
Utilization of the new features
in PEST
Gusong Ruan

R
E

P
O

R
T

Norwegian Water Resources and Energy Directorate
Middelthunsgate 29
PB. 5091 Majorstua, N-0301 Oslo Norway
P.O.Box 5091 Majorstua

Telephone: +47 22 95 95 95
Telefax: +47 22 95 90 00
Internet: www.nve.no

1
2008

Utilization of the new features in
PEST

To calibrate distributed version of HBV model by

Parallel PEST

Norwegian Water Resources and Energy Directorate

2008

Report no. 1.08

Utilization of the new features in PEST

Published by: Norwegian Water Resources and Energy Directorate

Author Gusong Ruan

Printed by: Norwegian Water Resources and Energy Directorate

ISBN 978-82-410-0656-2

ISSN 1502-3540

Key words: Model calibration

Norwegian Water Resources and Energy Directorate

Middelthunsgate 29

PO Box 5091 Majorstua

0301 OSLO

Norway

Telefon: 22 95 95 95

Telefaks: 22 95 90 00

Internett: www.nve.no

January 2008

Table of Contents
Utilization of the new features in PEST... 1

To calibrate distributed version of HBV model by Parallel PEST1

Table of Contents.. 3

1 Introduction... 6

2 To calibrate distributed HBV model by Parallel PEST............... 6

2.1 What is PEST and what is Parallel PEST?6

2.2 Why Parallel PEST?...7

2.3 How Parallel PEST works? ..7

2.4 Preparing for a Parallel PEST run..8

2.4.1 Overview of the files required for a Parallel PEST run8

2.4.2 Preparing run management file ...9

2.5 Files in PSLAVE working directory...11

2.6 Starting Parallel PEST ...11

2.6.1 Starting the slave...12

2.6.2 Starting PEST..12

3 Stopping and restarting PEST... 12

3.1 Interrupting PEST execution ..12

3.2 Restarting PEST with the “/r” switch...13

3.3 Restarting Parallel PEST with “/s” switch.......................................13

3.4 Restarting PEST with “/j” switch...13

4 Testing different values of FORCEN and DERMTHD............... 14

4.1 Catchments and calibration period...14

4.2 Values of FORCEN and DERMTHD ..14

4.3 R2 values ...14

5 References .. 16

Appendix ... 17

 5

Summary
Some interesting features in the parameter estimation software PEST have been executed.

These features include Parallel PEST, stopping and restarting PEST and using different

values of the character variables FORCEN and DERMTHD in PEST control file. The

distributed version of HBV model is executed with Parallel PEST as well as with normal

PEST, whereas the lumped version of HBV model is only executed with the normal

PEST to test various settings of the character variables. Catchments Gaulfoss and

Eggafoss are selected in calibration by Parallel PEST. Gaulfoss is also used in calibration

by normal PEST for comparision. The runtime of Parallel PEST and normal PEST on

catchment Gaulfoss are recorded .How to prepare a Parallel PEST run and how to execute

Parallel PEST are presented. The ways to interrupt and to restart PEST and Parallel PEST

are shown. R2 values from the calibration by different values of the character variables in

PEST control file are presented.

 6

1 Introduction
Model independent program PEST has been used to calibrate the lumped version of HBV

model in many years. As the continuous development of PEST many new features are

available for the improvement of the calibration. Parallel PEST and the manner to

interrupt and to restart PEST are two of them. Parallel PEST makes it possible to calibrate

more complex model by taking advantage of the new technology in computer science,

whereas the manner to interrupt and restart PEST provides a way for user to pause and

restart execution of PEST, so that the user can inspect the run record file and do possible

change on control variables during the time when calibration is ongoing.

The distributed HBV model (Beldring, 2007) is developed among others to catch up the

availability in grid meteorology data and to satisfy the raised need for grid runoff data.

Using the existing calibration protocol with normal PEST to calibrate the distributed

HBV model will results in a very long calibration time and hence to obstacle the use of

the distributed HBV model. To calibrate the distributed HBV model using Parallel PEST

gives the hope to solve this problem. This report presents how to run Parallel PEST on a

multi-processor computer or a series of networked computers. The execution was applied

on the catchment Gaulfoss with an area of 3079 square kilometers and observation of five

years. It is also presented how to interrupt and restart PEST and Parallel PEST. In

addition a test of different values of the character variables FORCEN and DERMTHD,

which control the method used to calculate derivatives, is made with purpose to find the

best values of these variables leading to improvement of the calibration. There are nine

catchments involved in the test. R2 values from calibrations as well as from validations

are presented for each catchment.

2 To calibrate distributed HBV
model by Parallel PEST

2.1 What is PEST and what is Parallel PEST?
PEST is software for model-independent parameter estimation and uncertainty analysis,

developed by S.S. Papadopulos Associates, Inc. Parallel PEST is one of the new features

included in PEST’s latter version.

Parallel PEST distributes model runs across networked computers or different processors

in the same computer. When model run times are larger and adjustable parameters are

many, the saving in overall PEST optimization time through the use of Parallel PEST is

enormous. An efficient use of Parallel PEST assumes that model run times are larger than

30 seconds and the number of the adjustable parameters is more than 3 or 4.

 7

2.2 Why Parallel PEST?
The purpose of using Parallel PEST is to save the calibration time by taking great

advantage of the computational power either in a distributed computer system or in a

multi-processor computer. It is of special importance when the model is large and

complex. In most cases of optimization the bulk of PEST’s running time is consumed in

running the model. Any time savings made in carrying out these model runs will result in

dramatic enhancements to overall PEST performance.

In order to understand how much time can been saved by Parallel PEST respective to the

normal PEST in model optimization, a case study has been carried out where the

distributed version of the HBV model (Beldring et al., 2007) applies in the calibration by

Parallel Pest and by normal PEST. The calibration catchment is Gaulfoss and the

calibration period is from 1988 to 1992. The run time of the model calibrations is listed in

table 1. The numbers of the slaves showed in table 1 represents the numbers of the

processors where the model runs are distributed to.

 Table 1. Runtime of the optimizations on the distributed version of the HBV model

Optimization software Runtime of the model optimization

Normal PEST 15 hours 20 minutes

2 slaves 10 hours 44 minutes Parallel PEST

4 slaves 8 hours 4 minutes

The case study demonstrates that using of Parallel PEST results in a considerable time

savings when compared with that of the normal PEST. The parallelization in model

calibration by Parallel PEST provides an ideal means to solve complex optimization

problems.

It needs to be noted that the runtime of the model optimization is also dependent on the

percentage of the CPU occupation by other program on the computer or processor where

the model optimization is undertaken. The runtimes of the optimization listed above may

be slightly shorten if no other time-consuming program is running simultaneously on the

same machine or longer if the CPU occupation by other time-consuming program is high.

2.3 How Parallel PEST works?
The way in which Parallel PEST carries out model run on different machine is just a

simple extension of the way in which PEST carries out model run on a single machine.

Before running a model on any machine Parallel PEST writes input files containing the

adjustable parameters. After the model has finished execution Parallel PEST reads one or

more model output files.

While Parallel PEST is able to achieve access to model input and output files residing on

another machine, it cannot actually run the model on another machine. Only another

program residing on the other machine can do that. This program is named PSLAVE.

Before PEST commences execution, PSLAVE must be started on each machine where

model will run. It detects the commencement of PEST through reading a signal sent by

PEST. It then awaits an order by PEST to commence a model run, upon the arrival of

which it sends a command to its local system to start the model run.

There are two parallelization2 in Parallel PEST. One is parallelization of the Jacobian

matrix calculation process and another is parallelization of the Marquardt lambda testing

 8

process. Parallel PEST activates automatically the parallelization of the Jacobian matrix

calculation process. While the parallelization of the Marquardt lambda testing process

should be activated by a control variable.

2.4 Preparing for a Parallel PEST run

2.4.1 Overview of the files required for a Parallel PEST run

The preparation for a Parallel PEST run is very similar to that for a normal PEST run if

the models applied to both run are the same, i.e. run environment are the same. Parallel

PEST requires one extra file which is run management file-“hbv.rmf”. This file has the

same filename base as PEST control file but with extension “rmf”.

Table 2 lists the files needed for the lumped version of HBV model calibrated by normal

PEST and the distributed version of HBV model calibrated by normal PEST and by

Parallel PEST. Gaulfoss (with code 122.9) is the calibration catchment in the case

demonstrated. The PEST control file in column 3 has the same protocol as that in column

2. The template files, the instruction files and the model input files in column 3 relate to

the distributed version of HBV model. The description of the model input files in column

3 can be found in “Distributed HBV model” (Beldring, 2007). The run management file

i.e. -hbv.rmf will be described in section 2.4.2.

Table 2. The files prepared for a Parallel PEST run and a normal PEST run.

1 2 3 4

File type Normal PEST
(Lumped HBV

model)

 Normal PEST

(Distributed HBV model)

Parallel PEST
(Distributed

HBV model)

Control file 122.9.pst hbv.pst As in column 3

Template files

param.tpl catchment_correction.tpl

hbv_common_parameters.tpl

hbv_landsurface_parameters.tpl

hbv_soil_parameters.tpl

As in column 3

Instruction files qsim.ins

res.ins

122.9.0.1001.1_ins

122.11.0.1001.1_ins

As in column 3

Model input

files

climcha.dat

default.dat

param.dat

vegtype.dat

param.list

kommandobuffer

ptq.dta

catchment_correction.dta

hbv_common_parameters.dta

hbv_landsurface_parameters.dta

hbv_soil_parameters.dta

hbv_elements.dta

hbv_landscape.dta

hbv_waterland.dta

met_stations.dta

watershed.dta

control_hbv_calibration.txt

As in column 3

 9

obs_streamflow.var

Run

management

file

 hbv.rmf

2.4.2 Preparing run management file

The purpose of the Parallel PEST run management file is to inform PEST of the working

directory of each slave, and of the names and paths pertaining to each model input file in

which it must write and output file which it must read.

Example 1 shows the structure of a run management file. While example 2 shows an

example of run management file in the case where there are two slaves.

Example 1. Structure of the Parallel PEST run management file.
prf

NSLAVE IFLETYP WAIT PARLAM

SLAVNAME SLAVDIR (once for each slave)

 (RUNTIME(I), I=1,NSLAVE) Any lines after this point are required only if IFLETYP is nonzero; the

following group of lines is to be repeated once for each slave.

INFLE(1)

INFLE(2) (to NTPFLE lines, where NTPFLE is the number of template files)

….

OUTFLE(1)

OUTFLE(2) (to NINSFLE lines, where NINSFLE is the number of instruction files)
….

The meaning and the value of each variable in Example 1 are listed below.

� “prf” is a symbol to identify the file as a PEST run management file.

� NSLAVE is the number of the slaves involving in the current Parallel PEST run.

� IFLETYP must be either 0 or 1. If it is 1, then all model input files containing

parameters requiring optimization and output files on the various slave machines

(slave directories) must be individually named (as is demonstrated in Example 2).

If it is 0, it implies that the corresponding input and output files have the same

name as that provided in the PEST control file across all slaves, and each set of

these model input and output files lies within the PSLAVE working directory on

each slave machine. Under these conditions, all the model input and output

filenames can be omitted from the run management file; Example 3 shows such

an abbreviated file equivalent to that of Example 2. An abbreviated run

management file contains only four parts.

� WAIT is the duration of the pause undertaken by PEST and PSLAVE at certain

places in communications process. Its value is expressed in seconds and must be

greater than zero. If PEST and all slaves are running on the same machine a value

of 0.2 seconds is normally adequate.

 10

� If PARLAM is set to 1, partial parallelization of the lambda search is undertaken.

If it is set to 0 or is omitted, then the lambda sear is conducted in serial fashion

using just one processor.

� SLAVNAME is the name of the slave machine (directory); any name of up to 30

characters in length can be provided.

� SLAVDIR is the PSLAVE working directory as seen by PEST.

� RUNTIME is the expected run time of the model on the respective slave.

Runtimes supplied in seconds. It is better to overestimate, rather than

underestimate these run times.

� INFLE is the model input file containing parameters requiring optimization.

Either full pathname or abbreviated pathnames can be supplied. The number of

the files is equal to the number of the template files described in PEST control

file.

� OUTFLE is the model output file read by PEST. Its name should be also given

full path or relative path. The number of the output files is equal to the number of

the instruction files described in PEST control file.

Example 2 shows a typical run management file. There are two slaves involved in the

Parallel PEST run. The names of all model input files and all output files on both slaves

are supplied individually by abbreviated pathname. The duration of each pause

undertaken by PEST and PSLAVE in the communication process is 0.2 second. The

partial Parallel PEST is activated. The slaves are named Apple and Banana respectively.

Their working directories are the subdirectories of the PEST working directory, named

slave1 and slave2 respectively. The estimated run time of the model is 180 seconds on

both slaves.

Example 2. A typical Parallel PEST run management file.
prf

2 1 0.2 1

Apple ./slave1/

Banana ./slave2/

180 180

./slave1/catchment_correction.dta

./slave1/hbv_common_parameters.dta

./slave1/hbv_landsurface_parameters.dta

./slave1/hbv_soil_parameters.dta

./slave1/hbv_01220009.var

./slave1/hbv_01220011.var

./slave2/catchment_correction.dta

./slave2/hbv_common_parameters.dta

./slave2/hbv_landsurface_parameters.dta

./slave2/hbv_soil_parameters.dta

./slave2/hbv_01220009.var

./slave2/hbv_01220011.var

As we see that all model input files and output files in Example 2 lie within the slave’s

working directories for all slaves, so that the value of IFLETYP can be set to 0 and hence

the names of all input files and output files can be omitted from the run management file.

 11

A run management file, omitting the names of all the model input files and output files, is

shown in Example 3, which is equivalent to that of Example 2.

Example 3. A Parallel PEST run management file equivalent to that of Example 2, but

with IFLETYP sets to zero.
prf

2 0 0.2 1

Apple ./slave1/

Banana ./slave2/

180 180

2.5 Files in PSLAVE working directory
For convenience the model input files, program to start slave and script to start model

should be resided in each of the slave working directories.

Model input files:

- catchment_correction.dta

- hbv_common_parameters.dta

- hbv_landsurface_parameters.dta

- hbv_soil_parameters.dta

- hbv_elements.dta

- hbv_landscape.dta

- hbv_waterland.dta

- met_stations.dta

- watershed.dta

- control_hbv_calibration.txt

-obs_streamflow.var

Program to start slave:

- pslave

Script to start the distributed HBV model:

-start_hbv

start_hbv is a shell script to run the distributed HBV model which has following contain:

/home/flom/DistHbv/Bin/hbv < control_hbv_calibration.txt

2.6 Starting Parallel PEST
Before starting Parallel PEST the environment variable SNOWMET should be set by

following command in PEST working directory as well as in slave working directories:

setenv SNOWMET /mnt/readonly-snowmap2/metdata

 12

2.6.1 Starting the slave

At least one of the slaves should be started before starting PEST. Open one command-line

window for each slave. Go to the salve working directory and then write the following

command on this window to start slave.

./pslave

When slave is started, it will print out a massage that asks user to enter the command to

run the model. The command entered here should be exactly the same as that written in

the command section of PEST control file. The following command entered in this case:

./start_hbv

2.6.2 Starting PEST

When at least one slave has been started, Parallel PEST can be started by the following

command.

/usr/local/pest/utpakket/ppest hbv

At the beginning of the execution Parallel PEST commences only one model run before

distributing model runs on several computers. This is the reason that only one slave

should be started before starting Parallel PEST. When Parallel PEST is started the rest of

the slaves can be started if not all of them started at the beginning.

3 Stopping and restarting PEST
PEST provides a set of commands to interrupt PEST. With these commands user can

cease immediately the execution, cease the execution after parameter statistics being

printed out or pause the execution and restart paused execution.

When execution of PEST was interrupted it can be restarted. If the character variable

RSTFLE in PEST control file has been assigned the value “restart”, PEST is instructed to

periodically dump the contents of its memory to a number of binary files, so that if its

execution is terminated at any stage, it can be restarted later. This takes advantage of

retain the work it has been done. PEST provides three ways to restart the execution. Each

of which restarts the execution from different point in the optimization.

3.1 Interrupting PEST execution
At the end of every model run PEST checks for the presence of a file named pest.stp in its

working directory. If this file is present, PEST reads the first item in the file. The value of

this item determines how PEST will be interrupted.

The file pest.stp can be written either by using any text editor or by commands provided

by PEST. Beside the window where PEST is running, another window should be open for

the edit of the file pest.stp. The commands used to write a value in the file pest.stp are:

 13

Command Value written in pest.stp the execution PEST will undertake

PUNPAUSE 0 Resume PEST execution

PSTOP 1 PEST ceases execution immediately

PSTOPST 2 PEST ceases execution after it prints out

parameter statistics

PPAUSE 3 PEST pauses execution

3.2 Restarting PEST with the “/r” switch
To restart PEST with the “/r” switch will restart PEST at the beginning of the

optimization iteration even if the execution was terminated at the middle of the

optimization iteration. This means can be used to restart PEST and Parallel PEST. The

following command is used to restart PEST.

pest hbv /r

Where hbv is the filename base of the PEST control file. The corresponding command to

restart Parallel PEST is:

ppest hbv /r

3.3 Restarting Parallel PEST with “/s” switch
The “/s” switch can be used to restart execution of Parallel PEST at the same model run at

which its execution was terminated. This switch cannot be used to restart execution of

PEST.

The command to restart Parallel PEST is:

ppest hbv /s

3.4 Restarting PEST with “/j” switch
The “/j” switch can be used to restart execution of PEST and that of Parallel PEST. By

this means PEST will re-commence execution at the place at which the last Jacobian

matrix had just finished being calculated. It moves straight into calculation of the

parameter upgrade vector and the testing of different Marquardt lambdas.

Re-commencement of PEST execution for upgrade vector re-calculation is done by

running PEST using command

pest hbv /j

or, if using Parallel PEST,

ppest hbv /j

 14

4 Testing different values of
FORCEN and DERMTHD

The purpose of testing different values of the control variables is to find the way leading

to as better calibration results as possible. The variables tested in this case are character

variables FORCEN and DERMTHD which determine which method (two-point, three-

point or the combination of both) should be employed to calculate derivatives for group

members.

4.1 Catchments and calibration period
There are nine catchments involved in the testing:

� 103.40 Horghiem

� 138.1 Øyungen

� 157.3 Vassvatn

� 16.193 Hørte

� 174.3 Øvstevatn

� 2.323 Fura

� 28.7 Haugland

� 76.5 Nigardsjøen

� 97.1 Fetvatn

The calibration period is from 1981-09-01 to 2000-08-31 for all catchments. The

validation period is from 1961-09-01 to 2006-08-31 for all catchments.

4.2 Values of FORCEN and DERMTHD
The values tested for variable FORCEN are always_2 and switch. Where FORCEN is set

a value of “switch”, the value of the character variable DERMTHD has been supplied

with “parabolic”, “best_fit” and “outside_pts” respectively.

4.3 R2 values
Table 4 shows the R2 values from the calibration while table 5 shows the R2 values from

the validation. Slightly improvement can be found in the calibration results when valuable

FORCEN has value “switch” comparing with that FORCEN has value “always_2”. But

this improvement doesn’t leader to the same improvement in the results from validation.

Table 4 R2 values from the calibration.

switch Catchment
code

always_2

parabolic best_fit outside_pts

103.40 0.82 0.83 0.82 0.83

138.1 0.81 0.81 0.81 0.81

157.3 0.71 0.73 0.73 0.73

16.193 0.67 0.66 0.69 0.68

174.3 0.74 0.76 0.75 0.75

 15

2.323 0.63 0.64 0.64 0.64

28.7 0.79 0.79 0.79 0.79

76.5 0.92 0.92 0.92 0.92

97.1 0.66 0.67 0.67 0.67

Table 5 R2 values from the validation.

switch Catchment
code

always_2

parabolic best_fit outside_pts

103.40 0.80 0.81 0.80 0.80

138.1 0.69 0.69 0.69 0.69

157.3 0.70 0.72 0.71 0.72

16.193 0.66 0.65 0.67 0.67

174.3 0.68 0.67 0.67 0.68

2.323 0.61 0.61 0.61 0.60

28.7 0.72 0.72 0.72 0.72

76.5 0.91 0.91 0.91 0.91

97.1 0.46 0.46 0.46 0.46

 16

5 References
Beldring, S., Engeland, K., Roald, L.A., Sælthun, N.R., Voksø, A. 2003. Estimation of

parameters in a distributed precipitation-runoff model for Norway. Hydrology and Earth

System Sciences 7, 304-316.

Beldring, S., 2007. Distributed HBV model. Unpublished manuscript, 23 pp.

 17

Appendix
Example 1. To Run a Parallel Pest

When template and instruction files as well as a PEST control file are prepared and all

model input files reside in the PEST working directory, Parallel Pest can be run by the

following order:

1. Start at least one of the PSLAVE executions by typing command “pslave” on the

PSLAVE working directory. “pslave” is a program in PEST program package.

2. Start PEST by typing command “ppest” on PEST working directory.

3. Start rest of the PSLAVE executions.

The following shows an example to run Parallel PEST. PEST working directory in the

example is “DistHbv/test_4slaves”. There are four PSLAVE working directories named

“slave1”, “slave2”, “slave3” and “slave4” respectively. They are subdirectories of the

PEST working directory. The file named “mkslave.sh” is a script to copy all model input

files to the slave working directories and open one command-line window for each slave.

 1. Typing command “./mkslave.sh” on PEST working directory

2. Script “mkslave.sh” creates four PSLAVE working directories, copies all model input

files to these directories and then open one command-line window fore each slave.

 18

3. Starting PSLAVE by typing “pslave” on one PSLAVE command-line window.

PSLAVE immediately prompts the user for the command which it must use to run the

model.

4. Typing in the “./start_hbv”. This is the same command as that in command section of

PEST control file.

5. The following shows that PSLAVE is waiting for PEST to commence execution.

 19

6. Moving to PEST working directory and typing “ppest hbv” to start PEST, or using a

full pathname to start PEST as following.

7. PEST firstly tries to communicate with slaves. When it detects that one slave is alive it

begins to commerce execution.

8. Starting rest of the PSLAVE by repeating point 3 and point 4. After this has been done,

on PEST command-line window it will be shown that the rest of the slaves have been

detected.

 20

Example 2. To restart Parallel PEST

1. The following image shows that a Parallel PEST execution was interrupt at iteration

no.7.

2. The interrupted execution above can be restarted using “/s” switch. The slaves should

be restarted before PEST. The command used to restart Parallel PEST is: ppest hbv /s. In

the example the full pathname is used.

 21

3. The following image shows that the execution of Parallel PEST is restarted from the

iteration no. 7.

This series is published by Norwegian Water Resources and Energy Directorate (NVE)

Published in the Report series 2008

No. 1 Gusong Ruan: Utilization of the new features in PEST (22 s.)

