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Summary 

HBV hydrological models have been calibrated for 117 unregulated catchments based on 
1 x 1 km grid-based precipitation and temperature input data.  Five best fit models were 
calibrated for each catchment based on observed streamflow using PEST parameter 
estimation routines.  The Nash-Sutcliffe (N-S) criteria and the volumetric bias for a 
calibration period (1981-2000 for most catchments) were used as objective functions for 
model optimisation. A final model was selected for each catchment based on N-S values 
and the volumetric bias for validation periods (1961-1980, 2001-2006; or as feasible for a 
given catchment), together with a qualitative assessment of the seasonal distribution of 
runoff and snow storage and the fit of the cumulative distribution functions for all flows, 
for peak flows and for low flows.  Fifteen HBV parameters were calibrated during model 
optimisation for each catchment.  The parameter estimation routines were effective in 
identifying best fit parameter sets based on multiple sets of starting values tested for 
model performance prior to optimisation.  Model fits with N-S values > 0.70 for daily 
runoff were obtained in 90 catchments and for weekly runoff in 113 catchments. The 
model volumetric bias is < ±5% in 105 catchments and < ±2% in 56 catchments. 

The sensitivity of the HBV parameters is also assessed during model optimisation with 
PEST, and the precipitation (rainfall) correction factor, PKORR, was found to be the 
most sensitive parameter in 100 catchments. In many cases, the sensitivity of this 
parameter is 1 to 2 orders of magnitude greater than other parameters. The precipitation 
(snowfall) correction factor, SKORR, was found to be the second most sensitive 
parameter in 87 catchments. The sensitivity of these two parameters underscores the 
importance of high quality precipitation input data for model performance. Model 
calibrations with poorer model fits are, in many cases, associated with smaller catchments 
in the western and southwestern regions of Norway. Comparisons with calibrations based 
on station data indicate that model fits are generally not improved when synoptic data are 
used, indicating that the weaker model performance in these regions do not arise from the 
use of grid-based, rather than station-based, input data. However, calibrated values for 
PKORR tend to be lower for catchments in western and southwestern Norway and are 
often below the lower bound previously used for this parameter (0.80), indicating that 
input precipitation values are often too high. 

Simulation results from the HBV model runs for 115 catchments for the period 1961-
2006 are available on the HYDRA-II system at NVE. The newly calibrated HBV models 
will be implemented in an upgraded flood forecasting system and integrated into new 
tools used for energy prognoses based on reservoir inflows, currently under development. 
They will also be applied in the assessment of the impact of climate change on 
hydropower supply within the Climate and Energy Systems project (funded by Nordic 
Energy Research, the Nordic energy sector and national institutions of the participating 
countries) and the CELECT project (funded under the NORKLIMA programme of the 
Research Council of Norway), and the EU FP6 WATCH (Water and Global Change). 
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1 Introduction 
Hydrological models, based on the calibration of HBV in selected catchments, are used 
operationally by NVE in flood forecasting and have been used for this purpose on a 
regular basis since 1989. After the devastating 1995 flood, funding was provided to 
improve the flood forecasting service, and the number of calibrated catchments was 
increased and an automatic system for running daily prognoses was established. In the 
recent years, prognoses for nearly 80 catchments have comprised the basis for daily 
nationwide streamflow forecasts. Operational model runs are carried out every morning, 
based on the current climate observations and weather forecast from the Meteorological 
Institute (met.no). Observed daily streamflow is then used to update the streamflow 
forecast in proportion to the deviation between the last observed and simulated 
streamflow. Weekly aggregates of daily climate forecasts and HBV streamflow and snow 
storage forecasts are also used operationally to estimate energy inflow to reservoirs for 
hydropower production. Simulated energy inflow is, in turn, used to update the 
Samkjøringsmodellen (Power Market Simulator) for simulating the hydropower system. 
Calibrated HBV models are also applied, together with downscaled climate scenario data, 
to assess anticipated impacts of climate change on runoff during the next 100 years (e.g. 
Beldring, et al. 2006). Outputs from these analyses are relevant to issues such as future 
hydropower production potential in the Nordic region, reservoir dam safety and flood risk 
management.  

Traditionally, input data for the HBV models have come from dataseries from individual 
climate stations. The climate station network changes in time, however, a feature that 
complicates the use of such data in the calibration of HBV models. Establishing a 
sufficiently long and homogeneous input dataseries for both model calibration and 
validation has been a major task when a new model is required or when recalibration of 
an existing model is needed, e.g. due to the closing of a climate station.In conjunction 
with the recent development and publishing of the seNorge web page (www.senorge.no) 
by NVE and met.no, a daily production line for gridded fields of precipitation and 
temperature and other water balance data and estimates was established. During 2007, 
these grids were made available early in the morning, making them a very useful source 
of input data for the flood forecasting system. The available grids now provide historical 
climate data in a 1 x 1 km2 format for the period 1961 until the present day (Mohr and 
Tveito, 2008). 

The availability of distributed precipitation and temperature grids is a prerequisite for the 
automated calibration procedure presented in this report. The grids are based on all 
available data at a respective point in time, providing a quasi-homogeneous time series of 
distributed fields. Model calibration can now be undertaken using a common procedure 
for input data for all catchments, together with a parameter estimation algorithm, with 
minimal manual intervention required. Such an automatic calibration procedure 
represents a major improvement in the tools available for the management of the flood 
forecasting system, as well as in procedures used for developing energy prognoses. 

Model calibration for individual catchments has traditionally been achieved using manual 
adjustment of key model parameters within established ranges to obtain a best fit between 
observed and simulated discharge series.  This procedure is time-consuming, is dependent 



 

 7 

on the skill and experience of the modeller, and is therefore prone to inconsistency 
between modellers. An advantage of the manual procedure is that it allows first-hand 
knowledge of hydrological conditions within a particular catchment and modelling 
experience in reproducing those conditions to contribute directly within the calibration 
process. An alternative to manual calibration is the use of automated computational 
routines for parameter selection, which are more efficient and remove some of the 
potential subjectivity of manual calibration. Mathematical and computational techniques 
for automated parameter optimisation and selection have significantly improved in recent 
years, making the approach both more feasible and accessible. The parameter estimation 
routine PEST (Doherty, 2004) is such a tool and has been used for several years at NVE 
for calibration of groundwater models, in addition to the HBV model. In the new 
calibration of models presented here, PEST was used to refine a set of five or more best-
fit models for each catchment following uniform random sampling to establish feasible 
initial parameter values.  User knowledge and experience was applied via additional 
qualitative criteria for model performance in the selection of the final model for each 
catchment. 

This report presents an overview of the new calibration of catchment-scale HBV 
hydrological models for 117 catchments based on gridded precipitation and temperature 
data as the input timeseries and HBV parameter optimisation using PEST. Acceptable 
model fits were achieved in 115 of these catchments, and these new models will be 
implemented in an upgraded flood forecasting system, integrated into new tools used for 
generating energy prognoses currently under development, and applied in catchment-
scale analyses of future climate change impacts on streamflow.  

 

2 Catchment selection  
The catchments selected for modelling are illustrated in Figure 1, and the gauging station 
names and numbers, the catchment area and the years for which streamflow data are 
available are given in Appendix 1.  The selection comprises catchments previously used 
for flood forecasting and energy inflow forecasts, as well as new catchments for these 
purposes.  Two principal constraints determine whether a catchment can be used for HBV 
modelling: 1) availability of a daily discharge timeseries of sufficient length and quality 
for model calibration and validation; and 2) absence of any significant regulation of 
streamflow.  The majority of catchments in Appendix 1 have daily discharge series 
extending from 1961, the first year for which gridded climatological data are available, 
and all have been subjected to controls on data quality.  Those which do not have data 
covering the entire period 1961 – 2006 have dates indicated in bold.  Several of the 
gauging stations are not under the ownership of NVE and there are some variations in 
data quality between stations. All of the selected catchments have either no or minimal 
regulation  (Pettersson, 2004).  In addition to these constraints, 84 of these catchments 
were particularly chosen for their representativeness for energy inflow prognoses. Further 
details of that selection process are given in Holmqvist and Engen (2008), and the 84 
catchments are identified as such in Appendix 1.  Additional catchments were also added 
to the range of models used in flood forecasting to provide better spatial coverage and to 
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include nested models representing different catchment scales where sufficient data are 
available to achieve this. 

 

 

Figure 1. Location of catchments used in the PEST calibration of HBV models 
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3 The HBV model  
The hydrological models calibrated for each catchment are based on the HBV 
precipitation-runoff model, which has been extensively applied in the Nordic region since 
its development in the 1970s (Bergström, 1976). The original model has undergone 
numerous revisions and improvements, and today there are several implementations of 
HBV available.  In the applications reported here, the “Nordic” HBV model (Killingveit 
and Sælthun, 1995; Sælthun, 1996) was used. This version represents a ‘lumped’ 
catchment model in which the spatial structure of the catchment is not explicitly 
modelled. Ten equal area height zones from the hypsometric curve for the catchments are, 
however, used in the model snow routine, and land cover data is distributed by height 
zone.  All processes, nevertheless, contribute directly to runoff at the outlet without 
internal routing between elevation zones.  A more recent version of HBV performs 
calculations on a gridded basis throughout the catchment (Beldring, et. al. 2003), but also 
does not currently include internal routing between grid points.  The gridded version was 
not used for model calibration, as it offers no significant advantages when simulating 
streamflow at the catchment outlet (contrasting with, for example, the simulation of snow 
cover, soil moisture or other distributed variables). Additionally, the model is more 
computationally intensive than the catchment version, making operational model runs, 
and not least post processing operations such as error estimation, more time consuming. 
The parameter optimisation routines used here are computationally intensive, as well, 
making it unfeasible to systematically apply them with the gridded model at this point in 
time.  

Precipitation-runoff models such as HBV have been developed for forecasting purposes, 
where requirements demand relatively simple model structures that can be 
operationalised from readily available input data . The main structure of the HBV model 
is comprised of four storage components: snow, soil moisture, an upper runoff zone, and 
a lower runoff zone (Figure 2) and is discussed in detail in previous reports.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Storage components and principal fluxes in the HBV model 
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The processes within and fluxes between each of the four zones are governed by 
simplified expressions for the underlying physical processes (see Killingveit and Sælthun, 
1995 for details). Processes are represented as linear or simple non-linear relationships, 
and all are controlled by parameters selected during calibration.  The model is driven by 
timeseries (usually daily) of air temperature and precipitation, and model parameters are 
adjusted to achieve a best fit relative to streamflow observed at the catchment outlet.  In 
the applications reported here, evapotranspiration is estimated by HBV using the 
temperature index method, rather than using monthly values as model input. The physical 
description of the catchment within the HBV model is based on the catchment area, the 
hypsographic curve for the catchment (area-elevation relationship), and the catchment 
land cover types. The climate input and catchment properties data are discussed in more 
detail in later sections of this report. 

 

4 The optimisation procedure  

4.1 PEST parameter estimation 
Calibration of precipitation-runoff models, such as HBV, has been traditionally 
performed manually using a trial and error adjustment of model parameters to achieve an 
acceptable fit between modelled and observed timeseries.  This procedure can be 
automated using Monte-Carlo techniques to sample the parameter space, seeking a best fit 
model parameter set by testing the performance of randomly-selected parameter 
combinations.  Monte-Carlo random sampling is time and resource consuming, 
particularly when calibrating several parameters, as the number of trials required to 
ensure a full sampling of the parameter space grows exponentially with n, the number of 
calibration parameters (Solomatine, 1999; Bates and Campbell, 2001). Markov Chain 
Monte Carlo (MCMC) techniques have the advantage of being more ‘intelligent’ than 
direct uniform random sampling in exploring the parameter space, but their sensitivity to 
initialisation can lead to non-convergence (Haario, et al., 2006), making them difficult to 
apply in the systematic manner required for this work. New  techniques for overcoming 
problems with MCMC methods (e.g. Smith and Marshall, 2008) often yield procedures 
which require even more computational time than uniform random Monte-Carlo 
sampling. 

In the model calibrations presented here, PEST parameter estimation routines (Doherty, 
2004) based on PEST v. 11.2 were used to calibrate values for HBV model parameters for 
each catchment. PEST is a parameter estimation program which uses a Gauss-Marquardt-
Levenberg (GML) algorithm (Marquardt, 1963) to refine the iterative process underlying 
best-fit parameter selection. The algorithm combines advantages of the Gauss-Newton 
method and the steep descent method, producing a faster and more efficient convergence 
to an optimum. Following the use of initial parameter values in a trial model run, PEST 
applies a Taylor series expansion to express the relationship between the model 
parameters and the simulated (in this case, streamflow) values as a linear function.  This 
linear function is then used to estimate new parameters, which are further tested by 
comparing newly simulated values with expected values. By comparing the relative 
improvements in successive runs, the degree of convergence (or non-convergence) can be 
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evaluated and used to determine the subsequent direction of the optimisation. The 
principal advantages of the PEST algorithm are that it is based on a relatively robust 
optimisation algorithm and is more efficient than random selection of parameters by 
Monte Carlo methods. In addition, the routines and documentation are freely available 
and have been widely applied in the hydrological sciences (e.g. Liu et al, 2005; Lin and 
Radcliffe, 2005). 

4.2 Comparison with SCEM-UA global optimisation 
A disadvantage of PEST is that it uses a local optimisation routine, such that the final 
values obtained may be dependent upon the initial parameter values used in the 
optimisation. In other words, the optimisation scheme may become ‘stuck’ at local 
optima and fail to achieve a globally optimal parameter set (Duan, et al., 1993). Gradient-
based methods, such as the GML algorithm in PEST, are particularly prone to this 
weakness (Gupta, et al., 2003).  Stochastic global optimisation techniques have been 
developed as an alternative to local schemes; however, the model run times associated 
with these schemes increases significantly with the number of model parameters and can 
render them unfeasible for practical applications (Skahill and Doherty, 2006).   In 
particular, local schemes, such as those used in PEST, can be initiated from multiple 
starting values within the parameter space to increase the likelihood that the full 
parameter space is sampled. This approach is simpler and often more efficient than global 
schemes. Before PEST was selected for use with HBV, calibration results derived from 
PEST were compared with results obtained using  SCEM-UA (Shuffled Complex 
Evolution Metropolis algorithm), a global optimisation scheme which incorporates an 
adaptive MCMC algorithm (Vrugt et al., 2003). The comparison was based on 10 
catchments, and the PEST calibrations were performed for 20 sets of initial parameter 
values. The average Nash-Sutcliffe criteria for the 10 catchments are illustrated in 
Figure 3. The results indicate that, in general, PEST achieved slightly better model fits 
during the calibration and validation periods than did SCEM-UA. It was, therefore, 
decided to use PEST for model calibration with multiple sets of initial parameter values 
for optimisation. 

Average Nash-Sutcliff criterion

0.7
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0.72

0.73

0.74

0.75

=
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SCEM-UA calibration period
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Figure 3. The average Nash-Sutcliffe score for the 10 test catchments 
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5 Input data  

5.1 Grid-based precipitation and temperature data  
A primary motivation for the automation of the HBV calibration procedure is the 
availability of 1 x 1 km gridded daily temperature and precipitation data from the 
Norwegian Meteorological Institute (met.no).  These data are derived from the 
interpolation of daily observations of 24-hour mean temperature and 24-hour 
accumulated precipitation. For the purposes of HBV modelling, the gridded data provide 
a more systematic coverage in space and in time than one obtains from individual station 
data.  

The daily temperature data are interpolated using the residual interpolation approach 
developed for monthly data and reported in Tveito, et al. (2000) in which the spatial 
distribution of temperature is modelled as comprising deterministic and stochastic 
components.  The deterministic component is based on predictors established in previous 
work (Tveito and Førland, 1999) for describing large-scale spatial climate trends: the 
altitude of the grid cell, the mean and lowest altitudes within a circle of 20 km radius 
from the grid point, and the latitude and longitude of the grid point.  Linear regression is 
used to model the deterministic component which is then removed from the data, and the 
residuals are modelled as a stochastic field using geostatistical techniques.  The approach 
was developed for monthly data, but can also be applied to daily values (Tveito et al., 
2005).  

The procedure for precipitation is based on triangulation and entails creating a triangular 
irregular network (TIN) based on precipitation stations, which is then transformed to a 
regular precipitation grid. Gridded data are adjusted  to give a vertical precipitation 
gradient of 10(%) per 100 (m) below an altitude of 1000 m and 5(%) per 100 m above an 
altitude of 1000 m in the final gridded data (Mohr and Tveito, 2008). The interpolated 
data provide a good representation of precipitation over large parts of Norway (Jansson et 

al., 2007). Problem areas include moutainous regions in southern area where there are 
long distances between stations. A comparison between extreme precipitation values 
derived from grid-based vs. station data indicates that grid-based methods give higher 
values for extreme events in Vestlandet than those derived from station data (Alfnes, 
2007). 

With the availability of gridded data, the HBV model can, in principle, be run with input 
precipitation and temperature values distributed by height zone. Alternatively, the HBV 
model internally adjusts P and T by height zone using calibrated precipitation and 
temperature lapse rates, such that a single daily value can be used as input. A comparison 
was made between calibration runs based on 1) spatially-averaged precipitation and 
temperature values; 2) precipitation and temperature values distributed by height zone; 
and 3) precipitation values distributed by height zone and temperature values spatially 
averaged for the catchment.  The comparison was made for 70 test catchments. Results 
are illustrated in Figure 4 and indicate a very good correspondence between the N-S 
values obtained using spatially-averaged P and T values and P and T values distributed by 
height zone.  The spatially-averaged values appear, in general, to perform slightly better 
than input data derived from distributed precipitation values and spatially-averaged 
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temperature values.  It was, therefore, decided to use the spatially-averaged values for 
model calibration.  
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Figure 4: Optimal N-S values for 70 catchments using average precipitation (P avg) and 

temperature (T avg) values distributed by height zone as input to the HBV model, 

compared to N-S values using precipitation and temperature values distributed by height 

zone  as input to the HBV model.     

5.2 Catchment properties 
Catchment properties required for the height-zone version of the HBV model include: 

n Catchment area 
n Upper and lower bounds on elevation for each of 10 equal-area height zones 
n Elevation of precipitation and temperature stations 
n Fractional lake area in each height zone 
n Glacier-covered area as a fraction of total downstream catchment area for each 

height zone 
n Dominant land cover type, secondary land cover type and fractional area of the 

secondary class  in each height zone 

These catchment properties were extracted using digital terrain model (DTM) and land 
cover raster files with a 25 m by 25 m cell size. The surface water catchment boundaries 
have been previously defined from the DTM for all active streamflow gauging stations in 
Norway by the VG (Water Resources – Geoinformation) section in NVE.  Using those 
catchment boundaries, the hypsometric curve and associated equal area height zones were 
extracted for each catchment and the percentage of each land cover type within each 
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height zone was estimated. Since grid-based rather than station-based precipitation and 
temperature are used in the calibrations, the elevation of the ‘stations’ was set to the 
median elevation value from the hypsometric curve for the catchment. In the case of 
catchments with transnational boundaries, land cover data were only available in the 
portion of the catchment located within Norway.  It was therefore assumed that the spatial 
distribution of land cover, at least with respect to the dominant and secondary land cover 
types used in HBV, was similar on both sides of the national boundary.  

Land cover types extracted for use with the HBV model are classified using the following 
categories:  lake, forest, glacier, bog/marsh, agricultural/meadow, exposed bedrock and 
other. For each height zone, the fractional lake area, the dominant land cover type (forest, 
bog/marsh, agricultural/meadow or exposed bedrock) and the secondary land cover type 
as a fractional area are specified.   Several HBV parameters controlling interception, 
snow distribution and snowmelt, soil moisture content and evapotranspiration vary with 
land cover type, and the values used for these parameters in model calibrations are given 
in sample vegtype.dat file in Appendix 2.  The same vegtype.dat parameter values were 
used for all of the catchments. 

 

6 Calibration procedure 

6.1 Calibration and validation periods 
Up to 45 years of data are available for model simulations in each catchment, as grid-
based precipitation and temperature data are available from 01.09.1961.  In 
approximately half of the catchments, observed discharge data required for model 
calibration also cover this entire period, and in many of the remaining catchments, 
discharge series begin in the mid-1960’s to 1970’s (Appendix 1).  To ensure the use of a  
similar procedure in the majority of catchments, the period 1981 – 2000 was selected as a 
calibration period and the remaining data used for model validation. The first day of the 
model run was 01.09.first_year and the final day was 31.08.end_year, such that snow 
storage can be assumed to be zero at the beginning of the model run. In some cases it was 
necessary to adjust the years used for calibration and validation in individual catchments 
so as to avoid significant gaps or periods of questionable data quality in the observed 
discharge record. The calibration and validation periods used in each catchment are given 
in Appendix 3.   

6.2 HBV calibration parameters and ranges 
Fifteen HBV parameters were allowed to vary in the optimisation procedure during 
model calibration. These parameters are defined and the ranges for each parameter are 
given in Table 1.  The parameter ranges are based on previous applications of HBV in  
NVE and largely follow the recommendations given in Sælthun (1996). 
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Table 1 – HBV parameter ranges used in PEST optimisation 

HBV Parameter Description Range considered 

BETA Soil moisture parameter 1.0 – 4.0 
CX Degree day correction factor 1.0 – 5.0 
FC Field capacity – soil zone 50.0 – 500.0 

KLZ Recession constant – lower zone 0.001 – 0.1 
KUZ1 Recession constant – upper zone 1 0.01 – 1.0 
KUZ2 Recession constant – upper zone 2 0.1 – 1.0 
PERC Percolation – upper to lower zone 0.5 – 2.0 
PGRD Precipitation lapse rate 0.0 – 0.1 

PKORR Rainfall correction factor 0.8 (0.4) – 3.0 
SKORR Snowfall correction factor 1.0 (0.6) – 3.0 

TS Threshold temp. for snowmelt – 1.0 – 2.0 
TX Threshold temp. for rain/snow – 1.0 – 2.0 

TTGD Temp. lapse rate – Clear days – 1.0 –  – 0.5 
TVGD Temp. lapse rate during precip. – 0.7 –  – 0.3 
UZ1 Threshold for quick runoff 10.0 – 100.0 

 

In the cases of PKORR and SKORR, the standard lower bound on the parameter range 
(0.8 for PKORR and 1.0 for SKORR) was found to be too high for some catchments, and 
better calibrations in those catchments were obtained by reducing the lower bound on the 
parameter range to the lower value indicated in Table 1.  Wider ranges for the parameters 
FC and KLZ were also used in an attempt to improve some model calibrations, but those 
changes generally had no effect on the final parameters selected during optimisation nor 
on the overall model fit.  

6.3 Initial parameter values 
PEST is, as discussed in Section 4, a local rather than a global optimisation routine. In 
order to increase the likelihood of finding the global optimal parameter set, PEST can be 
run with more than one set of initial parameter values. Accordingly, five or more initial 
parameter sets were chosen, one of which was the parameter set used in previous HBV 
simulations for the catchment, if available. For new catchments with no previous 
calibrated model, a parameter set chosen by the modeller was used for initial values.  The 
remaining initial parameter sets for each catchment were selected randomly from the 
range for a given parameter:  

Start_value = Lower_limit + Random_number * (Upper_limit - Lower_limit) 

All of the initial parameter sets were tested in the HBV model and if the associated Nash-
Sutcliffe value for the model fit was at least 0.25, the parameter set was optimised using 
the PEST routines. Initial parameter sets achieving N-S values lower than 0.25 were 
discarded and a new set was generated for testing. In a few catchments, the cut-off value 



 

 16 

of 0.25 was found to be too high, such that initial parameter sets could not be identified 
by this method.  In those cases, the cut-off value was reduced until initial parameter 
values were successfully identified.  In general, however, there was no relationship 
between the initial N-S values for parameter sets identified by random selection and the 
final calibrated N-S values for a particular catchment, following optimisation. 

6.4 Calibration objective function 
Optimisation of a parameter set is pursued with respect to an objective function, and in 
these calibrations the Nash-Sutcliffe (N-S) value for the calibration period (1981 – 2000, 
or as indicated in Appendix 3) was used for this purpose. The N-S value was based on the 
simulated versus the observed stream flow daily series together with the total 
accumulated difference between simulated and observed stream flow volume. Following 
optimisation based on the calibration period N-S value, each of the models was run for 
the validation periods (1961-1980 and 2001 – 2006, or as indicated in Appendix 3). The 
models were then ranked relative to their performance during the validation period, 
representing an independent test of the selected parameter set.  Additionally, the 
volumetric bias for the validation period was used as a secondary measure of model 
performance for cases in which N-S values were equivalent for different parameter sets.  

6.5 PEST optimisation settings 
The PEST parameter optimisation algorithm can be refined for individual or subsets of 
parameters, and these specifications are given in the PEST control file. The PEST control 
file used in the calibrations is given in Appendix 4.  In particular, parameter groups are 
used to define how difference increments used in the estimation of derivatives are 
calculated, the lower bounds on those increments, the type of differencing scheme that is 
applied and the method used for a particular differencing scheme.  In this application, 
9 parameter groups were defined to distinguish the lower bounds used for the difference 
increments.  A forward difference scheme was applied for all parameters (variable 
‘always_2’ in the control file). This scheme uses a parabolic forward differencing. The 
magnitude of difference increments was set to ‘relative’ for all parameters such that 
increments are calculated as a fraction of the current value of the parameter. Testing of 
the HBV model calibration routine with the central differencing scheme available for 
PEST was also undertaken. However, no significant improvement in the final calibration 
N-S values was achieved, although computational time was increased. Therefore, the 
simpler, parabolic forward-differencing scheme was used in the optimisations.  

In addition to controls on the differencing scheme, the PEST control file can be used to 
specify parameter transformations, upper and lower bounds on the parameter range, limits 
on the maximum change of a parameter, and parameter scaling or offsets, if required.  In 
this application, log-transformations were used for 7 of the parameters (Appendix 4).  
Two types of constraints can be placed on parameter change, factor-limited parameter 
change and relative-limited parameter change.  These constraints are required to avoid 
overshooting the objective function optimum, and their respective suitability is dependent 
on the parameter range considered, especially the presence of a sign change or the 
inclusion of values greater than 1 (see Doherty, 2004, for further details). Accordingly, 
factor-limited parameter change was used for most of the parameters (Appendix 4), 
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although relative-limited parameter change was required for two of the parameters (TX 
and TS). 

 

7 Calibration results 

7.1 Selection of best calibrated parameter set 
The calibration procedure described in previous sections was applied to the 117 
catchments illustrated in Figure 1, representing the gauging stations listed in Appendix 1.  
The procedure produced five or more best fit models for each catchment, often having 
very similar Nash-Sutcliffe values.  In the selection of a final model for each catchment, 
the following criteria were considered 

n N-S value for validation period 
n Volumetric bias for validation period 
n N-S values for the total simulation period, both daily and weekly 
n Seasonal distribution of runoff by month 
n Snow storage 
n Cumulative distribution functions for all flow levels and for peak flow and low 

flows 

To facilitate the selection, the results for the best five models for each catchment were 
imported into an EXCEL spreadsheet, such that some of these criteria could be assessed 
visually. Examples of the output from this program are given in Figures 5 through 10 
below for Atnasjø (2.32).  The models for each catchment were ranked for each of the 
criteria listed above by two individuals, Elin Langsholt and Ingjerd Haddeland, both with 
significant previous experience with model calibration and HBV model use in NVE.  
From this set of rankings for the models, a final best model was selected for use in the 
catchment.  
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Atnasjø (2.32) - Average Q by month 1961 - 2006
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Figure 6. Average daily discharge by month for each model simulation and observed 
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Atnasjø (2.32) - Snow by month 1961 - 2006
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 Figure 7. Snow storage by month for each model simulation 
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Figure 8. Observed and simulated cumulative distribution functions for non-exceedance flow levels
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7.2 General performance 
The daily Nash-Sutcliffe values for the selected models for the entire simulation period 
are illustrated in Figure 9 and are tabulated in Appendix 3. The daily values indicate 
overall good model performance in that 90 of the 117 catchments have values greater 
than 0.70. Excellent results with N-S daily values  > 0.85 were achieved in 27 of these 
catchments. In general, larger catchments are associated with better model fits, as are 
catchments located in more easterly areas with relatively subdued topography.  Poorer 
model fits tend to be associated with smaller catchments in areas with steep topographic 
gradients and high rainfall volumes. 

 

 

Figure 9. Nash-Sutcliffe values for each catchment model, calculated from daily observed 

vs. simulated discharge. 
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An estimation of weekly volumes is used for energy prognoses, and Figure 10 illustrates 
the Nash-Sutcliffe values for each catchment, calculated on a weekly basis. The weekly 
values suggest better model fits, with 112 of the catchments achieving N-S values > 0.70 
and 47 having values > 0.85.  The better model fits reflect the smoothing of peak flows 
that results when only weekly fluxes are considered. Again, some relatively weaker fits 
are seen in smaller catchments in the western region of Norway, but do also arise in three 
catchments in northern Norway. 

 

 

Figure 10. Nash-Sutcliffe values for each catchment model, calculated from weekly totals 

of observed vs. simulated discharge. 
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The volumetric bias was also calculated for each catchment based on the difference 
between the total observed and simulated runoff volumes, expressed as a fraction of the 
total observed runoff, and the results are illustrated in Figure 11 and tabulated in 
Appendix 3. 

 

Figure 11. Volumetric bias (as a percentage of the observed runoff volume)for each 

catchment model 

The majority of catchment models (105 of 117)  have a volumetric bias less than ± 5 % 
and  56 catchments have models with a bias less than ± 2 %. Larger biases are, however, 
found in some catchments, and these tend to be negative, indicating an underestimation of 
the total runoff in those catchments.   
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7.3 HBV Parameter sensitivity and spatial 
distribution  

PEST optimisation routines generate information about the relative sensitivity of 
calibrated parameters.  The most sensitive HBV parameter identified in each of the 
catchments during calibration is illustrated in Figure 12 and indicates that the 
precipitation correction factor (PKORR) dominates the sensitivity in the majority of 
catchments (100 out of 117). In most cases, PKORR has a relative sensitivity which is 
one to two orders of magnitude greater than other parameters.  In the remaining 
catchments, the lower zone recession coefficient (KLZ – 10 catchments), the precipitation 
lapse rate (PGRD – 6 catchments) or the degree day factor (CXF – 1 catchment) are the 
most sensitive parameter for the calibrated model.  

 

Figure 12. Most sensitive parameter in best model calibration for each catchment. 
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The catchments in which either PGRD or CXF dominate model sensitivity are all small 
catchments (area < 200 km2) and six of the seven have a significant glacial cover in the 
upper height zones. In contrast, the catchments in which KLZ dominates the sensitivity 
tend to have catchment areas in the range of 200 – 2000 km2 and have minimal or no 
glacial cover. However, in the vast majority of catchments, the precipitation correction 
factor dominates sensitivity. Additionally, the snowfall correction factor (SKORR) is the 
second most sensitive parameter in 84 of the 117 catchments. Taken together, the 
parameter sensitivities highlight the importance of high quality climate input data in 
reproducing observed streamflow. 

The spatial distribution of the most sensitive model parameters was also considered and 
are illustrated for PKORR, SKORR and KLZ in Figures 13 – 15.   

 

 

 Figure 13. Distribution of calibrated values of the rainfall correction factor (PKORR) 

Most of the catchments have calibrated values of PKORR which are less than one.  A few 
smaller catchments in the mountainous region of south central Norway and in the western 
region of Norway have calibrated PKORR values between 0.40 and 0.80.  This indicates 
that in these areas the input precipitation values, in this case derived from grid-based 
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climate data, must be significantly reduced in order to achieve good model fits.  Values 
close to one are generally seen in larger catchments, many of these catchments also have 
excellent HBV model fits (Figure 9).  There are a few catchments for which the value of 
PKORR is greater than 1, and these tend to be located in more easterly locations.  

The distribution of SKORR (Figure 14) shows a less consistent spatial pattern than does 
PKORR. However, in some cases, higher values of SKORR are associated with 
catchments having lower values of PKORR. This might be expected if SKORR functions 
to adjust the effects of a low precipitation correction factor in the water balance.  This 
pattern, though, is not universally true, and there is no significant correlation between the 
calibrated values for these factors when all catchments are considered. In particular, 
several of the catchments in the southern and western regions which have low PKORR 
values also have values of SKORR less than one. 

 

 

Figure 14. Distribution of calibrated values of the snowfall correction factor (SKORR) 
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The HBV hydrological model has simplified surface and subsurface flow pathways, 
controlled by calibrated recession constants, KZ1, KZ2 and KLZ.  Of particular interest is 
KLZ, as it represents the slower subsurface flux of water within the HBV model, often 
conceptualised as corresponding to groundwater flow.  The distribution of the KLZ 
parameter is illustrated in Figure 15 and indicates that best-fit parameters for KLZ cover 
the full range of available values from 0.001 (slowest flow) to 1.00 (fastest flow). There 
is a tendency for lower values of KLZ to be associated with the largest catchments in 
areas of more subdued topography.  The highest values of KLZ are associated with 
smaller catchments, and many are located in the more mountainous areas, as might be 
expected due to the presumably faster and shorter flowpaths in those catchments. 

 

 

Figure 15. Distribution of calibrated values of the lower zone recession constant 
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7.4 Discussion 
Although good calibrations were achieved for most of the catchments, there are a few 
problem areas.  In particular, calibration for the following two catchments: 

• Dyrdalsvatn (55.5) – Daily N-S = 0.53; Weekly N-S = 0.72 

• Svartavatn (62.18) – Daily N-S = 0.51; Weekly N-S = 0.67 

did not yield a suitable model, when evaluated with both quantitative (N-S values and 
volumetric bias) and qualitative (snow cover, seasonal runoff distribution, cumulative 
distribution functions) criteria.  These models are, therefore, not included in the current 
set of operational models.  Additionally, less than optimal model fits are found in the 
following catchments: Bjørnstad (139.15), Djupevad (42.2), Fetvatn (97.1), Hovefoss 
(84.11), Lislefjødd (21.47), Krokenelv (75.23), Vistdal (104.23), Skjerdalselv (86.12) and 
Sæternbekken (8.6). The majority of these catchments share some common features in that 
all, excepting Bjørnstad (139.15) and Hovefoss (84.11), have catchment areas less than 
90 km2 and most are characterised by steep catchments gradients.  Additionally, 9 of the 
11 catchments are located in the western and southwestern regions of Norway. 

Motivated by the weaker model calibrations in areas associated with high precipitation 
volumes, a comparison was made between model calibrations based on grid-based 
precipitation and temperature data and data derived from synoptic weather observations. 
The calibration and validation periods were adjusted for each of 6 catchments to reflect 
periods for which synoptic data were available for local stations (Table 2).   

Table 2 – Comparison of model calibrations with grid-based vs.synoptic input data 

Discharge station 
Synoptic 

station 

Calibration 

period 

Validation 

period 

N-S value: 

Grid-based 

N-S value: 

Synoptic 

8.6 - Sæternbekken Blindern 1976-1986 1987-1997 0.51 0.46 

42.2 - Djupevad 

47890 
Opstveit 

46910 Vats 

1989-1994 1994-1999 0.41 0.40 

55.5 - Dyrdalsvatn 
50540 
Bergen 

1983-1994 1994-1999 0.43 0.42 

75.23 - Krokenelv 
54120 
Lærdal 

1999-2003 2003-2006 0.60 0.64 

86.12 - Skjerdalselv 
508070 
Sandane 

1982 -1994 1994-2006 0.54 0.59 

139.15 - Bjørnstad Fiplingvatn 1999-2003 2003-2006 0.67 0.57 
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Best-fit models were calibrated for each set of input data based on 10 initial parameter 
sets. The N-S values for the validation period are given in Table 2 and illustrate that in 4 
of the 6 catchments, the N-S values are actually worse, rather than better, when one uses 
synoptic, rather than gridded data.  However, two of the smallest catchments, 
Skjerdalselv (catchment area = 24 km2) and Krokenelv (catchment area =  46 km2) have 
slightly improved N-S values for the models derived from synoptic precipitation and 
temperature data.  In general, however, the comparison does not indicate that grid-based 
precipitation and temperature data are responsible for the weaker model fits.  

A weakness in the model results which applies to all catchments is that the simulations 
have a tendency to underestimate flood peaks. Figure 16 shows observed and 
simulated mean annual flood and the 5-year flood for most of the calibrated catchments 
and clearly indicates a systematic underestimation of peak flows for both flow indices.  In 
operational flood forecasting, both the observed and simulated flood values are used, such 
that this systematic bias in the results is of particular relevance in that context and is 
discussed further in the final section of this report. 

0

250

500

750

1000

0 250 500 750 1000

Q_obs (m3/s)

Q
_

s
im

 (
m

3
/s

)

1:1

Qm_sim

Q5_sim

 

Figure 16: Observed (Q_obs) and simulated (Q_sim) mean annual (Qm) and 5-year (Q5) 

floods in the catchments having Q_sim and Q_obs less than 1000 m
3
/s (112 out of the 115 

catchments).   

Estimation of reservoir inflow for energy prognoses are based on weekly, rather than 
daily model simulations, resulting in a smoothing of the effects of individual peak flows. 
The weekly N-S values for the calibrated models are > 0.70 in 112 of the catchments and 
> 0.85 in many of them, indicating very good model performance in most of the 
catchments.  Additionally, the seasonal patterns of runoff and snow storage were 
considered qualitatively in the selection of the final models. The volumetric bias is also 
relevant for energy prognoses, as it indicates the extent to which total runoff volumes are 
either over- or underestimated by the models. Nine of the 84 models selected for future 
use in conjunction with energy prognoses have volumetric biases that are greater than      
±5%: Tora 2.291 (-6.2%), Eggedal 12.178 (+6.87%), Groset 16.66 (-5.47%), Brekkebru 
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72.5 (+10.34%),  Sula 73.27 (-6.89%), Bøyumselv 78.8 (-9.07%), Hovefoss 84.11 
(-5.56%), Skogsfjordvatn 200.4 (+8.04%) and Engeren 311.640 (-6.80%), which are less 
than optimal and should be taken into account in the application of these models. In 
general, however, is expected that the increased number of catchments will give a better 
spatial representativity and thereby improved reservoir inflow estimates. 

 
 

8 Suggestions for further 
developments 

The automated application of PEST with grid-based input climate data for HBV model 
calibration makes feasible the generation of a large set of models in an effective and 
efficient manner, each model developed using a common procedure. Although model 
performance is not always improved in individual catchments over earlier calibrations, 
the system for calibration developed represents a major improvement with respect to 
maintenance and monitoring of the flood forecasting model system. The calibration tool 
makes it a simple matter to update recalibrations when input data, rating curves or other 
circumstances change. Moreover, it makes the system more flexible, in that new 
catchment models can be readily calibrated and included in the operational model set. 
Additional efforts in improving the calibration procedure should be given priority in the 
near future, to further optimise these achievements. 

The model calibrations have highlighted several issues which warrant further 
investigation. Among these are the objective functions chosen for model calibration. In 
this application, the Nash-Sutcliffe criterion, based on the simulated versus the observed 
stream flow and the accumulated difference between simulated and observed stream flow 
volume was used as the objective function for the selection of initial parameter sets and 
for the PEST optimisations. Many models with very good N-S values, have volumetric 
biases in the range of ± 2 – 5 %.  This bias could be reduced if model calibration were 
pursued using a larger weighting for the volumetric bias in the objective criterion. Better 
model fits could also be obtained for many of the factors that have here only been 
evaluated qualitatively (for example, the cumulative distribution functions), if these were 
explicitly evaluated during optimisation. In particular, the calibration of models used for 
flood forecasting purposes, could be undertaken with explicit reference to model 
performance at high flows, for example, the fit of the cumulative distribution function 
above the 95% or 99% non-exceedance level. Alternatively, within the PEST routines, the 
user has the option of weighting particular observations in the observed timeseries, such 
that flood events could be given more weighting than normal flows within the calibration 
process.  

Poorer model fits are often associated with the western and southwestern regions of 
Norway where precipitation volumes are high. Additionally, the spatial distribution of the 
rainfall correction factor, PKORR, suggests that grid-based data particularly overestimate 
rainfall in this area.  Further work is required to develop methodologies for acquiring 
representative precipitation data for model calibration. It is not likely that the density of 
precipitation gauges will increase in the future, but NVE and met.no currently  
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collaborate on a research project (Bedre Romlige Estimater av Meteohydrologiske 
Synoptiske felt - BREMS), which aims to improve the spatial interpolation of 
precipitation and temperature from existing stations. It is anticipated that the results of 
this research project will be beneficial in future recalibrations of the HBV model 
catchments.In addition to weaknesses associated with input data, some of the smaller 
catchments have poorer model fits, possibly due to a mismatch between the HBV model 
time step and the runoff response in these catchments.  The current HBV model operates 
on a daily step, and in smaller catchments, a higher degree of temporal resolution may be 
required in order to capture the processes contributing to runoff, particularly peak flows 
during extreme rainfall events.  However, such modifications are also dependent on the 
availability of input and observational data at, for example, an hourly resolution for 
model testing and development.  

Snow storage volume and seasonal distribution has only been considered qualitatively in 
the selection of the calibrated models, based on figures for each catchment such as 
illustrated in Figure 7.  In some catchments, there is the potential to calibrate models with 
respect to satellite observations of snow coverage (SCA), in addition to observed 
streamflow.  Previous studies have shown that using satellite observed SCA in the 
calibration of HBV models may be useful, especially in years with unusual weather 
conditions. (e.g. Alfnes et al. 2005). The effect of calibrating other state and flux 
variables, such as soil moisture content or groundwater levels, as available, remains to be 
pursued. Such an approach could provide better constraints on  the parameter space, 
making the calibrated catchment parameter sets more regionally consistent, which is a 
prerequisite for applying HBV-type models for predictions in ungauged catchments. In 
general, a focus on additional state variables will tend to improve the representativity of a 
model’s water balance elements, an important feature in the estimation of energy system 
inflow (Colleuille et al. 2008). 

Finally, the PEST calibration procedure generated information on the sensitivity of the 
HBV models parameters used in the optimisation.  The relative sensitivity of these 
parameters indicate that only four dominate the performance of the models calibrated 
here:  PKORR (precipitation correction factor), SKORR (snowfall correction factor), 
PGRD (precipitation lapse rate) and KLZ (lower zone recession constant).  Other 
parameters of some relative significance were found to be CFX (degree days correction 
factor), BETA (soil moisture parameter) and FC (field capacity).  This indicates that only 
seven of the 15 parameters played important roles in the fitting of models to observed 
discharge.   This suggests either the possibility of using a smaller set of parameters for the 
PEST optimisations or developing an HBV-type model with a more parsimonious set of 
calibrated parameters.  However, model calibration with respect to other objective 
functions or observational timeseries (for example, snow cover) may rely on the presence 
of other parameters not found to be sensitive in the model calibrations based solely on 
observed streamflow reported here. 
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Appendix 1 - Catchments for HBV model calibration 

 

Station 

number Station name 

Catchment 

area             

(km
2
) 

Available Q data  

(deviations from 
standard period 
indicated in bold) 

Used in 

model for 

energy 

prognoses 

2.11 Narsjø 119 1961 - 2006 Yes 
2.142 Knappom 1648 1961 - 2006 Yes 
2.145 Losna 11208 1961 - 2006 No 
2.265 Unsetåa 621 1961 - 2006 No 
2.268 Akslen 795 1961 - 2006 Yes 
2.279 Kråkfoss 433 1966 - 2006 Yes 
2.27 Aulestad 866 1961 - 2006 No 
2.291 Tora 263 1966 - 2006 Yes 
2.32 Atnasjø 463 1961 - 2006 Yes 
2.323 Fura 45 1970 - 2006 Yes 
2.604 Elverum 15449 1961 - 2006 No 
2.614 Rosten 1828 1961 - 2006 Yes 
2.634 Lena 181 1991 - 2006 Yes 
3.22 Høgfoss 299 1976 - 2006 Yes 
6.10 Gryta 7 1967 - 2006 Yes 
8.2 Bjørnegårdssvingen 190 1968 - 2006 No 
8.6 Sæternbekken 6 1971 - 2006 No 
12.171 Hølervatn 79 1968 - 2006 Yes 
12.178 Eggedal 309 1972 - 2006 Yes 
12.192 Sundbyfoss 74 1976 - 2006 No 
12.193 Fiskum 52 1976 - 2006 Yes 
12.215 Storeskar 120 1987 - 2006 Yes 
12.70 Etna 570 1961 - 2006 Yes 
15.74 Skorge 60 1961 - 2006 No 
15.79 Orsjoren 1177 1982 - 2006 No 
16.132 Gjuvå 33 1981 - 2002 Yes 
16.140 Kvenna 822 2001 - 2004 No 
16.193 Hørte 156 1961 - 2006 Yes 
16.66 Groset 6 1961 - 2006 Yes 
16.75 Tannsvatn 118 1961 - 2006 Yes 
18.10 Gjerstad 238 1980 - 2006 Yes 
20.2 Austenå 276 1961 - 2006 Yes 
21.47 Lislefjødd 19 1974 - 2006 Yes 
22.16 Myglevatn 182 1961 - 2006 Yes 
22.22 Søgne 206 1974 - 2005 Yes 
24.3 Møska 121 1978 - 2006 No 
24.9 Tingvatn 272 1961 - 2006 Yes 
25.24 Gjuvvatn 97 1971 - 2006 Yes 
25.8 Mygland 47 1961 - 2006 No 
26.20 Årdal 77 1970 - 2006 Yes 
26.26 Jogla 31 1973 - 2006 Yes 
27.16 Bjordal 124 1987 - 2006 Yes 
27.24 Helleland 186 1961 - 2006 No 
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Station 

number Station name 

Catchment 

area             

(km
2
) 

Available Q data  

(deviations from 
standard period 
indicated in bold) 

Used in 

model for 

energy 

prognoses 

27.26 Hetland 70 1961 - 2006 No 
28.7 Haugland 140 1961 - 2006 Yes 
35.16 Djupadalsvatn 45 1990 - 2006 Yes 
41.1 Stordalsvatn 129 1961 - 2006 Yes 
42.2 Djupevad 31 1963 - 2006 Yes 
46.9 Fønnerdalsvatn 7 1980 - 2006 Yes 
48.1 Sandvenvatn 468 1961 - 2006 Yes 
48.5 Reinsnosvatn 120 1961 - 2006 Yes 
50.1 Hølen 232 1961 - 2006 Yes 
50.13 Bjoreio 263 1983 - 2006 Yes 
55.4 Røykenes 50 1961 - 2006 Yes 
55.5 Dyrdalsvatn 3 1977 - 2006 No 
62.10 Myrkdalsvatn 159 1964 - 2006 Yes 
62.18 Svartavatn 72 1987 - 2006 Yes 
62.5 Bulken 1094 1961 - 2006 Yes 
72.5 Brekke bru 267 1961 - 2006 Yes 
73.27 Sula 31 1991 - 2006 Yes 
75.23 Krokenelv 46 1961 - 2006 No 
76.5 Nigardsbrevatn 65 1962 - 2006 Yes 
77.3 Sogndalsvatn 110 1962 - 2006 Yes 
78.8 Bøyumselv 40 1965 - 2006 Yes 
79.3 Nessedalselv 30 1983 - 2006 Yes 
82.4 Nautsundvatn 219 1961 - 2006 Yes 
83.2 Viksvatn 507 1961 - 2006 Yes 
84.11 Hovefoss 234 1963 - 2006 Yes 
86.12 Skjerdalselv 24 1982 - 2006 Yes 
87.3 Teita bru 219 1970 - 2006 Yes 
88.4 Lovatn 235 1961 - 2006 Yes 
97.1 Fetvatn 89 1961 - 2006 Yes 
98.4 Øye 139 1961 - 2006 Yes 
103.1 Storhølen 437 1971 - 2006 No 
103.4 Horgheim 1099 1971 - 2006 No 
104.23 Vistdal 66 1975 - 2006 No 
105.1 Øren, Osenelv 138 1961 - 2006 No 
107.3 Farstad 24 1965 - 2006 No 
109.42 Elverhøy bru 2442 1975 - 2006 No 
109.9 Risefoss 744 1961 - 2006 Yes 
112.8 Rinna 91 1969 - 2006 Yes 
122.11 Eggafoss 653 1961 - 2006 Yes 
122.9 Gaulfoss 3079 1961 - 2006 Yes 
123.31 Kjelstad 142 1961 - 2006 Yes 
124.2 Høggås bru 495 1961 - 2006 Yes 
127.11 Veravatn 175 1966 - 2006 Yes 
127.13 Dillfoss 480 1981 - 2006 No 
133.7 Krinsvatn 207 1961 - 2006 Yes 
138.1 Øyungen 239 1961 - 2006 Yes 
139.15 Bjørnstad 1036 1961 - 2006 No 
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Station 

number Station name 

Catchment 

area             

(km
2
) 

Available Q data  

(deviations from 
standard period 
indicated in bold) 

Used in 

model for 

energy 

prognoses 

139.35 Trangen 854 1961 - 2006 Yes 
148.2 Mevatn 109 1973 - 2006 Yes 
151.15 Nervoll 653 1968 - 2006 Yes 
152.4 Fustvatn 526 1961 - 2006 Yes 
156.10 Berget 211 1961 - 2006 Yes 
156.19 Bredek 229 1967 - 2001 No 
157.3 Vassvatn 17 1961 - 2006 Yes 
162.3 Skarsvatn 146 1961 - 2006 Yes 
163.5 Junkerdalselv 419 1961 - 2006 Yes 
165.6 Strandå 24 1961 - 2006 Yes 
168.2 Mørsvik bru 31 1985 - 2006 Yes 
173.8 Coarveveij 64 1972 - 2006 No 
174.3 Øvstevatn 28 1961 - 2006 Yes 
191.2 Øvrevatn 526 1961 - 2006 Yes 
196.35 Malangsfoss 3237 1961 - 2006 No 
200.4 Skogsfjordvatn 135 1961 - 2006 Yes 
206.3 Manndalen bru 188 1971 - 2006 Yes 
208.3 Svartfossberget 1929 1981 - 2006 No 
212.10 Masi 5626 1966 - 2006 Yes 
212.49 Halsnes 145 1961 - 2006 No 
223.2 Lombola 878 1961 - 2006 No 
234.13 Vækkava 2078 1973 - 2005 No 
234.18 Polmak 14157 1961 - 2006 Yes 
241.1 Bergeby 248 1961 - 1996 No 
247.3 Karpelv 138 1974 - 2001 Yes 
311.460 Engeren 395 1961 - 2006 Yes 
311.6 Nybergsund 4420 1961 - 2006 No 
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Appendix 2 – Vegtype.dat file for land cover classes 
 

Type   Number  ICMAX   CXREL  TSDIFF  CVSNOW    FCREL   LPDEL   EPVAR  SDALPHA  SDNU 

 

 

Snaufjell   1   0.0     1.0     0.0     0.3     0.2     1.0     0.1    0.007   0.0172 

(Rock) 

 

Skog        2   2.0     0.9     0.0     0.3     1.0     0.6     1.0    0.0321  0.0786 

(Forest) 

 

 

Myr         3   0.1     1.1     0.0     0.3     2.5     0.7     0.8    0.0321  0.0786 

(Bog/Marsh) 

 

 

Jbruk       4   0.1     1.1     0.1     0.3     0.4     0.8     1.0    0.0321  0.0786 

(Arable/Meadow) 

 

 

Annet       5   0.0     1.0     0.0     0.5     0.5     0.8     1.0    0.0321  0.0786 

(Other)
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Appendix 3 – Results of HBV calibration and validation by catchment 

Station 

number Station name 

Catchment 

area (km
2
) 

Calibration 

period Validation periods 

N - S  value 

Validation 

(Daily) 

N - S  value 

All years 

(Daily) 

N - S  value  

All years 

(Weekly) 

Volumetric 

bias (%)   

All years 

2.11 Narsjø 119 1981 - 2000 1961 - 1980; 2001 - 2006 0.80 0.83 0.87 -2.92 
2.142 Knappom 1648 1981 - 2000 1961 - 1980; 2001 - 2006 0.78 0.81 0.85 -2.89 
2.145 Losna 11208 1981 - 2000 1961 - 1980; 2001 - 2006 0.86 0.88 0.91 -2.09 
2.265 Unsetåa 621 1981 - 2000 1961 - 1980; 2001 - 2006 0.70 0.74 0.76 -3.28 
2.268 Akslen 795 1981 - 2000 1961 - 1980; 2001 - 2006 0.84 0.85 0.90 -4.67 
2.279 Kråkfoss 433 1981 - 2000 1966 - 1980; 2001 - 2006 0.84 0.82 0.86 -0.80 
2.27 Aulestad 866 1981 - 2000 1961 - 1980; 2001 - 2006 0.74 0.73 0.80 -3.49 
2.291 Tora 263 1981 - 2000 1966 - 1980; 2001 - 2006 0.81 0.85 0.89 -6.22 
2.32 Atnasjø 463 1981 - 2000 1961 - 1980; 2001 - 2006 0.81 0.84 0.89 -2.71 
2.323 Fura 45 1981 - 2000 1970 - 1980; 2001 - 2006 0.6 0.62 0.78 -2.23 
2.604 Elverum 15449 1981 - 2000 1961 - 1980; 2001 - 2006 0.87 0.88 0.90 -1.33 
2.614 Rosten 1828 1981 - 2000 1961 - 1980; 2001 - 2006 0.86 0.89 0.93 -0.31 
2.634 Lena 181 1991 - 2000 2001 - 2006 0.78 0.76 0.85 -3.13 
3.22 Høgfoss 299 1981 - 2000 1976 - 1980; 2001 - 2006 0.81 0.76 0.84 -3.13 
6.10 Gryta 7 1981 - 2000 1967 - 1980; 2001 - 2006 0.71 0.71 0.80 -2.78 
8.2 Bjørnegårdssvingen 190 1981 - 2000 1968 - 1980; 2001 - 2006 0.74 0.71 0.81 3.26 
8.6 Sæternbekken 6 1981 - 2000 1971 - 1980; 2001 - 2006 0.56 0.53 0.72 1.41 
12.171 Hølervatn 79 1981 - 2000 1968 - 1980; 2001 - 2006 0.85 0.84 0.87 -2.08 
12.178 Eggedal 309 1981 - 2000 1972 - 1980; 2001 - 2006 0.81 0.80 0.87 6.87 
12.192 Sundbyfoss 74 1981 - 2000 1976 - 1980; 2001 - 2006 0.70 0.72 0.82 -4.69 
12.193 Fiskum 52 1981 - 2000 1976 - 1980; 2001 - 2006 0.69 0.70 0.79 0.24 
12.215 Storeskar 120 1987 - 2000 2001 - 2006 0.79 0.80 0.86 -1.20 
12.70 Etna 570 1981 - 2000 1961 - 1980; 2001 - 2006 0.78 0.77 0.79 -0.34 
15.74 Skorge 60 1981 - 2000 1961 - 1980; 2001 - 2006 0.80 0.75 0.85 -3.18 
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Station 

number Station name 

Catchment 

area (km
2
) 

Calibration 

period Validation periods 

N - S  value 

Validation 

(Daily) 

N - S  value 

All years 

(Daily) 

N - S  value  

All years 

(Weekly) 

Volumetric 

bias (%)   

All years 

15.79 Orsjoren 1177 1988 - 2000 1982 - 1987; 2001 - 2006 0.79 0.83 0.85 1.40 
16.132 Gjuvå 33 1981 - 2000 2000 - 2002 0.79 0.81 0.87 -1.81 
16.140 Kvenna 822 2002 - 2003 2001 - 2004 0.69 0.75 0.78 -17.81 
16.193 Hørte 156 1981 - 2000 1961 - 1980; 2001 - 2006 0.66 0.67 0.83 0.96 
16.66 Groset 6 1981 - 2000 1961 - 1980; 2001 - 2006 0.64 0.70 0.75 -5.47 
16.75 Tannsvatn 118 1981 - 2000 1961 - 1980; 2001 - 2006 0.78 0.81 0.83 0.66 
18.10 Gjerstad 238 1981 - 2000 2000 - 2006 0.78 0.75 0.85 -0.25 
20.2 Austenå 276 1981 - 2000 1961 - 1980; 2001 - 2006 0.73 0.76 0.81 -3.71 
21.47 Lislefjødd 19 1983 - 1995 1974 - 1980 0.49 0.58 0.71 -1.33 
22.16 Myglevatn 182 1981 - 2000 1961 - 1980; 2001 - 2006 0.76 0.78 0.83 -0.18 
22.22 Søgne 206 1981 - 2000 1974 - 1980; 2001 - 2005 0.81 0.81 0.90 -2.11 
24.3 Møska 121 1981 - 2000 1978 - 1980; 2001 - 2006 0.87 0.87 0.91 -1.27 
24.9 Tingvatn 272 1981 - 2000 1961 - 1980; 2001 - 2006 0.88 0.89 0.92 -0.87 
25.24 Gjuvvatn 97 1981 - 2000 1971 - 1980; 2001 - 2006 0.83 0.83 0.85 -2.09 
25.8 Mygland 47 1981 - 2000 1961 - 1980; 2001 - 2006 0.60 0.63 0.81 0.56 
26.20 Årdal 77 1981 - 2000 1970 - 1980; 2001 - 2006 0.71 0.77 0.86 2.51 
26.26 Jogla 31 1981 - 2000 1973 - 1980; 2001 - 2006 0.63 0.66 0.82 1.29 
27.16 Bjordal 124 1987 - 1996 1987 - 2006 0.69 0.68 0.81 -2.18 
27.24 Helleland 186 1981 - 2000 1961 - 1980; 2001 - 2006 0.65 0.67 0.81 -4.79 
27.26 Hetland 70 1981 - 2000 1961 - 1980; 2001 - 2006 0.72 0.73 0.86 -1.09 
28.7 Haugland 140 1981 - 2000 1961 - 1980; 2001 - 2006 0.76 0.78 0.88 -4.82 
35.16 Djupadalsvatn 45 1990 - 2000 2001 - 2006 0.79 0.78 0.83 -1.15 
41.1 Stordalsvatn 129 1981 - 2000 1961 - 1980; 2001 - 2006 0.77 0.80 0.83 -0.25 
42.2 Djupevad 31 1981 - 2000 1963 - 1980; 2001 - 2006 0.58 0.52 0.76 -2.75 
46.9 Fønnerdalsvatn 7 1981 - 2000 2001 - 2006 0.69 0.68 0.81 -0.04 
48.1 Sandvenvatn 468 1981 - 2000 1961 - 1980; 2001 - 2006 0.76 0.75 0.82 -2.74 
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Station 

number Station name 

Catchment 

area (km
2
) 

Calibration 

period Validation periods 

N - S  value 

Validation 

(Daily) 

N - S  value 

All years 

(Daily) 

N - S  value  

All years 

(Weekly) 

Volumetric 

bias (%)   

All years 

48.5 Reinsnosvatn 120 1981 - 2000 1961 - 1980; 2001 - 2006 0.76 0.76 0.79 1.03 
50.1 Hølen 232 1981 - 2000 1961 - 1980; 2001 - 2006 0.64 0.74 0.79 -2.96 
50.13 Bjoreio 263 1983 - 1995 1996 - 2006 0.75 0.78 0.82 -0.14 
55.4 Røykenes 50 1981 - 2000 1961 - 1980; 2001 - 2006 0.67 0.70 0.87 -2.16 
55.5 Dyrdalsvatn 3 1983 - 1995 1977 - 1983; 2001 - 2006 0.48 0.53 0.72 4.02 
62.10 Myrkdalsvatn 159 1981 - 2000 1964 - 1980; 2001 - 2006 0.75 0.75 0.83 0.08 
62.18 Svartavatn 72 1987 - 2000 2001 - 2006 0.46 0.51 0.67 -0.51 
62.5 Bulken 1094 1981 - 2000 1961 - 1980; 2001 - 2006 0.86 0.86 0.90 0.17 
72.5 Brekke bru 267 1981 - 2000 1961 - 1980; 2001 - 2006 0.69 0.73 0.79 10.34 
73.27 Sula 31 1991 - 2000 1967 -1980; 2001 - 2006 0.75 0.76 0.78 -6.89 
75.23 Krokenelv 46 1970 - 1991 1992 - 2006 0.61 0.57 0.71 2.33 
76.5 Nigardsbrevatn 65 1981 - 2000 1962 - 1980; 2001 - 2006 0.93 0.92 0.95 0.19 
77.3 Sogndalsvatn 110 1981 - 2000 1962 - 1980; 2001 - 2006 0.67 0.67 0.80 1.56 
78.8 Bøyumselv 40 1981 - 2000 1965 - 1980; 2001 - 2006 0.72 0.73 0.82 -9.07 
79.3 Nessedalselv 30 1983 - 2000 2001 - 2006 0.49 0.60 0.74 1.97 
82.4 Nautsundvatn 219 1981 - 2000 1961 - 1980; 2001 - 2006 0.74 0.75 0.85 7.71 
83.2 Viksvatn 507 1981 - 2000 1961 - 1980; 2001 - 2006 0.86 0.88 0.88 1.69 
84.11 Hovefoss 234 1981 - 2000 1963 - 1980; 2001 - 2006 0.55 0.56 0.73 -5.56 
86.12 Skjerdalselv 24 1982 - 2000 2001 - 2006 0.47 0.53 0.65 -1.95 
87.3 Teita bru 219 1981 - 2000 1970  - 1980; 2001 - 2006 0.65 0.65 0.84 -2.94 
88.4 Lovatn 235 1981 - 2000 1961 - 1980; 2001 - 2006 0.90 0.90 0.92 2.71 
97.1 Fetvatn 89 1981 - 2000 1961 - 1980; 2001 - 2006 0.51 0.54 0.71 -0.13 
98.4 Øye 139 1981 - 2000 1961 - 1980; 2001 - 2006 0.64 0.66 0.78 1.08 
103.1 Storhølen 437 1981 - 2000 1971 - 1980; 2001 - 2006 0.87 0.87 0.92 -2.30 
103.4 Horgheim 1099 1981 - 2000 1971 - 1980; 2001 - 2006 0.88 0.89 0.92 -0.97 
104.23 Vistdal 66 1981 - 2000 1975 - 1980; 2001 - 2006 0.60 0.59 0.77 -0.78 
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Station 

number Station name 

Catchment 

area (km
2
) 

Calibration 

period Validation periods 

N - S  value 

Validation 

(Daily) 

N - S  value 

All years 

(Daily) 

N - S  value  

All years 

(Weekly) 

Volumetric 

bias (%)   

All years 

105.1 Øren, Osenelv 138 1981 - 2000 1961 - 1980; 2001 - 2006 0.64 0.68 0.75 1.22 
107.3 Farstad 24 1981 - 2000 1965 - 1980; 2001 - 2006 0.65 0.68 0.79 0.55 
109.42 Elverhøy bru 2442 1981 - 2000 1975 - 1980; 2001 - 2006 0.83 0.85 0.90 8.28 
109.9 Risefoss 744 1981 - 2000 1961 - 1980; 2001 - 2006 0.73 0.80 0.90 0.41 
112.8 Rinna 91.1 1981 - 2000 1969 - 1980; 2001 - 2006 0.71 0.71 0.83 -0.80 
122.11 Eggafoss 653 1981 - 2000 1961 - 1980; 2001 - 2006 0.87 0.88 0.93 1.15 
122.9 Gaulfoss 3079 1981 - 2000 1961 - 1980; 2001 - 2006 0.81 0.83 0.90 -0.71 
123.31 Kjelstad 142 1981 - 2000 1961 - 1980; 2001 - 2006 0.55 0.63 0.76 4.48 
124.2 Høggås bru 495 1981 - 2000 1961 - 1980; 2001 - 2006 0.77 0.78 0.87 1.70 
127.11 Veravatn 175 1981 - 2000 1966 - 1980; 2001 - 2006 0.84 0.86 0.89 2.46 
127.13 Dillfoss 480 1981 - 2000 2001 - 2006 0.69 0.73 0.85 3.56 
133.7 Krinsvatn 207 1981 - 2000 1961 - 1980; 2001 - 2006 0.75 0.77 0.82 -3.29 
138.1 Øyungen 239 1981 - 2000 1961 - 1980; 2001 - 2006 0.70 0.75 0.80 -0.13 
139.15 Bjørnstad 1036 1981 - 2000 1961 - 1980; 2001 - 2006 0.50 0.56 0.60 -1.85 
139.35 Trangen 854 1981 - 2000 1961 - 1980; 2001 - 2006 0.69 0.73 0.80 2.06 
148.2 Mevatn 109 1981 - 2000 1973 - 1980; 2001 - 2006 0.78 0.76 0.78 4.14 
151.15 Nervoll 653 1981 - 2000 1968 - 1980; 2001 - 2006 0.86 0.87 0.91 -0.11 
152.4 Fustvatn 526 1981 - 2000 1961 - 1980; 2001 - 2006 0.82 0.80 0.82 -2.63 
156.10 Berget 211 1981 - 2000 1961 - 1980; 2001 - 2006 0.82 0.83 0.90 1.53 
156.19 Bredek 229 1981 - 2000 1967 - 1980; 2001 0.77 0.76 0.86 -0.04 
157.3 Vassvatn 16.6 1980 - 1997 1961 - 1980; 2001 - 2006 0.72 0.72 0.84 -3.30 
162.3 Skarsvatn 146 1981 - 2000 1961 - 1980; 2001 - 2006 0.57 0.60 0.63 4.92 
163.5 Junkerdalselv 419 1981 - 2000 1961 - 1980; 2001 - 2006 0.68 0.75 0.86 3.65 
165.6 Strandå 23.9 1981 - 2000 1961 - 1980; 2001 - 2006 0.70 0.72 0.80 2.83 
168.2 Mørsvik bru 31.3 1985 - 2000 2001 - 2006 0.78 0.80 0.86 -0.48 
173.8 Coarveveij 63.6 1981 - 2000 1972 - 1980; 2001 - 2006 0.89 0.88 0.90 -0.96 
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Station 

number Station name 

Catchment 

area (km
2
) 

Calibration 

period Validation periods 

N - S  value 

Validation 

(Daily) 

N - S  value 

All years 

(Daily) 

N - S  value  

All years 

(Weekly) 

Volumetric 

bias (%)   

All years 

174.3 Øvstevatn 28.4 1981 - 2000 1961 - 1980; 2001 - 2006 0.71 0.75 0.82 -3.12 
191.2 Øvrevatn 526 1981 - 2000 1961 - 1980; 2001 - 2006 0.87 0.86 0.90 -0.74 
196.35 Malangsfoss 3237 1981 - 2000 1961 - 1980; 2001 - 2006 0.66 0.75 0.77 -1.79 
200.4 Skogsfjordvatn 135 1981 - 2000 1961 - 1980; 2001 - 2006 0.68 0.71 0.74 8.04 
206.3 Manndalen bru 188 1981 - 2000 1971 - 1980; 2001 - 2006 0.82 0.85 0.90 3.94 
208.3 Svartfossberget 1929 1981 - 2000 2001 - 2006 0.70 0.82 0.86 6.13 
212.10 Masi 5626 1981 - 2000 1966 - 1980; 2001 - 2006 0.85 0.85 0.87 -4.24 
212.49 Halsnes 145 1981 - 2000 1961 - 1980; 2001 - 2006 0.84 0.86 0.90 0.29 
223.2 Lombola 878 1981 - 2000 1961 - 1980; 2001 - 2006 0.81 0.86 0.89 2.47 
234.13 Vækkava 2078 1981 - 2000 1973 - 1980; 2001 - 2005 0.81 0.87 0.88 -1.50 
234.18 Polmak 14157 1981 - 2000 1961 - 1980; 2001 - 2006 0.85 0.85 0.89 0.36 
241.1 Bergeby 248 1981 - 1996 1961 - 1980 0.70 0.69 0.72 3.08 
247.3 Karpelv 138 1983 - 1995 1974 - 1982; 2001 0.86 0.83 0.87 3.09 
311.460 Engeren 395 1981 - 2000 1961 - 1980; 2001 - 2006 0.86 0.88 0.90 -6.80 
311.6 Nybergsund 4420 1981 - 2000 1961 - 1980; 2001 - 2006 0.88 0.89 0.90 -5.18 
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Appendix 4 – PEST control file 
 

pcf 

* control data 

restart estimation 

15 6941 9 0 2 

1 2 single point 1 0 0 

5.0 2.0 0.3 0.03 10 

3.0 3.0 0.001 

0.1 

30 0.01 3 3 0.01 3 

1 1 1 

* parameter groups 

tres relative  0.03   0.01  always_2  2 parabolic 

cx   relative  0.0125 0.05  always_2  2 parabolic 

kor  relative  0.025  0.025 always_2  2 parabolic 

tgrd relative  0.02   0.001 always_2  2 parabolic 

pgrd relative  0.02   0.001 always_2  2 parabolic 

kuz2 relative  0.03   0.01  always_2  2 parabolic 

uz1  relative  0.025  1.0   always_2  2 parabolic 

kuz1 relative  0.05   0.005 always_2  2 parabolic 

klz  relative  0.02   0.001 always_2  2 parabolic 

* parameter data 

tx   none  relative    1.0   -1.0      2.0    tres  1.0   0.0 1 

ts   none  relative    0.0   -1.0      2.0    tres  1.0   0.0 1 

cx    log  factor      3.7    1.0      5.0    cx    1.0   0.0 1 

pkor  log  factor      1.4    0.8      3.0    kor   1.0   0.0 1 

skor  log  factor      1.2    1.0      3.0    kor   1.0   0.0 1 

ttgd none  factor     -0.7   -1.0     -0.5    tgrd  1.0   0.0 1 

tvgd none  factor     -0.5   -0.7     -0.3    tgrd  1.0   0.0 1 

pgrd none  relative    0.02   0.0      0.1    pgrd  1.0   0.0 1 

fc    log  factor    150.0   50.0    500.0    uz1   1.0   0.0 1 

beta  log  factor      3.0    1.0      4.0    kor   1.0   0.0 1 

kuz2 none  factor      0.5    0.1      1.0    kuz2  1.0   0.0 1 

uz1   log  factor     40.0   10.0    100.0    uz1   1.0   0.0 1 

kuz1 none  factor      0.15   0.01     1.0    kuz1  1.0   0.0 1 

perc  log  factor      1.2    0.5      2.0    kor   1.0   0.0 1 

klz  none  factor      0.02   0.001    0.1    klz   1.0   0.0 1 

* observation groups 

sim 

diff 

* observation data 

accd     0.0    0.5   sim 

* model command line 

./run1.pl 

* model input/output 

param.tpl param.dat 

qsim.ins PRTFIL.RES 

res.ins PRTFIL.RES      
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