions will necessarily add both model complexity
and, in many cases, computational cost. Argu-
ments exist both for and against including each of
these features. What to include is a question of
howwell they work, available data, and stakeholder
preferences. To that end we have implemented
a small suite of different algorithms with some-
what disjointed set of properties. These will be
discussed below.

2.3. Overview of algorithms and
recommendations

The properties described in the previous section
are all the features that would be nice to incor-
porate into a working clustering algorithm. How-
ever, adding all properties at the same time is not
possible. We therefore explore a few different
algorithms that will incorporate different subset
of the features. This section will discuss these
algorithms. In addition in Table 2.1 all algorithms
and their features are summarized.

2.3.1. K-means clustering

The simplest of the popular clustering algorithms
around is K-means. It is built on two principles:
Each cluster is uniquely defined by its centroid, and
each point belong to the cluster whose centroid
is the closest. The centroid is simply the average
geographical position of all points in the cluster.
This creates a natural iterative algorithm: Start by
allocating 𝐾 cluster centroids at random and apply
the following two steps:

Assign all points to cluster with the closest
centroid.

Update centroid based on the current points in
cluster.

Iterating between these two steps, eventually the
algorithm will converge to a stable setup where
metering point allocation and centroid do not
change between iterations. There are some ad-
ded complexities of more carefully selected start
locations and stopping criteria. But in essence
the underlying algorithm remains the same. In the
implemented application the initial start location is
defined by using a method called k-means++ [6],
and early stopping is set to 300, which is the the
default value in the Scikit-Learn implementation.

This algorithm is so basic that it does not in-
clude any of the features described in Section 2.2.
However it is possible to include the anchoring by
not using the iterative part of the algorithm. To
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Table 2.1.: Overview over the various clustering algorithms and their features.

K-means anchored K-means GMM custom GMM DBSCAN

Anchoring no yes no yes no

Fixed cluster count yes yes yes yes no

Fixed cluster size no no no yes no

Stability score no no yes yes no

Model complexity low low high high low

Computational cost low low high high low

Custom point weights no no no yes yes

Cluster size based on demand no no no yes no

do so we initialize the clusters by the provided
substations, and just assign nodes to the closest
centroid (k-means with max iteration parameter
set to zero), the substations are guaranteed to be
approximately in the middle of each cluster. In
other words, we simply just use the substation as
is, and assign all metering points to the closest
substation.

Similar to anchoring, it is possible to add point
weights to the K-means model as follows: This
can be achieved by replacing the calculation of
centroid in the second step of the above iteration
by weighted averages, where the weights are user
defined. A context-relevant example would be to
use the demand of eachmetering point as weights.
This would result in the cluster nodes being drawn
towards points with high demand, and would pos-
sibly lead to a lower power distance evaluation
than that of plain K-means. However, scikit-learn’s
implementation of K-means does not allow for the
specification of point weights, and it is therefore
not considered further in this study.

2.3.2. Gaussian mixture model

The vast majority of probability distributions that
exist are parameterized, meaning they represent a
class of different distributions that can be actual-
ized in the case where the distribution parameters
are selected. As seen in Figure 2.1, it is possible
to select these parameters in such a way that they

are more or less superimposed over some data of
interest.

Maximum likelihood theory is a formal frame-
work for setting probability distribution parameters
to fit to data. In essence the theory just state
that the parameters are to be selected in such a
way that the joint probability density of the data
is maximized. This way you get the most feasible
distribution where data are produced in high prob-
ability areas to the largest extent possible.

Gaussian Mixture Model (GMM) is a specific
probability distribution defined as a weighted sum:

𝑝(𝑋 ∣ 𝜇1, 𝛴1, 𝑤1, … , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾)

=
𝐾
∑
𝑘=1

𝑤𝑘𝑝𝑘(𝑋 ∣ 𝜇𝑘, 𝛴𝑘) (2.1)

where 𝑝𝑘 are Gaussian probability density func-
tions with mean 𝜇𝑘 and covariance 𝛴𝑘:

𝑝𝑘(𝑋 ∣ 𝜇𝑘, 𝛴𝑘)

= 1
√𝜋𝐷|𝛴𝑘|

𝑒−
1
2 (𝑋−𝜇𝑘)

𝑇𝛴−1𝑘 (𝑋−𝜇𝑘), (2.2)

and𝑤𝑘 areweighting functions constrained to have
𝑤𝑘 > 0 and ∑𝑤𝑘 = 1. If not otherwise stated, the
weights are constant across clusters: 𝑤𝑘 = 1/𝐾.

The distribution shape of GMM allows for mul-
tiple modes and allows for spreading of the dis-
tribution across space. In particular the mean 𝜇𝑘
defines the center of the cluster, and the covariance
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(a) Away from data.

(b) Superimposed on data.

Figure 2.1.: Probability distribution either superim-
posed over data or not. x and y axes represents an
exemplary unitless Cartesian 2D grid.

𝛴𝑘 defines the width of the cluster. This can be
observed in Figure 2.2.

Since the Gaussian mixture model consists of
a probability density function, we can readily apply
maximum likelihood to it and create amodel where
the data are covered by the density. To do this,
we first make the assumption that our metering
point data are drawn from the Gaussian mixture
model, but also we assume that each sample is
drawn independently. This results in the following

Figure 2.2.: An illustration of a simple Gaussian mix-
ture model with two modes. x- and y-axes represents
an exemplary unitless Cartesian 2D grid.

mathematical formula,

𝑝(𝑋1, … , 𝑋𝑁 ∣ 𝜇1, 𝛴1, 𝑤1, … , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾)

=
𝑁
∏
𝑛=1

𝑝(𝑋𝑛 ∣ 𝜇1, 𝛴1, 𝑤1, … , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾), (2.3)

where latter 𝑝 is the probability defined in equation
(2.2).

As a practical detail, finding themaximum likeli-
hood is an iterative method, and requires a starting
position. This can be done in multiple ways, but in
practice initialization is done by first doing K-means
as described in Section 2.3.1 and then applying the
maximum likelihood optimization on the K-means
results.

Gaussian mixture models have many different
application, where clustering is only one. To put
mixture models into the context of clustering, one
needs to use the available probability density func-
tion to assign a metering point to each cluster.
Formally speaking, we assign a metering point to
a cluster if the associated Gaussian density (its
likelihood) is the largest compared to the other
clusters. As an example, consider Figure 2.2 which
has two modes. In the context of clustering we
then say that it has two clusters, one centered at
the top right and one at the bottom left. Each
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metering point is assigned to the density which has
the highest probability. Note that this will result in
a categorization similar to assigning by proximity
when densities are far spread apart, but will likely
yield different results when the densities are closer
to each other.

As introduced in Section 2.2.4, it is useful to
have a qualitative measure for each node to de-
termine how stable an association between a point
and a cluster really is. Since the Gaussian mix-
ture model is a probability model, we can define
such a measure in the context of probabilities. In
particular, we are interested in the probability that
a sample is generated from its assigned cluster 𝑙
and not from any other. This probability can be
calculated using the likelihood functions

𝑃(𝑋𝑛 belongs to cluster 𝑙)

= 𝑤𝑙𝑝𝑙(𝑋𝑛 ∣ 𝜇𝑙, 𝛴𝑙, 𝑤𝑙)
∑𝐾

𝑘=1𝑤𝑘𝑝𝑘(𝑋𝑛 ∣ 𝜇𝑘, 𝛴𝑘),
(2.4)

for each point 𝑋𝑙 and cluster 𝑙.
We note that the distribution described in (2.1)

could be replaced by a weighted sum of other dis-
tributions than the Gaussian normal distribution.
An advantage in using Gaussian distributions is
that the resulting optimization problem is relat-
ively easy, compared to using other distributions.
Moreover, the model (2.1) is highly expressive in
what kinds of point distributions it is able to cap-
ture. For these reasons, the vast majority of the
literature on the subject is focused on the use of
Gaussian distribution in mixture models.

2.3.3. Customized Gaussian mixture
model

Almost all clustering algorithms described in this
chapter are standardized solutions gathered from
the scikit-learn software library. This was
chosen to avoid reinventing the wheel, and to en-
sure that the implementation follows best prac-
tice. However, to try to adopt the extra features
described in Section 2.2, a custom application had

to be created. To this end, a Gaussian mixture
model as defined in Subsection 2.3.2 was chosen.
The alternative implementationwill be discussed in
this Subsection. For convenience, this new imple-
mentation will be referred to as custom Gaussian
mixture model.

As introduced in Section 2.2.1, traditional clus-
tering algorithms do not support anchoring. With
a custom implementation available, we can extend
the theory to introduce new features. With that
in mind, we extend the Gaussian mixture model
to include anchoring by using the following new
likelihood function 𝑝′ :

𝑝′(𝑋1, … , 𝑋𝑁 ∣ 𝜇1, 𝛴1, 𝑤1, … , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾)
= 𝛼𝑝(𝑋1, … , 𝑋𝑁 ∣ 𝜇1, 𝛴1, 𝑤1, … , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾)
+ (1 − 𝛼)𝑝(𝑌1, … , 𝑌𝐾 ∣ 𝜇1, 𝛴1, 𝑤1, … , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾)

(2.5)

where 𝑌1, … , 𝑌𝐾 are the anchor points, and 𝛼 is a
configurable parameter on the unit interval, which
we default to be 0.5. The value selected is some-
what arbitrary, but indicates that the importance of
keeping the cluster close to a substation is equal to
maximizing the likelihood over the samples.

This extended likelihood function can be
looked upon as a weighted average between the
likelihood of the metering point data, and the like-
lihood of the cluster nodes. The first part handles
the clustering itself, the second part ensures that
the likelihood stays around its anchor point. It
does not formally guarantee one node per cluster,
but in practice the solution will always include only
a single node. A way to ensure cluster conver-
gence to something sensible faster is to replace the
K-means initialization described in Section 2.3.2,
with just using the cluster nodes as means, com-
bined with infeasible, large uncorrelated covari-
ance matrices.

The size of a cluster in Gaussianmixturemodel
is determined by the weight sizes 𝑤𝑘. So far
these have all been chosen to be fixed and all equal,
but there is no limitation requiring this. In figure
2.3, we illustrate how the distribution shape differs
when the weights are not all equal. One mode is
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(a) GMM with equal weighting

(b) GMM with uneven weighting

Figure 2.3.: GMM where cluster weights are either
equal in size or not. x- and y-axes represents an
exemplary unitless Cartesian 2D grid.

much larger than the other, indicating that it is likely
that more samples will be a part of one cluster
compared to the other.

As introduced in Section 2.2.3 cluster weights
can be determined outside the scope of the optim-
ization. The only requirement is that the values
chosen are non-negative, and the values are nor-
malized such that ∑𝑤𝑘 = 1. The latter is always
done when applied.

Adding weighting to each cluster is possible
within the scope of current literature. However, if
one wants to weight each node in the same way,

the literature on such an approach is missing. To
this end we have implemented an novel approach
to include node weights. We start by reformulating
the maximum likelihood formulation in (2.3) as a
maximum log-likelihood:

argmax𝜇1,𝛴1,𝑤1,…,𝜇𝐾,𝛴𝐾,𝑤𝐾

log (𝑃(𝑋1, …𝑋𝑁 ∣ 𝜇1, 𝛴1, 𝑤1, … , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾))
= argmax𝜇1,𝛴1,𝑤1…,𝜇𝐾,𝛴𝐾,𝑤𝐾

log (𝑝(𝑋1 ∣ 𝜇1, 𝛴1, 𝑤1… , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾))
+…
+log (𝑝(𝑋𝑁 ∣ 𝜇1, 𝛴1, 𝑤1… , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾)) .

(2.6)

This new log-likelihood will have the same op-
timal parameters because of the fact that the log-
operator is injective, meaning that the largest point
in a functionwill remain the largest point after a log-
transformation. Doing this transformation is quite
common in probability theory, as doing maximiza-
tion of a log-likelihood is often both more numer-
ically stable and more mathematically tractable.
For our purpose however, we only observe that our
optimization problem now is formulated as a sum
where each term is dependent on a single node.
Our novel approach is then to just add weights
𝑣1, … , 𝑣𝑁 to each term:

𝑣1log (𝑝(𝑋1 ∣ 𝜇1, 𝛴1, 𝑤1… , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾))
+ …
+ 𝑣𝑁 log (𝑝(𝑋𝑁 ∣ 𝜇1, 𝛴1, 𝑤1… , 𝜇𝐾 , 𝛴𝐾 , 𝑤𝐾)) . (2.7)

Using a formulation on this form allows us to get
the effect of increasing the weight of a node, in-
creases how much it counts towards the total.
It also has the intuitive property that setting all
weights equal reverts to the default implementa-
tion.

2.3.4. Density-based spatial clustering
of applications with noise

The Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithm contrasts the
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K-means and GMM algorithms, described in Sec-
tions 2.3.1 and 2.3.2, in that it does not depend on
the convergence of an iterative method to determ-
ine a clustering of the input nodes. Instead, each
node is categorized according to its surroundings
and some user defined parameters, which will be
elaborated on in the following description. The
computational cost of DBSCAN compared to these
other methods is as a consequence low.

In general terms, each node 𝑥 is categorized
according to the following:

𝑥 is a core point if there are sufficiently many
points, counting itself, in its neighborhood.

𝑥 is reachable from a core point 𝑦 if there is a
sequence of core points 𝑦1, … , 𝑦𝑁 , with 𝑦1 = 𝑦,
𝑦𝑛+1 in the neighborhood of 𝑦𝑛 for 𝑛 = 1,… ,𝑁−
1 and 𝑥 in the neighborhood of 𝑦𝑁 .
𝑥 is an outlier point if it is not reachable by any
core point.

See figure 2.4 for an example of the classification
of a simple set of points.

We can then partially cluster the points by say-
ing that each core point must belong to a cluster
and all points reachable from the same core point
belong to the same cluster. Partially clustering here
means that we are not guaranteed that all points
belong to a cluster – i.e. the outlier points, which
are not themselves core points, and not reachable
from one either.

Some terms are left intentionally vague in the
above description to indicate that the user has
some control over how to define them, and as such
control the resulting clustering.

In the definition of core points it is up to the user
to describe how close a point has to be to another
in order for it to be in the other’s neighborhood.
The natural way of determining this is to use the
Euclidean distance together with a threshold value
𝜖, and say that 𝑦 is in the neighborhood of 𝑥 if

‖𝑥 − 𝑦‖2 < 𝜖,

where ‖ ⋅ ‖2 denotes the standard the 𝑙2 norm of the
geographical position of a node. The easiest way

Figure 2.4.: DBSCAN’s classification of a set of points.
The core points are drawn in red, reachable points
that are not themselves core points are yellow, while
outlier points are drawn in blue. Edges between points
are here meant to signify that they are in each other’s
neighborhood. The bigger red circle represents the
neighborhood of the specific point in its center. Here,
core points are those with at least 3 points in its
neighborhood.

to control the influence the output of the DBSCAN
algorithm is by the selecting an appropriate value
for 𝜖, where higher values will yield a higher number
of core points and fewer clusters. However, there is
nothing in the way of stopping the user from using
a different metric than the euclidean. For instance,
one can use a different 𝑙𝑝 metric or incorporate
topographical data when measuring the distance
between points.

In a similar vein, the usermust also provide how
many points have to be in a point’s neighborhood
for it to be described as a core point. Requiring
a core point to have many neighboring points will
yield fewer core points, resulting in more clusters,
but alsomore outliers. There is also someflexibility
here in the way we choose to count points. In the
current application, the points are metering points
and core points are metering points that are geo-
graphically close to a high number of other meter-
ing points. However, we can give some metering
points more weight than others based on their
relative demand. In the following results chapter,

©THEMA Consulting Group (2021) 13



Establishing nodes in the distribution grid

metering points with higher maximum daily de-
mand across a year will count more towards core
points designation than metering points with lower
demand. This will result in metering points with
historically high demand having a high probability
of being included in a cluster. Outliers will then
be metering points with historically low demand
and thus have a relatively low impact on the power
distance.

The fact remains, though, that with DBSCAN
the user only has indirect control over some of the
features described in Section 2.2. One can attempt
to anchor clusters by prescribing a heavy weight
to certain nodes, but it does not guarantee that
any additional nodes will be included in the same
cluster or that every node will be reachable by an
anchor node.

The same goes for the balancing of cluster
sizes. For instance, having one cluster much larger
than the others is usually a result of non-uniformly
distributed input data, something that is not easily
remedied or controlled by the user specified para-
meters.
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3. Data sources and data handling

In this chapter we discuss data sources and the
necessary pre-processing steps.

3.1. Data needs for power dis-
tance computation

In the process of designing computational meth-
ods for the power distance, the importance of high-
quality input data has been highlighted. Along-
side efforts to refine the methods to compute new
output parameters RME has also emphasized the
need to improve the required input data and reduce
data needs. In the three previous studies on power
distance [2, 3, 4], three main data sets have been
used:

Metering data per metering point and/or sub-
station with an hourly resolution.

Geographical information on the location of
metering points, substations and transformer
stations.

The physical topology of the distribution grid,
i.e. the links between metering points, substa-
tions and transformer stations.

In [3], real grid data from selected test cases in the
Norwegian distribution grid [3] was coupled with
metering data aggregated to substation level. As
part of the study, methods to simplify and error-
check grid data were developed, however, the study
led to the conclusion that the quality of available
grid data was not sufficient to ensure a fair bench-
marking process amongall network companies. In-
stead, methods that create an idealized grid based
on the location and demand per substation were
further investigated in the HVD grid and alternat-
ive methods were defined to account for the LVD
grid [7]. For methods that rely solely on metering

data and geographical coordinates, the quality of
these data sets becomes increasingly important.
In parallel, data processing routines to standardize
data for meters and substations was developed
in [5]. So far, all methods have been tested on
the grid system of the DSOs KE Nett AS (Klepp),
Mørenett AS (Mørenett), Jæren Everk AS (Jæren)
and Glitre Energi Nett AS (Glitre). On the one hand,
this allowed for direct communication in case of
issues thus offering more direct insight to the data
background. On the other hand the datasets lacked
standardization and pre-processing was needed
which increased the risk of erroneous data impact-
ing the power distance calculations. By extending
the scope of the output parameters to the LVD grid
and including all Norwegian grid companies, the
amount of metering data increases drastically to
130 000 substations and over three million meter-
ing points.

3.2. Data sources

This study uses data from Elhub and grid data
provided by Klepp.

Developing methods based on Elhub data al-
lows for more standardized data handling mov-
ing forward. In addition, the dataset from Elhub
cover the entire Norwegian distribution grid. Con-
sequently the analysis and use of metering data
can be extended from the previously small scope
of four grid companies. This will allow for valuable
insights on differences and similarities between
different grid companies.

Unfortunately the Elhub data do not include
topological information about the grid. For the
clustering algorithms presented in Chapter 2 em-
ploying anchoring, such as customized GMM and
anchored K-means, information about the substa-
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tion - meetering point connections are needed to
define root nodes for each cluster. Furthermore, for
benchmarking we are interested in comparing the
true grid to the artificial grid created by the cluster-
ing algorithms. To that end, grid data provided by
Klepp must be used.

3.3. Pre-processing of data

The geographical location of each metering point
is central to any of the above-mentioned clustering
methods. The Elhub data in particular suffered
from very low data quality with respect to geo-
graphical location. The problems encountered in
this data set include:

Missing data : Only about 26 % of the data points
had defined coordinates, and would have to be
collected by other means.

Incorrect coordinate reporting : Where the Elhub
data provided coordinates, several samples
where placed somewhere in Nordland, even if
the address data stated that the point should
be in a different county. In the ensuing we
have opted to trust the address data over the
provided coordinates.

As a remedy to these problems, we used the
API provided by Geonorge [8] to search for coordin-
ates based on adresses. The API had an approxim-
ately 83 % success rate, resulting in a substantial
increase in data quality, and yielded coordinates of
the form longitude-latitude pairs.

As a general approach, we always want to con-
vert available data to a format easily recognisable
by the clustering methods under consideration. To
this end we have had to perform a series of pre-
processing steps before getting to the actual data
analysis part.

Collect All data was stored as CSV files, and our
scripts and programs used Pandas to read
them into a programmatically workable format.
This format is fine for smaller case studies,
like this, but it does not scale well, and other
formats should be considered when scaling to

larger computations. The main problem with
reading the data from a CSV is the amount
of data having to be stored in-memory when
performing the clustering. A solution, as we
have done in this study, is to filter the data set
into smaller CSV files, for example on owning
DSO for each metering point. The main draw-
back with this approach is the large number of
files the user has to keep track of when scaling
up the clustering to a production setting, and
the maintenance cost this entails. A cleaner,
more easily maintainable solution would be to
store all metering points, and their relevant
metadata, in a database to which the user can
make appropriate queries when performing a
clustering of the metering points.

Clean Some cleaning of the data was also needed.
This included removal of data points still miss-
ing coordinates, and casting the data fields
into an appropriate value type – e.g. metering
point ID and municipality code to integers, or
metering point consumption to floating point
values.

Combine We also had to combine the provided
consumption data with the metering points
metadata. This was done by matching meter-
ing point IDs. In training our clustering al-
gorithms, we used consumption data as an
additional column in the metering point data
set to represent sample weights (where applic-
able). We should also note here that what con-
sumption, or what aggregate of consumption,
to put in as sample weights can have an effect
on output clusters.

Convert Since an integral part of the power
distance calculation is the distance between
metering points, the longitude-latitude pairs
were transformed into UTM zone 33N
(EPSG:25833) coordinates, which have unit
meter. Thus making appropriately dimen-
sioned distance calculations easier.

Supplement Many of the methods we are consid-
ering in this study require anchoring, which pre-
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supposes that we have a set of cluster centers
with well-defined locations. Both K-means and
GMM can initialize these locations in more or
less sensible way, but it is valuable to compare
these clusterings with the corresponding clus-
tering using real grid data. Therefore, on a sub-
set of the metering points we have supplemen-
ted the data with what substation a metering
point is connected to, and metadata related to
some substations.

Concentrate Many large pre-processed data sets
end up being ”sparse” in the sense that there is
information in the data set, but it is spread thin
across too many columns. In this case, con-
centration and dimension reduction has been
of little issue. To get dense datasets we have
simply left out data fields not required in the
model analysis, and removed samples with
missing data.
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4. Results
In this chapter we will consider some numer-
ical experiments using the methods described in
Chapter 2.

The first case study consists ofmetering points
in Klepp municipality in Rogaland. Here we also
have substation data available, whichmakes it pos-
sible to use methods that require anchoring, like
customized GMM and anchored K-means. Having
substation data, together with information about
which metering points are connected to it, also
provides us with a baseline to compare the power
distance calculations with.

The second case study consists of metering
points in the grid area of Mørenett, provided by
Elhub. In this casewe do not have available data on
what substation each metering point is connected
to, which makes only K-means++, vanilla GMM and
DBSCAN relevant. There is also no baseline to
make a meaningful comparison with. However, the
geographical distribution of the nodes in this case
exhibits some noteworthy features not present in
the Klepp data.

In themethods where weighting of eachmeter-
ing point is applicable (customized GMM and DB-
SCAN), theweights are taken as themaximumdaily
demand for each metering point across the year
2020.

For the power distance calculations, we have
used the Artificial grid method, as described in [3],
on each cluster, together with a power distance
calculation from a root of each cluster to their
centroid. This last step is to make sure that all
methods within the case study are comparable.
Otherwise, a method that puts each metering point
in its own separate cluster would yield the best
power distance.

For methods with anchoring, the anchor nodes
are used as cluster roots, while for methods

without anchoring we have used the centroid of
each cluster. In the case of DBSCAN we have
also treated the outlier points as their own cluster.
This is not the only way to handle this case. For
instance, one could consider adding each outlier
point to its nearest cluster. However, in this study
we have opted to treat them as a separate cluster
to emphasize one of the main problems with DB-
SCAN.

Moreover, the user defined parameters in DB-
SCAN were chosen so as to strike a balance
between having few outliers andmany evenly sized
clusters. In the following studies we used only the
size of a metering point’s neighborhood and how
many points were reachable by a metering point to
be considered a core point as parameters to tune
the DBSCAN models. Also, the counting of each
metering point in DBSCAN was weighted by their
maximum demand across 2020. Thus, metering
points with a historically high demand will have a
higher probability of being assigned to cluster.

The above mentioned maximum daily de-
mands on each node are also used in the ensuing
power distance calculations. Lastly, throughout
the examples we have used 𝛼 = 0.4 for the power
distance scaling parameter.

4.1. Case 1: Klepp

Our first case is the data provided by KE Nett. For
the differentmethods, thesewere the values for the
user defined parameters that we chose:

GMM and K-means++: For these methods we
used 300 components, to approximatelymimic
the number of clusters in the baseline and the
anchored methods.

custom GMM: In addition to using the provided
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substations as anchors, the anchor weighting
was chosen to be 0.5. That means that themix-
ture model gives equal weight to maximizing
the likelihood of the point data and keeping the
clusters centered around the substations.

Anchored K-means: This method has no other
parameters to tune after setting the substa-
tions as cluster anchors.

DBSCAN: For this method we used 𝜖 = 300m
as the limit for when two points are considered
close, and a point has to have at least 4 neigh-
bors, including itself to be counted as core
point. We reiterate that this count is scaled
according to maximum daily demand across
2020, so that a metering point with an average
demand still counts as one and, for example,
a metering point with twice of the average
demand would count as 2 neighbors. These
values were chosen as they were found to have
the fewest number of outlier points.

Figure 4.1 shows the clustering produced by
the different methods, together with the clustering
baseline from the actual data in Figure 4.1a. All
methods, except for DBSCAN, qualitatively con-
forms with the baseline clustering, in that there are
many smaller clusters. DBSCAN contrasts this as
being the only method where number of clusters
is not a direct input parameter, but rather decides
the number of clusters based on the distribution
of metering points. In particular, Figure 4.1f shows
that regions with a high density of metering points
are usually grouped into large clusters.

Table 4.1 shows the number of clusters, total
line length, sum of power distance on each cluster,
and total power distance for each considered
method. For the K-means and GMM methods the
number of components were chosen to be the
same as the number of substations in the dataset.
Note that scikit-learn’s GMM implementation con-
verged to amodel using fewer clusters. This simply
means that the algorithm converged to a model
where some gaussian distributions did not have
any metering points that most likely belonged to it.
This is in and of itself not a problem, and simply

means that the algorithm found it more likely that
the data was distributed across fewer clusters.

The power distance measures of all methods
come close to the baseline, especially the methods
using anchoring, corroborating the idea that higher
data quality from a DSO yields better results. The
methods without anchoring tend to be below the
baseline value, again with the notable exception of
DBSCAN.

The same story continues when considering
total line length. The methods using anchoring
comes closer to the baseline, while the other meth-
ods requires less grid, except for DBSCAN.

DBSCAN’s discrepancy in total line length and
power distance from the other methods and the
baseline can at least in part be explained by our
choice of treating outlier points as a separate
cluster. Figure 4.2 shows the artificial grid con-
structed for the outlier nodes in this example. Here
we see that the outliers cover a large expanse,
making large contributions to both the total line
length and power distance. This large contribution
from the outlier points would certainly be remedied
by, for example, adding each outlier point to its
nearest cluster instead.

Tables 4.2 to 4.4 show summaries of the dis-
tribution of cluster sizes, geographical spread, and
demand for the different clustering methods to-
gether with the baseline.

As discussed in [3], the computational time of
the artificial grid algorithm increases super-linearly
with number of metering points in the grid. To
keep the computational time of the power distance
calculation low, we therefore want the cluster sizes
to be as evenly distributed as possible. From
Table 4.2 we see that K-means++ performs the
best; the baseline and the anchored methods are
nearly indistinguishable, while GMM and DBSCAN
are the worst.

A similar story is told in Table 4.4, wherewe see
that none of the methods outperform the baseline
in evenly distributing the demand, with GMM and
DBSCAN as the worst.
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(a) Actual (b) K-means++ (c) K-means anchored

(d) GMM (e) custom GMM (f) DBSCAN

Figure 4.1.: Different clusterings of metering points in Klepp municipality.

Table 4.1.: Summary table for the various clusterings of the Klepp dataset. Here, ”PD on clusters” is the sum of
the power distances across all clusters, while ”Total PD” has the added power distance from the centroid to all
cluster roots.

#clusters Line length[km] PD on clusters[(kW)𝛼 ⋅m] Total PD[(kW)𝛼 ⋅m]
Actual 298 341 4.23 ⋅ 106 1.16 ⋅ 107

K-means++ 300 299 3.35 ⋅ 106 1.09 ⋅ 107

K-means anchored 298 341 4.01 ⋅ 106 1.15 ⋅ 107

GMM 242 303 3.69 ⋅ 106 1.08 ⋅ 107

custom GMM 298 330 3.80 ⋅ 106 1.12 ⋅ 107

DBSCAN 84 377 6.77 ⋅ 106 1.23 ⋅ 107
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Table 4.2.: Statistics for the distribution of cluster sizes for each considered clustering method. The columns
show respectively the mean, minimum, maximum and some percentiles.

mean min max P10 P25 P50 P75 P90

Actual 29.92 1 254 2 8.25 15 41 81.1
K-means++ 29.72 1 146 6 9 14 50 70.1

K-means anchored 29.92 1 236 5 9 15 42.75 82
GMM 36.85 1 796 4 7 11 20.75 113

custom GMM 29.92 1 348 3 9 14 35.75 85.6
DBSCAN 106.15 1 4351 2.3 5 10 19 46.5

Table 4.3.: Statistics for the distribution of mean distance of metering points to cluster centroid for each
considered clustering method. The columns show respectively the mean, minimum, maximum and some
percentiles. All values are displayed in meters.

mean min max P10 P25 P50 P75 P90

Actual 135.45 0 615.45 24.58 77.95 113.89 195.21 262.07
K-means++ 133.23 0 348.60 69.39 84.07 125.51 171.87 212.54

K-means anchored 146.00 0 512.73 68.27 88.28 120.78 191.93 256.32
GMM 152.72 0 369.32 70.88 113.26 149.62 187.27 242.35

custom GMM 136.63 0 375.65 51.63 79.98 118.78 190.37 239.89
DBSCAN 254.43 0 4422.17 30.18 99.33 159.40 256.40 379.27

Table 4.4.: Statistics for the distribution of total demand for each considered clustering method. The columns
show respectively the mean, minimum, maximum and some percentiles. All values are displayed in kilo Watts.

mean min max P10 P25 P50 P75 P90

Actual 5.75 ⋅ 103 16.57 1.21 ⋅ 105 1.11 ⋅ 103 1.98 ⋅ 103 3.60 ⋅ 103 7.06 ⋅ 103 1.03 ⋅ 104

K-means++ 5.59 ⋅ 103 50.52 1.33 ⋅ 105 7.66 ⋅ 102 1.30 ⋅ 103 2.88 ⋅ 103 5.89 ⋅ 103 9.13 ⋅ 103

K-means anchored 5.78 ⋅ 103 183.95 1.31 ⋅ 105 9.86 ⋅ 102 1.59 ⋅ 103 3.46 ⋅ 103 6.50 ⋅ 103 1.05 ⋅ 104

GMM 6.93 ⋅ 103 68.36 1.4 ⋅ 105 5.97 ⋅ 102 9.94 ⋅ 102 1.85 ⋅ 103 4.82 ⋅ 103 1.85 ⋅ 104

custom GMM 5.63 ⋅ 103 65.99 1.20 ⋅ 105 8.62 ⋅ 102 1.41 ⋅ 103 2.78 ⋅ 103 6.69 ⋅ 103 1.09 ⋅ 104

DBSCAN 2.00 ⋅ 104 759.17 5.05 ⋅ 105 8.67 ⋅ 102 1.24 ⋅ 104 2.59 ⋅ 103 4.43 ⋅ 103 2.10 ⋅ 104
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Figure 4.2.: Artificial grid for the outlier points from
DBSCAN.
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4.2. Case 2: Mørenett

As a second case study we consider the metering
points belonging to Mørenett. As already men-
tioned, we do not have substation data here, which
leaves us with no baseline, and methods requir-
ing anchoring are no longer feasible. Still, the
geographical area covered by the dataset provides
a set of challenges that the considered methods
should be able to handle, in particular the artifi-
cial nodes used in the power distance calculations
should be located on land, and grid lines should not
cross bodies of water. The values for the user
defined parameters used to generate these results
were as follows:

GMM and K-means++: For these methods we
used 700 clusters, as this closely resembled
the number of points to number of clusters
ratio in the previous case.

DBSCAN: Here we used 𝜖 = 400m and a point
had to have at least 10 neighboring points to be
considered a core point.

In figure 4.3 we can see the clustering from K-
means++, GMM and DBSCAN viewed on a section
of Ålesund municipality. Qualitatively, we see the
same effects as in the Klepp study. K-means++
and GMM favor smaller clusters, whereas DBSCAN
can generate clusters with a high number of nodes
in dense areas. Also worth noting are the oblong
cluster shapes generated by the different methods,
andmost pronounced in the K-means++ case. This
effect stems from a property of the K-means al-
gorithm: A metering point is placed in a node’s
cluster if it is closer to that node than any of the
others. For boundary nodes, i.e. nodes with no
other nodes further out from it, all metering points
further out will belong to that node. Thus, if there
are several boundary nodes placed side by side, the
resulting clusters will look long and thin.

The oblong cluster shapes resulting from the
GMM method can be similarly explained by the
cluster centers being initialized using K-means.

In figure 4.4 we see two examples of artificial
grids generated for different GMM clusters. Figure

4.4a shows how the cluster centroid (here shown
as a larger circular dot) tends to be placed on land.
This should not be too surprising, as the majority
of metering points in a cluster tend to be on the
same area of a continuous section of land. This is,
however, no guarantee for all nodes in a cluster not
to be separated by water. We can see an example
of this in figure 4.4b, where two grid lines are forced
to cross water.

Finally, table 4.5 summarizes some attributes
of the considered clustering methods on this data-
set. It reiterates the pointsmade in the Klepp study.
Still DBSCAN overestimates the power distance
compared to K-means++ and GMM. The same
holds evenmore dramatically for line length. Again,
this can mainly be attributed to the way we have
chosen to handle oulier points as a separate cluster
covering a wide expanse.

Note also that even if the Mørenett dataset is
much larger than the Klepp dataset, roughly 25000
and 9000metering points, respectively, the number
of clusters output by DBSCAN is roughly the same.
This showcases the difficulty in the parameter tun-
ing of DBSCAN if you want to increase the number
of clusters or balancing of cluster sizes.

©THEMA Consulting Group (2021) 23



Establishing nodes in the distribution grid

(a) K-means++ (b) GMM (c) DBSCAN

Figure 4.3.: Different clusterings of metering points in a section of Ålesund.

Table 4.5.: Summary table for the various clusterings of the Mørenett dataset. Here, ”PD on clusters” is the sum
of the power distances across all clusters, while ”Total PD” has the added power distance from the centroid to all
cluster roots.

#clusters Line length[km] PD on clusters[(kW)𝛼 ⋅m] Total PD[(kW)𝛼 ⋅m]
K-means++ 700 1182 1.43 ⋅ 107 4.88 ⋅ 109

GMM 700 1156 1.42 ⋅ 107 4.88 ⋅ 109

DBSCAN 86 11024 6.95 ⋅ 108 5.46 ⋅ 109

(a) Artificial nodes are on land. (b) Grid lines can cross water.

Figure 4.4.: Artificial grid for a GMM cluster where we see an edge cross water.
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5. Discussions and recommendations
In this chapter we discuss the output results
presented in Chapter 4, how the results should be
interpreted and how clustering can be used in the
calculation of power distance. We conclude by giv-
ing some final recommendations on applicability.

5.1. Interpretation of output
results

When evaluating and comparing the clustering al-
gorithms, it is important to differentiate between
algorithm validation when the goal is algorithm
improvements and tuning, and validation when the
goal is testing the applicability of the algorithms.
For the former, looking at the distribution of indi-
vidual cluster size, distance between centroid and
each node and geographical feasibility can provide
insights into how the methods can be improved.
For the latter, only the aggregated results are of
interest. The cluster results are to be used as
input for the calculation of a power distance metric
for each grid area which in the next step is used
to benchmark the grid companies. The implica-
tions from this observation are 1) that biases in
the power distance calculation affecting all grid
companies proportionally equal are irrelevant, im-
plying that biases in the construction of clustering
of nodes affect the calculation of power distance
proportionally equal for all grid companies are ir-
relevant, and 2) variations in the construction of
individual clusters that cancel out when viewing a
grid area as a whole are irrelevant.

In Chapter 4, we presented the results of ap-
plying the clustering algorithms to test cases. It is
easy to observe the algorithm outputs on a nodal-
level. The results are important to illustrate how the
algorithms work and for algorithm improvements.

But care must be taken when studying the results
with the purpose of evaluating applicability.

In the analyzed examples, no points were loc-
ated inwaterwhile someartificial grid lines crossed
bodies of water. Other area types were not ana-
lysed. This behavior could also be observed for
artificial gridmethods without clustering [4] and for
the case of Mørenett, the real grid also crosses
fjords in multiple locations. The main difference
being that the latter examples refer to the HVD
grid, while the example in Figure 4.3b reflects the
LVD grid level. In a real grid system, it is unlikely
that low-voltage lines cross (large) bodies of water.
As a result, the question arises to what extent a
grouping of metering points that are separated by
geographical obstacles is a good representation of
the task.

As mentioned in Section 2.2.5, what features
to include in a clustering algorithm is a question of
howwell they work, available data, and stakeholder
preferences. To that end we have implemented
as suite of different algorithms. The anchored
methods (anchored K-means and custom GMM)
resembles the actual, real grid more closely than
the non-anchored methods and conform more to
the decisions and choices made by the grid com-
panies when building the grid. It is thus to be
expected to find more examples of non-realistic
cluster structures for the non-anchored methods.
A comparison of the output between the methods
on the aggregated level, which is the level that
matters, however is more challenging.

5.2. Stability

The theory of clustering stability is a big topic, but
is focused on the investigation of whether points
remain in the same clusters across different clus-
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terings — either with the same method, but dif-
ferent input parameter values, or across different
clustering algorithms. It does so by varying the
data set through perturbation, removal of points
and adding noise to the data. For an overviewof the
topic see [9]. However, measuring how well a point
stays the same irrespective of change in the data
is not a good fit for analyzing artificial grids. The
reason is that the quality of measure, how much
a point remains in the same cluster, is a measure
of the grids microscopic features. This to a large
extent is an analysis of the data, and important if
we are interested in knowing if the same clusters
will always form. Our interest for this report on the
other hand is related to the macroscopic features,
with stability in power distance being the most
important. Given this, we have considered doing
classical stability analysis as outside the scope of
this report.

Without a formal framework for doing cluster
stability analysis, we instead take the simpler ap-
proach of looking at the simple sensitivity of the
output score. The basic idea behind sensitivity
analysis is to observe how small changes in input
parameters will affect the output score. Here by
parameter we mean variables that we can control
from the outside. In our context we can define the
choice of clustering algorithm as one parameter
and the choice of area as another. As for output
score, we will look exclusively at total power dis-
tance. In other words, we are interested in how
much the power distance changes as a function of
changing algorithm and test area.

Sensitivity analysis is, like cluster stability, a
bigger topic with multiple approaches available, a
derivative-based method being perhaps the most
popular, where a high derivative of the power dis-
tance indicates low stability. However, since we do
not have full control over the models (we can not
get the derivative of a clustering method), we can
not use this. Instead we will look at variance-based
sensitivity analysis, and in particular first order total
order sensitivity indices (also known as the main

and total Sobol indices):

𝑆𝑖 =
𝕍 (𝔼(𝑌 ∣ 𝑍𝑖))

𝕍(𝑌) 𝑆𝑇𝑖 =
𝔼 (𝕍(𝑌 ∣ 𝑍⧵𝑖))

𝕍(𝑌)

where 𝔼 is the mean, 𝕍 is the variance, 𝑌 is power
distance, 𝑍𝑖 are parameter with index 𝑖, and 𝑍⧵𝑖
are all parameter except the one indexed 𝑖. This
method has the advantage of being easy to imple-
ment while also giving an intuitive score of how
much a model changes. To estimate these values
we use Saltelli’s method with resampled values —
a particular kind of Monte Carlo method.

Note though, that this analysis is based on
the available data and analysis as described in the
previous sections. In particular, as there are only
two areas available, the results should first and
foremost be interpreted as indicative, and will likely
change as more areas are included.

The first thing to note is that the total variance
of all experiments is 5.718×1018, but the coefficient
of variance is just 1.41. This means that though the
variation is quite big, it is not very big relative to
the scale of the power distance values. Breaking
down this variance using variance based sensitivity
analysis and we get

𝑆𝑎𝑙𝑔𝑜 = 0.002 𝑆𝑎𝑟𝑒𝑎 = 0.502
𝑆𝑇𝑎𝑙𝑔𝑜 = 0.025 𝑆𝑇𝑎𝑟𝑒𝑎 = 0.749

This main indices can be interpreted as the direct
fractional contribution fromaparameter to the total
variance. So in particular 0.022 × 5.718 × 1018 =
0.174 × 1018 for the choice of algorithm and 0.563 ×
5.718 × 1018 = 3.124 × 1018 for the choice of area.
Another way to look at this is how it changes the
coefficient of variance. The part of the coefficient
that the choice of algorithm affects is 0.076. The
same number for the selection of the area is 0.997.
In other words, the selection of the area signific-
antly contribute to the coefficient’s size. The se-
lection of algorithm does not. This means that the
power distance is much more dependant on which
grid area it is calculated for than what clustering
algorithm is used.
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5. Discussions and recommendations

5.3. Implications for the power
distance variable

In Chapter 1 we stated the goal of developing
methods to improve the computation of newoutput
parameters without negatively affecting the fair-
ness in the DEA model. However, the dual of this
goal might also be desirable, namely to aid the
development of a more fair DEA model without
negatively affecting the computational burden.

The distribution power grid is inherently
layered, as defined by the voltage level. Most
fundamentally, the distinction between the LVD
and HVD grid as defined in Section 1.3. The
number of metering points and substations, and
consequently also the amount of data, as well
as different legislation may warrant the use of
individual methods for the two grid levels. Overall,
any method to compute new output parameters
in the distribution grid should reflect the task of
supplying power to all customers, covering both
grid levels. As discussed in [4], this introduces
questions as to how methods developed for each
level should be combined and potentially weighted
against each other. Furthermore, the separation
point between LVD and HVD is, at least partly,
endogenously chosen by the grid company. The
choice between building 230V vs 400V LVD grids
is an example of this, as the voltage level dictates
the maximum line length (without experiencing
disproportionate high power losses).

A cluster of metering points will implicitly
define the separation between LVD andHVD, and by
using the same user defined parameter sets (which
varies from algorithm to algorithm) across all grid
areas, the problem of variations in how LVD and
HVD is separated will at least partly be reduced.

The constructed clusters of metering points
can be used as input to the computation of power
distance in two ways. The first option is to only
use the topology defined by the cluster. The power
distance output variables can be calculated indi-
vidually for each cluster using any method suitable
for the LVD grid and then combined with the power

distance for the grid defined by cluster centroids,
cluster root node, or any other point associated
with each cluster and the transformer stations.
Thismethod is similar to the alternatives discussed
in [4] except that the LVD/HVD separation is al-
gorithmically decided.

The second option is to also use cluster meta-
data in addition to the topology defined by the
clusters. The meta-data containing information
about, among other things, number of metering
points in the cluster, demand distribution and in-
stalled capacity. This information can be used to
weight the nodes in the HVD grid, and thus avoid
the need to compute power distance for the LVD
grid.

The discussion on how to combine the LVD and
HVD grid is however not dependent on the decision
on whether to use clustering methods or not. For
the case where nodes are anchored to substation
locations this will give similar results as using the
dataset fromMulticonsult [5], where metering data
was aggregated to the closest substation. Such an
approach would not necessarily reflect the distri-
bution of customers in the LVD grid. For methods
where nodes are not anchored, the properties of the
resulting clusters implicitly account for the distribu-
tion of metering points.

5.4. Other considerations

5.4.1. Incentive effects and data quality

As discussed above, using a clustering algorithm
should yield a more exogenous power distance
measure as the choice between LVD andHVD is de-
termined through the algorithm. We will also argue
that the grid companies will not have incentives or
opportunities for delivering low quality data. With
respect to metering data, these are data that are
important for the imbalance settlement between
generators, suppliers and large end-users, carried
out by eSett on behalf of Statnett in the Norwe-
gian electricity market. Hence, incorrect metering
values will not be acceptable from the perspective
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Table 5.1.: Evaluation criteria for the considered algorithms.

Exogeneity Computational complexity Tuneability Computational cost

Actual low n/a n/a low

K-means++ high low low low

K-means anchored medium low low low

GMM high medium low high

custom GMM medium to high high high high

DBSCAN high medium high low

of these stakeholders. For the geographical co-
ordinates, these can be corrected (to a large extent
at least) using other data sources that cannot be
controlled by the grid companies.

In any case we consider that it will be difficult
for the grid companies to use strategic reporting
of data in practice, as the calculations involved
are complex and the optimal reporting strategy can
depend on the behaviour of other grid companies.

5.4.2. Distributed generation and
flexibility

All analyses performed in this study used the max-
imum net demand per metering point as input,
in line with suggestions from [7]. Consequently,
distributed generation is indirectly assumed to al-
leviate the task of supplying power to any cus-
tomer/producer in a cluster, i.e. production occur-
ring in the same hour as consumption reduces the
required power flow to a metering point. Given that
the main clustering criterion is minimal distance,
a different way of accounting for distributed gen-
eration would not strongly impact the clustering
algorithms, and rather affect the calculation of the
power distance.

5.5. Recommendations

In this report we have presented a suite of al-
gorithms that can be used to cluster meter-
ing points. The algorithms, as summarized in

Table 2.1, have different features, level of complex-
ity and computational cost.

The first question we need to answer when
forming a final recommendation is whether to use
clustering or not. The alternative to clustering
when computing the power distance is either to
use the real grid as is, or simple hybrid approaches
such as allocating each metering point to existing
substations using simple closeness metrics, i.e.
the method described in [5]. Considering exogen-
eity, the arguments in favor of using clustering
are strong: The separation between LVD and HVD,
cluster size and topology of the LVD as a whole are
algorithmically decided. Complete exogeneity in
the LVD grid is achieved using non-anchored meth-
ods, while the anchored methods can be viewed
as an intermediate step between the non-anchored
methods and relying on the real grid topology. The
next argumentwould investigatewhatmethod best
represents the task of the grid companies to sup-
ply power. As the true optimal grid is unknown,
there is no natural way to test to what extent the
various methods represents this goal. However,
in this report we have demonstrated the flexibility
of the proposed algorithms. By tuning the hyper
parameters the output clusters can be made to re-
semble properties of the real grid, or any other grid
deemed optimal. Thus to conclude the argument
on whether to use clustering or not, designing a fair
benchmarking that represent the true task of the
grid companies is challenging, but using clustering
algorithms will not set limitations in achieving that
goal.
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5. Discussions and recommendations

Given that using clustering algorithms is a good
idea, the second question we need to answer is
what clustering algorithm to favor. We identify
four criteria: exogeneity, complexity, tuneability
and compuational cost. The second and third
criteria represent a direct trade-off. Tuneability is
needed to not restrict the possibility of designing a
fair benchmark as described in the previous para-
graph. On the other hand, excessive complexity
is not wanted either in that unnecessarily complex
methods are opaque, more difficult to understand
and would be treated more as a black box by a
DSO. A qualitative comparison of the considered
algorithms are given in Table 5.1 . In this regard,
we have no clear recommendation, but RME should
consider the criteria and the properties of the differ-
ent algorithms further before making a decision.
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A. Acronyms

DBSCAN Density-Based Spatial Clustering of Ap-
plications with Noise

DEA Data Envelopment Analysis

DSO Distribution System Operator

GMM Gaussian Mixture Model

HVD high-voltage distribution

LVD low-voltage distribution

NVE NorgesVassdrags- og Energidirektorat (Nor-
wegian Water Resources and Energy Director-
ate)

RME Reguleringsmyndigheten for Energi (Regu-
latory authority for Energy)
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