
Model calibration and frequency analyzes

Jochen Hochrainer

Model calibration and frequency analyzes

Practical traineeship at NVE, Jan - Apr 2005

Norwegian Water Resources and Energy Directorate 2005

Report No 4

Model calibration and frequency analyzes

Published by: Norwegian Water Resources and Energy Directorate

Editor:

Author: Jochen Hohenrainer

Printed by:	NVEs hustrykkeri
ISBN:	82-410-0550-4
ISSN:	1502-3540

Summary: The report summarizes the results of a traineeship, which is a part of a study at University of Freiburg, Germany. The assignment was defined by a collaboration project between NVE and the Wasserwirtschaftsamt Kempten in Germany, aimed at comparing the precipitation-runoff models used at these institutions. A secondary part of the report describes flood frequency analyses for Norwegian discharge series, to determine warning levels. The traineeship was supervised by Hege Hisdal, Elin Langsholt and Stein Beldring.

Keywords: Hydrological models, HBV-model, calibration, frequency analyzes

Norwegian Water Resources and Energy Directorate Middelthunsgate 29 PO Box 5091 Majorstua 0301 OSLO

Phone: 22 95 95 95 Fax: 22 95 90 00 Web: www.nve.no

August 2005

Table of Contents

1.	Intro	duction	4
2.		parison of the Precipitation-Runoff-models HBV and Fgmod	
		organisation of work	
		alibration and validation, HBV, for the Norwegian catchments	
	2.2.1	Structural data of the Norwegian catchments	
	2.2.2	Bulken	
	2.2.3	Knappom	10
	2.2.4	Engeren	12
	2.3 C	alibration and validation, HBV, for the German catchments	14
	2.3.1	Structural data of the German catchments	
	2.3.2	Kempten	14
	2.3.3	Wiblingen	
3.	Flood	d Frequency Analyzes	18
4.	Final	Comments	20
Re	ferenc	es	20
Ap	pendi	x A	21
-1-	•	n dat file and vegtype dat file for Bulken	21

param.dat file and vegtype.dat file for Bulken	
param.dat file and vegtype.dat file for Knappom	
param.dat file and vegtype.dat file for Engeren	
Appendix B	30
param.dat file and vegtype.dat file for Kempten	
param.dat file and vegtype.dat file for Wiblingen	

1. Introduction

This report summarizes the assignments from my practical training at NVE (Norwegian Water Resources and Energy Directorate) in Oslo in the period 10 January – 11 April 2005. The traineeship is part of my studies at University of Freiburg as a 3 month practical training is required due to the examination regulations. The practical traineeship was supported by the European Leonardo da Vinci programme. My supervisors at NVE were Hege Hisdal, Elin Langsholt and Stein Beldring.

Most of the time during the traineeship was spent on a project between NVE and the Wasserwirtschaftsamt Kempten (WWA Kempten) in Germany to compare the Precipitation-Runoff-models (PR-models) used at these institutions (HBV model [1] at NVE and Fgmod at WWA Kempten). Chapter 2 describes the work on that project.

Operationally the HBV model at NVE is used for stream flow and especially flood forecasts. The required input data for the model are:

- 1. Temperature and precipitation observations (to update the model) and observed runoff to correct the simulated runoff.
- 2. Temperature and precipitation forecasts.

The meteorological data are provided by the Norwegian Meteorological Institute. The warning levels for floods are related to the recurrence interval of the predicted stream flow as follows:

- Flood, the flow in one or more rivers is expected to exceed a recurrence interval of 5 years;
- Major flood, the flow in one or more rivers is expected to exceed the 50-year flood.

During the traineeship I did flood frequency analyzes for several Norwegian discharge time series to get the required warning levels (Chapter 3).

In addition I spent 3 days on field work including measurements of discharge and sediment transport as well as GPR measurements of sediment cores.

In the last chapter (Chapter 4) some final comments are given.

2. Comparison of the Precipitation-Runoff-models HBV and Fgmod

2.1 Organisation of work

The aim of the project between NVE and WWA Kempten is to compare the performance of the HBV model [1] (used at NVE) with Fgmod (used at WWA Kempten). Therefore both models were calibrated for the same catchments and the model performance compared with respect to floods (peak magnitude, peak timing) and low flow cases. Criteria for the model performance are Nash-Sutcliff-efficiency criterion (1970):

$$E = 1 - \frac{\sum (Qobs - Qsim)^2}{\sum (Qobs - \overline{Qobs})^2},$$

Bias, which is the sum of differences between simulated and observed runoff divided by the total runoff, and visual fit between observed and simulated runoff. To see how the models perform for catchments in Norway as well as in Germany, originally two Norwegian and two German catchments were selected. The catchments in each country have different topographic characteristics (lowlands, mountains) to see how the models manage different landscapes.

No.	Country	Name	Size	Character
N-1	Norway	Bulken	1102	Western Norway, Forest and alpine mountain (47 – 1587 m above sealevel)
N-2	Norway	Knappom	1625	Eastern Norway, Wetlands and forest (180 – 780 m above sealevel)
N-3	Norway	Engeren	400	Eastern Norway, Wetlands, forest and mountain (472 – 1139 m above sealevel)
G-1	Germany	Kempten	954	Iller, alpine (656 – 2600 m above sealevel)
G-2	Germany	Wiblingen	2040	Iller, lowland (468 – 2600 m above sealevel)

Table 1 Test catchments for model comparison.

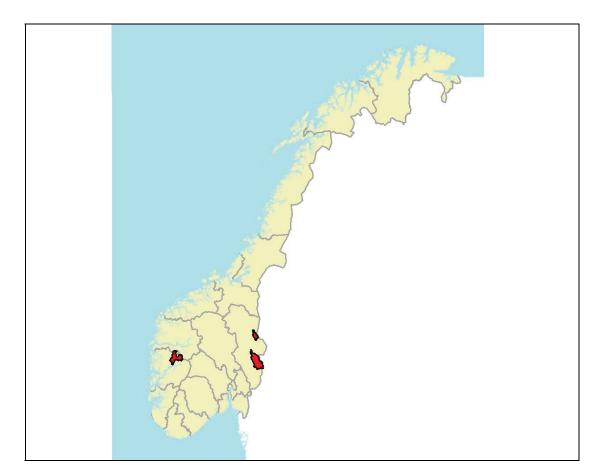


Figure 1 The map shows Norway with national and county borders. The test catchments are illustrated as red areas.

Figure 2 The map shows the location of the German gauging stations as red dots.

During the work on Knappom, one of the Norwegian stations, problems with the meteorological data were found (see 2.2.4). Therefore it was decided to use another Norwegian catchment and Engeren was selected. The comparison is done on Bulken and Engeren (Norway), and Kempten and Wiblingen (Germany). The test catchments are listed in table1. Figure 1 shows the location of the Norwegian catchments and Figure 2 shows the location of the German gauging stations.

To avoid the problems of different meteorological forecasts in Norway and Germany and as it is not the aim to assess the quality of meteorological forecasts but the quality of the PR-models, only historical data are used. For model calibration and validation data from about 20 years are used. This time period is split into one period (10 years) for calibration of the model, i.e. finding the parameter set that gives best result, and one period for validation (where the model is tested for an independent time period that not was used for calibration). Calibration of the HBV model is done with PEST [2], a commercial parameter estimation routine. PEST searches for the best parameter set for the model using the least squared error between observed and simulated values as criteria. As PEST doesn't find global but local minima of the least squared error, it is recommended to run PEST with several different sets of starting values for the parameters to end up in different minima, so one can choose the best parameter set.

For data storage and exchange a WebStorage is provided by the WWA Kempten.

2.2 Calibration and validation, HBV, for the Norwegian catchments

2.2.1 Structural data of the Norwegian catchments

The required structural data for the HBV model are area, hypsographic curve, area in each elevation zone (for the model the whole area of the catchment is divided into 10 elevation zones), lake and glacier area in each elevation zone, as well as vegetation type in each elevation zone. The structural data at NVE is available in 5 gridded geographical data sets with spatial resolution 1 km²: elevation, potential tree line elevation, percent of grid cell covered by lakes, percent of grid cell covered by glaciers and percent of grid cell covered by forest.

The required hydroclimatological data are temperature (°C), precipitation (mm) and observed discharge (m³/s). For the temperature and precipitation stations the elevation above sea level is required. September was chosen as the starting date both for the calibration and validation, because the snow reservoirs are assumed to be empty at that time. The HBV model is a continuous model which operates with different storages (e.g. soil moisture, linear storages) that have certain states for each time step. As it is difficult to estimate good starting values for these storages the model needs some time to stabilize before good simulation results are achieved. Therefore the model was not updated with observed runoff data from September till December the first year in calibration. As a result the starting phase was not used for the error function calculation.

The parameters used by the HBV model are provided by two parameter files. The main parameters, which are most sensitive for the calibration process, are located in the *param.dat* file, whereas the parameters in the *vegtype.dat* file, which describe the vegetation types in the elevation zones, are not so sensitive for calibration [1]. For each catchment the parameter files are enclosed in Appendix A or B.

2.2.2 Bulken

The catchment above the gauging station Bulken is located in Western Norway and is characterized by forest and alpine mountains. The catchment area is 1102 km²; the highest point is 1587 m and the lowest point (gauging station) 47 m amsl (above mean sea level).

Input data

The temperature and precipitation data used for the calibration are provided by the two synoptic stations Voss-Bø (125 m) and Reimegrend (590 m). Both stations are located in the catchment and give both temperature and precipitation. The total time period for calibration and validation is 1 September 1980 till 31 December 2004 (calibration period 1 September 1980 – 31 May 1990, validation period 1 January 1991 – 31 December 2004).

Construction work at the outlet of Lake Vangsvatnet where the gauging station Bulken is located started in June 1990. A new rating curve was established from 1 January 1991. Because of this there was discontinuity in the runoff data from June to December 1990. Therefore the end of the calibration period was chosen to be 31 May 1990. To have some time to stabilize the model, the validation period started at 1 September 1990, but the error functions where calculated from 1 January 1991.

The HBV model can not handle a change of meteorological stations during the model run. Therefore when one station is replaced by another, the data from the new station has to be adjusted to the data from the old station. This is done by adding the difference between monthly averages.

In the calibration period the station Reimegrend had missing temperature and precipitation data from October 1989 - May 1990. For this period, data from Voss-Bø were used to fill the gap. The data were corrected by applying the difference of the monthly averages between the two stations, calculated for the normal period 1961-1990.

Both meteorological stations were disused in the validation period, Reimegrend only has data until 31 October 1998 and Voss-Bø until 31 Mars 2003. Instead, to new stations were established in the catchment: Mjølfjell (695 m) with data from 1 June 1999 and Vossevangen (54 m) with data from 1 February 2004.

After Reimegrend was disused data from Voss-Bø was used instead from November 1998 - May 1999. The data has been corrected by the differences of the monthly averages. In the period from June 1999 - December 2004 corrected data from Mjølfjell were used for Reimegrend.

From April 2003 - January 2004 only data from Mjølfjell were available and for this period only one temperature and precipitation input series were used. During this period there were also gaps in the data, lasting from 2 to 15 days. To fill these gaps, precipitation data were used from station Jordalen and temperature data were used from station Modalen II (October -December 2003) and station Eidfjord (January 2004).

After Voss-Bø was disused adjusted data from Vossevangen were used for Voss-Bø from February 2004 - December 2004. As Vossevangen was in operation only for some months, no long time monthly averages were available for the time series and the adjustment to Reimegrend was done using altitude gradients (-0,6°C/100 m for temperature and 3%/100 m for precipitation).

Model calibration and validation

The calibration of the HBV model for Bulken was done for the period 1 September 1980 - 31 May 1990. The parameter set received from PEST was tested for the independent validation period 1 January 1991 - 31 December 2004.

For Bulken 14 different start parameter sets were tested for calibration. Table 2 shows the error functions both for the calibration and validation period for the best parameter set found. The *param.dat* file and *vegtype.dat* file for Bulken are enclosed in Appendix A.

Calibration Period	Validation Period	
Error functions:	Error functions:	
rel.dif**2 500.09 difference -12.28 F2-value 17902.30 R2-value 0.86 R2-log 0.88 Bias -0.00	rel.dif**2 840.73 difference 2052.38 F2-value 25701.98 R2-value 0.84 R2-log 0.84 Bias 0.07	

Both the good results according to the error functions (R2-value, i.e. Nash-Sutcliff coefficient and Bias) and the visual inspection of the graph, where observed and simulated runoff are plotted against time (Figure 3), indicate a very good model performance.

The discharge at Bulken is characterized by strong fluctuations through the whole year. It is affected a by spring flood due to snow melt in addition to strong rain events during the whole summer and autumn. In the wintertime low flow situations are dominating.

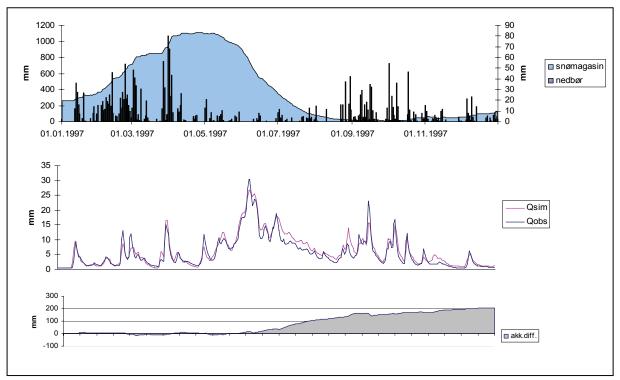


Figure 3 Simulated and observed runoff at discharge gauge Bulken for the year 1997.

The model shows a good dynamic by following the fluctuations and the different flow situations very well. The flood peaks are simulated very well with respect to timing and magnitude, although in some cases the maximum values are underestimated a little. Both in flood and low flow situations the simulated values are close to the observed ones.

As expected, the model performance slightly decreases in the validation period and the error functions do not give quite as good results as for the calibration period, but the difference is not very large and the model shows a good performance also in this period. Figure 3 gives an example of a good fit between observed and simulated runoff during one year (1997, validation period).

Also at times when the synoptic stations have changed or data from other stations are adapted the model is able to simulate the discharge very well. This is also valid for periods were the model only runs with one temperature and precipitation series. The HBV model seems to be robust for small changes in meteorological data.

For future operational flood forecasting, the old synoptic stations will be replaced by the new ones, Voss-Bø by Vossevangen and Reimegrend by Mjølfjell. This will be done by changing the elevation of the synoptic stations in the parameter file of the model.

2.2.3 Knappom

The catchment above the gauging station Knappom is located in Eastern Norway and is characterized by wetlands and forest. The catchment area is 1625 km²; the highest point is 780 m and the lowest point (gauging station) 180 m amsl.

Input data

For the calibration of Knappom the two synoptic stations Flisa (184 m) and Rena-Haugedalen (240 m) were used. Station Flisa is located near the gauging station Knappom and Rena outside the catchment borders a little north of the catchment. Originally the calibration period was chosen from 1 September 1980 – 31 August 1990 and the validation period from 1 January 1991 – 31 December 2004.

In the calibration period the temperature series of Flisa had missing values for the whole of August 1987 and May 1989. The gaps were not filled as Rena had data for these periods.

During the validation period the station Flisa was replaced by a new station, Flisa II (185 m), nearby the old station. The series of Flisa lasts until 31 December 1998 and the series of Flisa II starts at 22 November 2003. The gap of almost 5 years was filled in using temperature data from Rena and precipitation data from Vermundsjøen. During the period where temperature data only was provided by Rena this series also had missing values (2 September – 9 September 2000, 26 October – 2 November 2001, 8 October – 15 October 2003). These gaps, lasting about one week each, were filled in with temperature data from the station Evenstad.

Model calibration and validation

Similar to Engeren the runoff at Knappom is characterized by a maximum snowmelt season in April/May and low flow in the winter. During the summer and especially the autumn the runoff is often affected by strong rainfall events resulting in additional discharge peaks. The rainfall in the summer and the autumn has large interannual variability. The runoff peaks as a result of heavy rainfall can reach the level of the spring flood.

By calibrating the model for the period 1 September 1980 - 31 August 1990 the best parameter set for Knappom resulted in R2-values of 0.82, but by testing the model for the independent validation period, the model performance strongly decreased (R2-value: 0.73). Changing the calibration and validation period did not improve the result (new validation period: 1 September 1980 - 31 August 1990). One reason for the relatively large difference between the R2-values for the calibration and validation period could be climatic change. Warmer winters in the nineties resulted in reduced snow storage. By calibrating the model for certain basic characteristics in the discharge, the model performance will decrease in the validation period if these conditions have changed. Therefore it was decided to calibrate the model for a period that includes climate characteristics of the eighties and the nineties to adjust the model to both climatic situations. The new calibration period was chosen from 1 January 1982 - 31 December 1992. The validation period was also split into two parts in order to catch both climatic situations. The first part was from 1 January 1977 - 31 December 1981 and the second part from 1 January 1993 - 31 December 1998. The end of the validation period was chosen to be December 1998 to avoid inhomogeneity in the meteorological time series due to changes in the stations.

By this the model performance was slightly improved (Table 3). The *param.dat* file and *vegtype.dat* file for Knappom are enclosed in Appendix A.

Calibration Period		Validation Period	
Error functions:		Error functions:	
difference	1121.17 -1.10 1984.28 0.84 0.68 -0.00	rel.dif**2 difference F2-value R2-value R2-log Bias	1264.76 221.78 2898.39 0.74 0.67 0.02

Table 3 Error functions for best parameter set for Knappom.

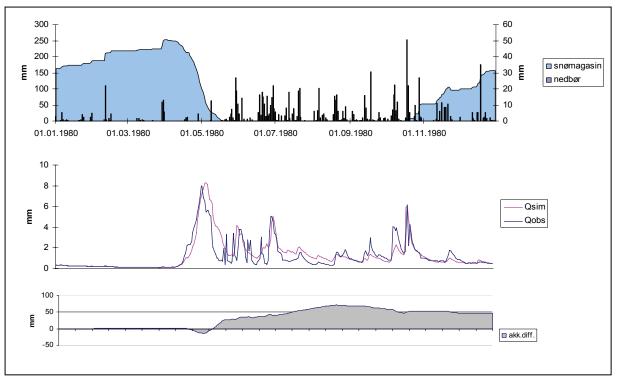


Figure 4 Simulated and observed runoff at discharge gauge Knappom for the year 1980.

Especially in the validation period the model often smoothed the runoff when there were stronger fluctuations in the observed runoff. In addition the runoff in the summertime was often overestimated at low flow situations and in several cases the model was not able to reproduce runoff peaks due to rainfall, especially in the autumn. Figure 4 shows a typical simulation result for a year in validation period (1980).

Another problem was that the historical runoff data are not very reliable. A possible source for error is inhomogeneity due to ice reduction. The runoff data also seem to have a trend which is not reflected in the meteorological data. As it would be out of the scope for this traineeship to go carry out quality control tests it was decided to calibrate another catchment with more reliable runoff data. Engeren was chosen as a replacement for Knappom for model comparison.

2.2.4 Engeren

The catchment above the gauging station Engeren is located in Eastern Norway and is characterized by wetlands, forest and mountain. The catchment area is 400 km²; the highest point is 1139 m amsl and the lowest point (gauging station) 472 m amsl.

Input data

The input data for the model is supplied by the synoptic station Drevsjø (672 m), near the northern border of the catchment which provides temperature and precipitation data and by the two precipitation gauges Heggeriset-Nordstrand (481 m) and Gløtvola (696 m) both located within the catchment.

The model was calibrated for the period 1 September 1980 - 31 August 1990 and validated for the period 1 January 1991 - 31 August 2004. There are some missing data in the observed temperature and precipitation series of Drevsjø. The gaps in the temperature series were filled in with data from the station Rena (August 1987 – August 2002) and Trysil (from December 2002).

The discharge series from the gauge Engeren has missing data from 13 Mars - 22 July 1996. This period was not used for the error function calculation.

Model calibration and validation

For calibration of Engeren 17 different start parameter sets where used. Interestingly, the best parameter set received by PEST was for a parameter file where the lake area was equally distributed in all elevation zones and only one vegetation type per elevation zone was used. For a parameter file where the lake area was distributed in the elevation zones according to observations and two vegetation types per elevation zone were used, the result was not quite as good.

Table 4 shows the error functions for the best parameter set (same lake area in all elevation zones). The *param.dat* file and *vegtype.dat* file for Engeren are enclosed in Appendix A. Table 5 shows the results from the other parameter set (distribution of lake area according to reality). For the model comparison the parameter set with equally distributed lake area was chosen, because the best result from the model should be used.

Table 4 Error functions for best parameter set for Engeren (lake area equally distributed in all elevation zones).

Calibration Period	Validation Period
Error functions:	Error functions:
rel.dif**2 307.67 difference 0.33 F2-value 1635.01 R2-value 0.90 R2-log 0.88 Bias 0.00	rel.dif**2 466.77 difference -837.00 F2-value 3586.77 R2-value 0.84 R2-log 0.86 Bias -0.10

Table 5 Error functions for a parameter set for Engeren where the lake area is distributed in the

elevation zones according to observations.

Calibration Period		Validation Perio	Validation Period	
Error functions:		Error functions:	Error functions:	
rel.dif**2 difference F2-value R2-value R2-log Bias	261.45 -1.23 1759.01 0.89 0.90 -0.00	rel.dif**2 difference F2-value R2-value R2-log Bias	432.02 -819.65 3705.56 0.83 0.87 -0.10	

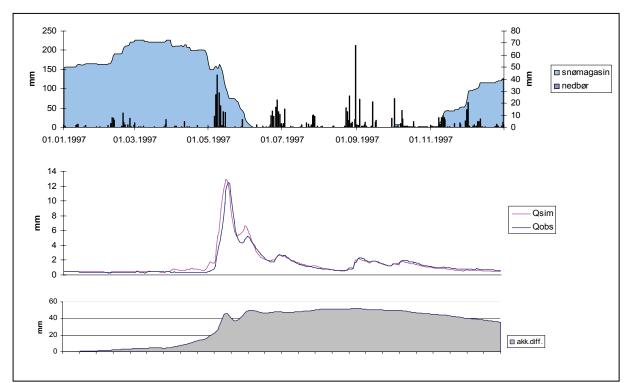


Figure 5 Simulated and observed runoff at discharge gauge Engeren for the year 1997.

Both the error functions and the visual inspection of the plotted runoff values indicate a very good model performance, with a very high Nash-Sutcliff coefficient of 0.90.

The annual runoff pattern at Engeren is characterized by a high maximum in May/June due to snowmelt and often some higher runoff values during the autumn because of heavier rainfall. During the rest of the year the runoff is very constant at a small level. Figure 5 gives a typical example for the runoff during one year (1997, validation period).

The plot shows a very good fit between observed and simulated runoff both in flood and low flow situations. The very good result of the model calibration may be due to the small annual fluctuations in runoff. In general the discharge is quite smooth and the model doesn't have problems in following it. The flood peaks (mainly the spring flood due to snowmelt) could be simulated very well with respect to timing and magnitude, although in some cases the maximum values are underestimated by about 25 %.

Again, in the validation period the model performance decreased a little compared to the calibration period, but also for this period the results are good.

2.3 Calibration and validation, HBV, for the German catchments

2.3.1 Structural data of the German catchments

The required structural data (area, hypsographic curve and area, lake, glacier area and vegetation type in each elevation zone) for the German catchments was obtained from a digital elevation model and from the CORINE Land Cover 2000 project, which provides data for the land cover of Germany in a raster with different spatial resolutions (here a resolution of 1 km² was used).

The catchment of the gauging station Kempten is a part of the catchment of the gauging station Wiblingen, but for the model run the catchments are treated individually with gauging stations at Kempten and Wiblingen, respectively. For the calibration of Wiblingen no additional runoff data from Kempten is used.

The areas of the catchments found by the 1 km² raster and a shape file containing the borders of the catchments differ from the official numbers. For Wiblingen an area of 2154 km² was found, which is more than 5 percent larger than the official 2040 km². The overestimation may be due to the shape file containing the border of the catchement. In this file the catchment includes the area until the inflow of the Iller into the Donau, whereas in reality the gauging station Wiblingen is located a little upstream. But as the German model Fgmod applied by WWA Kempten also uses an area which is overestimated by about 5 percent (2163 km²), the 2154 km² were used in the HBV model. For Kempten the error in the estimated area is lower. The value found, 948 km², differs less than 1 percent from the official value of 954 km² and was therefore kept for the model calculations. The value used for Fgmod by WWA Kempten equals 958 km².

2.3.2 Kempten

The catchment above the gauging station Kempten is located in South-Germany at the Austrian border (a small part of the catchment belongs to Austria) and has an alpine character. The highest point is 2639 m and the lowest point 658 m amsl.

Input data

The input data for the model is supplied by 5 meteorological stations which provide both temperature and precipitation series: Kempten (Wst, 705 m), Isny (712 m), Oberstaufen-Kalzhofen (800 m), Hindelang-Unterj. (Akkst, 1053 m) and Oberstdorf (Wst, 806 m).

The calibration period is from 1 September 1980 to 31 August 1990 and the validation period from 1 September 1990 to 30 April 2004. Two of the meteorological stations did not have data for the whole period. For these series the gaps were not filled in as there were always other stations which had data for the period. The gaps in the temperature series always coincided with the gaps in the precipitation

series, and vice versa. The series with gaps are Oberstaufen (Sept. 1980 – Sept. 1983 and Oct. 2001 – April 2004) and Hindelang (November 1999 – April 2004).

Model calibration and validation

The runoff at the gauging station Kempten is characterized by large fluctuations during the whole year and there is no typical time for the maximum annual discharge. In general there are high peaks in the spring, often provoked by a mixture of snow melt and rainfall and high peaks in the summer, autumn and winter, due to rainfall. If there is heavy rainfall, the annual maximum value can even occur during wintertime. During the autumn and winter the flow is at the lowest level.

For the calibration of Kempten, 15 different start parameter sets were used and the results for the best parameter set are shown in table 6. The *param.dat* file and *vegtype.dat* file for Kempten are enclosed in Appendix B.

Calibration Peric	od	Validation Perio	d
Error functions:		Error functions:	
rel.dif**2 difference F2-value R2-value R2-log Bias	236.06 1.60 4773.74 0.89 0.87 0.00	rel.dif**2 difference F2-value R2-value R2-log Bias	339.11 195.85 8788.77 0.88 0.85 0.01

Table 6 Error functions for best parameter set for Kempten.

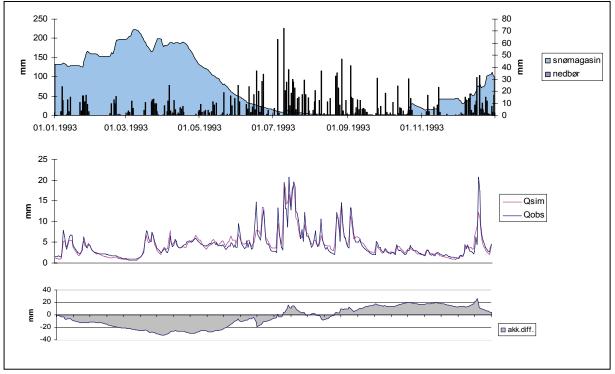


Figure 6 Simulated and observed runoff at discharge gauge Kempten for the year 1993.

Both the statistical error functions and the visual inspection of the plotted observed and simulated runoff indicate a very good model performance. For the validation period the R2-value only has a minor decrease and stays on a high level of 0.88. Also, the bias increases only from 0 to 1 percent.

Figure 6 gives a good example of the annual fluctuations in runoff (here 1993, validation period). The model shows a good dynamic and follows the often fast changing runoff very well. Both in flood and low flow situations the simulated runoff is very close to the observed. Also, the peaks could be simulated very well with respect to timing and magnitude, only in a very few cases the peak values were a little underestimated.

As there where series from 5 meteorological stations available for the catchment Kempten, the area precipitation and temperature could be estimated very well. The good model performance confirms that it is import to have a good quality in the input data to get good results from the model and that an increased number of meteorological stations can improve the model performance.

2.3.3 Wiblingen

The catchment above the gauging station Wiblingen is located in South-Germany with a small part in Austria. It contains some mountains but mainly is characterized by lowlands with forest and open land. The highest point is 2639 m and the lowest point 469 m amsl.

Input data

The input data for the model are time series from the same 5 meteorological stations used for Kempten and 4 additional stations: Ulm (Awst, 571 m), Aulendorf-Spiegler (560 m), Schemmerhofen-Ingerking (519 m), Memmingen (610 m), Kempten (Wst, 705 m), Isny (712 m), Oberstaufen-Kalzhofen (800 m), Hindelang-Unterj. (Akkst, 1053 m) and Oberstdorf (Wst, 806 m).

The period for the model calibration was chosen to be 1 September 1980 to 31 August 1990 and for the validation from 1 September 1990 to 30 April 2004. Three meteorological stations did not have data for the complete period. For these series the gaps were not filled as there were always other stations which had data for the period. The series with gaps are Schemmerhofen (September 1980 – December 1986), Oberstaufen (Sept. 1980 – Sept. 1983 and Oct. 2001 – April 2004) and Hindelang (November 1999 – April 2004).

Model calibration and validation

The runoff at the gauging station Wiblingen has in general the same pattern as at station Kempten. It is affected by the same processes (high peak in spring due to a mixture of snow melt and rainfall and additional high peaks in the rest of the year as a result of rainfall). To compare the runoff between Kempten and Wiblingen, Figure 7 shows the discharge for the same year (1993, validation period) as it was chosen for Kempten (Figure 6). The main difference in the discharge between these stations is the magnitude. The runoff values at Wiblingen are about half as high as at Kempten, in relation to the catchment area. The fact that the catchment Wiblingen includes the catchment Kempten and the runoff at Wiblingen equals about half the runoff at Kempten (in mm), indicates, that most of the discharge of the Iller at gauge Wiblingen comes from the mountain area located in the catchment Kempten.

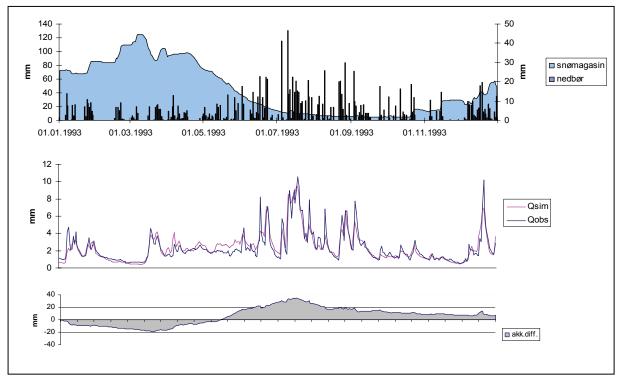


Figure 7 Simulated and observed runoff at discharge gauge Wiblingen for the year 1993.

Calibration Period		Validation Period	
Error functions:		Error functions:	
rel.dif**2 difference F2-value R2-value R2-log	364.68 211.15 1900.63 0.87 0.86	rel.dif**2 difference F2-value R2-value R2-log	396.43 598.84 2994.75 0.85 0.85
Bias	0.03	Bias	0.05

Table 7 Error functions for best parameter set for Wiblingen.

For the calibration of Wiblingen, 25 different start parameter sets were used and the results for the best parameter set are shown in table 7. The *param.dat* file and *vegtype.dat* file for Wiblingen are enclosed in Appendix B.

For Wiblingen the statistical error functions are not quite as good as for Kempten. Especially, the bias shows that the runoff is generally overestimated a little, both for calibration and validation period. But the accumulated difference between simulated and observed runoff does not differ more than 5% from the total observed runoff for both periods, which is a good result. The R2-value for calibration period equals 0.87, which is a very good, and decreases only a little for validation period. This indicates a good model performance.

The visual inspection of the plotted observed and simulated runoff (Fig. 7) confirms the good results of the error functions. In general the simulated runoff is very close to the observed, although in some cases the difference is bigger than for Kempten. The peaks could be simulated very well with respect to timing and magnitude and only in a few cases the peak values were a little underestimated.

3. Flood Frequency Analyzes

During the traineeship I did flood frequency analyzes for 67 stations to get the required warning levels for these stations. Different properties of the historical runoff series had to be calculated: The discharge values for the recurrence interval of 5 and 50 years and the annual mean flood. The latter is defined as the average of the annual daily peak stream flows, as well as the corresponding water levels.

The first step was to control the historical runoff series for gaps. It is important to look at the plotted runoff values around the gaps because if the annual peak value seems to be within the missing values, this year can't be used in the calculations. After this, the mean annual flood could be calculated. The next step was to find an appropriate distribution function for the annual maxima (positively skewed). The plotting positions of the observed values were calculated using the Gringorton (1963) plotting formula:

$$P(x) = \frac{i - 0.44}{n + 0.12}.$$

The plotting positions correspond to the recurrence frequencies. The return frequencies of the observed values were plotted together with different distribution functions (see example Fig. 7). Then it was decided which distribution function that fitted the observed data best. In most cases the General Extreme Value (GEV), the Gamma 3 (GAM3) and the Log-normal 3 (LN3) distributions were found to give the best fit.

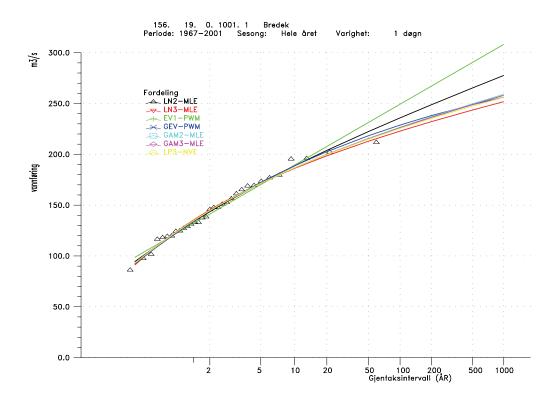


Figure 7 Plotting positions of observed annual peak flows together with several distribution functions for the runoff series at station Bredek.

The runoff values with return periods of 5 and 50 years were calculated using this function. Figure 7 shows the plot of the runoff series at station Bredek. Here the Log-normal 3 was selected as the best fitt distribution. The warning levels are as follows: 172 m³/s for a 5-year return period and 213 m³/s for a 50-year return period. The mean annual flood is 147 m³/s.

The corresponding water levels were obtained from the rating curve (Figure 8), which gives the relation between water level and discharge. Table 8 shows the water levels and runoff values for series Bredek.

Table 8 Water levels and runoff values for the annual mean flood and return periods of 5 and 50 years for the runoff series Bredek.

return period	mean flood	5 years	50 years
water level (m)	2.42	2.55	2.73
runoff (m³/s)	147	172	213

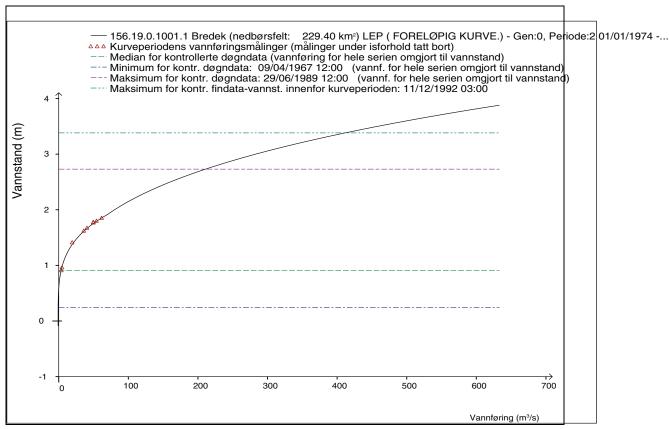


Figure 8 The rating curve gives the water level - runoff relation for station Bredek.

For the flood frequency analyzes all available years of data were used for catchments without any regulations. In case of regulations in the catchment, the time period used for the calculations started after the last change in the regulations.

To avoid too high uncertainty only time series with a length of at least 25 years were used to calculate the runoff value with a recurrence interval of 50 years. For a return period of 5 years only series with at least 10 years were used. Of the 67 time series, frequency analyzes to find the 5 and 50 year return period was only possible for 37 series.

Seven series had data for at least 10 years and the 5 year return period could be calculated. Nine series had data between 5 and 10 years which is too few for frequency analyzes, but the mean annual flood was calculated.

The last 18 series could not be used for any calculations, because at some stations only water levels were observed and no rating curve existed or there were too few or no data available at all.

All calculations were done with NVE software. Printouts of the results of the frequency analyzes and rating curves were collected in folders for use at the flood forecasting central office at NVE.

4. Final Comments

For the calibration of the catchments, PEST has shown to be a very good routine. The parameter values found by PEST gave generally very good model results. But as mentioned before, it was necessary to run PEST with several different initial parameter sets, as the error minimum found by it was a local one and the result from only one run can be very bad. By running PEST with 10 different start parameter sets, usually about three good parameter sets were obtained. For Bulken, I tried to improve the results from PEST by adjusting some parameters manually. I succeeded to improve the model performance with respect to the R2-value (increase of 0.01), but at the same time the model performance decreased with respect to the bias. Therefore it was decided to keep the results from PEST as the best found parameter set.

In the beginning, only parameters from the *param.dat* file were used for the calibration. From this file 15 parameters in addition to the weights of the temperature and precipitation series were calibrated. But it has shown that the results could be improved, when also parameters from the *vegtype.dat* file were used in the calibration process. Therefore, from this file up to 25 parameters were calibrated for each catchment.

References

[1] HBV-modell

Sælthun, N.R. 1996. The Nordic HBV model. Norwegian Water Resources and Energy

Administration Publication 7, Oslo, 26 pp.

[2] PEST

Doherty, J., Brebber, L. and Whyte, P. 1998. PEST. Model independent parameter estimation.

Watermark Computing, 185 pp.

Appendix A

param.dat file and vegtype.dat file for Bulken

param.dat file:

START 1bulken 2 Ω 2 PNO Number of precipitation stations 2 Identification for precip station 1 0 Voss PID1 2 0 125. PHOH1 Altitude precip station 1 2 0.54170960000 PWGT1 Weight precipitation station 1 2 0 Reimegrend PID2 2 0 590. PHOH2 0.43273210000 2 PWGT2 2 Number of temperature stations 0 2 TNO 2 0 Voss TTD1 Identification for temp station 1 2 0 125. THOH1 Altitude temp station 1 2 0.33767540000 TWGT1 Weight temp station 1 2 TID2 0 Reimegrend Identification for temp station 2 2 0 590. THOH2 Altitude temp station 2 2 0.72483120000 TWGT2 Weight temp station 2 Number of discharge stations 2 1 0 ONO 2 0 Bulken QID Identification for discharge station 2 Scaling factor for discharge 1. OWGT 0 2 0 1102 AREAL Catchment area [km2] 2 4 0.000 MAGDEL Regulation reservoirs [1] 2 47.000 HYPSO (1,1), low point 5 [m] 320.000 HYPSO (2,1) 2 6 HYPSO (3,1) 2 7 520,000 2 8 655.000 HYPSO (4,1) 2 770.000 HYPSO (5,1) 9 2 10 860.000 HYPSO (6,1) 2 HYPSO (7,1) 973.000 11 2 12 1060.000 HYPSO (8,1) 2 13 1150.000 HYPSO (9,1) 2 14 1245.000 HYPSO (10,1) 1587.000 2 15 HYPSO (11,1), high point 0.000 2 HYPSO (1,2), Part of total area below HYPSO (1,1) = 016 2 17 0.100 HYPSO (2,2) 2 18 0.200 HYPSO (3,2) 2 0.300 HYPSO (4,2)19 2 0.400 HYPSO (5,2) 20 2 21 0.500 HYPSO (6,2) 2 22 0.600 HYPSO (7,2) 0.700 2 23 HYPSO (8,2) 2 HYPSO (9,2) 0.800 24 2 25 0.900 HYPSO (10,2) 2 26 1.000 HYPSO (11, 2), Part of total area below HYPSO (11, 1) = 12 27 0.000 BREPRO(1), Glacier area, part of total area, below HYPSO(1,1) (=0.0)0.000 37 BREPRO(2), Glacier area, part of total area, below HYPSO(2,1) 2 2 37 0.000 BREPRO(3), Glacier area, part of total area, below HYPSO(3,1) 2 37 0.000 BREPRO(4), Glacier area, part of total area, below HYPSO(4,1) 2 37 0.000 BREPRO(5), Glacier area, part of total area, below HYPSO(5,1) 2 37 0.000 BREPRO(6), Glacier area, part of total area, below HYPSO(6,1) 0.000 2 37 BREPRO(7), Glacier area, part of total area, below HYPSO(7,1) 2 37 0.000 BREPRO(8), Glacier area, part of total area, below HYPSO(8,1) 2 37 0.000 BREPRO(9), Glacier area, part of total area, below HYPSO(9,1) 2 37 0.020 BREPRO(10), Glacier area, part of total area, below HYPSO(10,1) 2 37 0.030 BREPRO(11), Glacier area, part of total area, below HYPSO(11,1) 2 38 270.000 NDAG 2 39 Day no for conversion of glacier snow to ice 40 1.1575440000 2 [C] ТΧ Threshold temperature for snow/rain 2 41 -.2692383000 ΤS Threshold temperature fo no melt [C] 2 42 3.9120340000 СХ Melt index [mm/deg/day] 2 43 0.01 CFR Refreeze efficiency [1] 2 0.08 τ.v Max rel. water content in snow 44 [1] 45 1.5373010000 2 PKORR Precipitaion correction for rain [1] 2 46 1.0638850000 SKORR Additional precipitation corection for snow at gauge [1] 2 47 GRADALT Altitude for change in prec. grad. [m] 2 48 PGRAD1 Precipitation gradient above GRADALT [1]

Norges vassdrags- og energidirektorat, august 2005

2	49	0.02	CALB	Ageing factor for albedo	[1/day]
2	50	0.33	CRAD	Radiation melt component	[1]
2	51	0.33	CONV	Convection melt component	[1]
2	52	0.33	COND	Condensation melt component	[1]
2	60	1.1	CEVPL	Lake evapotranspiration adjustment fa	
2	61	0.5	ERED	Evapotranspiration red. during interc	ception [1]
2	62	30.0	ICEDAY	Lake temperature time constant	[d]
2	63	8547947000	TTGRAD	Temperature gradient for days without	precip [deg/100 m]
2	64	600000000	TVGRAD	Temperature gradient for days with pr	
2	65	.00345916280	PGRAD	Precipitation altitude gradient	[1/100 m]
2	66	1.500	CBRE	Melt increase on glacier ice	[1]
2	67	0.000	EP	EP(1), Pot evapotranspiration, Jan	[mm/day] or [1]
2	68	0.000	EP	EP(2), Pot evapotranspiration, Feb	[mm/day] or [1]
2	69	0.000	EP	EP(3)	[mm/ddy] Of [f]
2	70	0.000	EP	EP(4)	
2	70		EP		
2		1.800		EP(5)	
	72	2.200	EP	EP(6)	
2	73	1.700	EP	EP(7)	
2	74	1.500	EP	EP(8)	
2	75	1.100	EP	EP(9)	
2	76	0.000	EP	EP(10)	
2	77	0.000	EP	EP(11)	
2	78	0.000	EP	EP(12)), Pot evapotranspiration, Dec	[mm/day] or [1]
2	79	178.94270000	FC	Maximum soil water content	[mm]
2	80	0.7	LPDEL	Pot.evapotr when content = FC*FCDEL	[1]
2	81	1.0000000000	BETA	Non-linearity in soil water zone	[1]
2	82	100	INFMAX	Maximum infiltration capacity	[mm/day]
					-
2	85	.34628370000	KUZ2	Quick time constant upper zone	[1/day]
2	86	32.249500000	UZ1	Threshold quick runoff	[mm]
2		.17374020000	KUZ1	Slow time constant upper zone	[1/day]
2		1.4784350000	PERC	Percolation to lower zone	[mm/day]
2		.02725408300	KLZ	Time constant lower zone	[1/day]
2	90	0.00	ROUT	(1), Routing constant (lake area, km2	
2	91	0.00	ROUT	(2), Routing constant (rating curve of	
2	92	0.00	ROUT	(3), Routing constant (rating curve z	
2	93			(4), Routing constant (rating curve e	
2		0.00	ROUT		
	94	0.00	ROUT	(5), Routing constant (drained area 1	Tallo)
2	95	0.00	DECAY	(1), Feedback constant	
2	96	0.00	DECAY	(2), Feedback constant	
2	97	0.00	DECAY	(3), Feedback constant	
2	98	0.17	CE	Evapotranspiration constant	[mm/deg/day]
2	99	0.3	DRAW	"draw up" constant	[mm/day]
2	100	60.4	LAT	Latitude	[deg]
2	101	-0.6	TGRAD(1)	Temperature gradient Jan	[deg/100m]
2	102	-0.6	TGRAD(2)	Temperature gradient Feb	[deg/100m]
2	103	-0.6	TGRAD(3)	Temperature gradient Mar	[deg/100m]
2	104	-0.6	TGRAD(4)	Temperature gradient Apr	[deg/100m]
2	105	-0.6	TGRAD(5)	Temperature gradient May	[deg/100m]
2	106	-0.6	TGRAD(6)	Temperature gradient Jun	[deg/100m]
2	107	-0.6	TGRAD(7)	Temperature gradient Jul	[deg/100m]
2	108	-0.6	TGRAD(8)	Temperature gradient Aug	[deg/100m]
2	109	-0.6	TGRAD(9)	Temperature gradient Sep	[deg/100m]
2	110	-0.6		Temperature gradient Oct	[deg/100m]
2	111	-0.6		Temperature gradient Nov	[deg/100m]
2	112	-0.6		Temperature gradient Dec	[deg/100m]
2	113	20.0	SPDIST	Uniformly distributed snow acc	[mm]
2	114	110.0	SMINI	Inital soil moisture content	[mm]
2	115	100.0	UZINI	Initial upper zone content	[mm]
2	116	110.0	LZINI	Initial lower zone content	[mm]
2	121	2		Vegetation type 1, zone 1	[11:01:1]
2	121	1		l) Vegetation type 2, zone 1	
2					[1]
	123	0.33	VEGA(1)	Vegetation 2 area, zone 1	[1]
2	124	0.110	LAKE(1)	Lake area, zone 1	[1]
2	125	2		2) Vegetation type 1, zone 2	
2	126	1		2) Vegetation type 2, zone 2	
2	127	0.17) Vegetation 2 area, zone 2	[1]
2	128	0.030	LAKE(2)	Lake area, zone 2	[1]
2	129	2		3) Vegetation type 1, zone 3	
2	130	1		3) Vegetation type 2, zone 3	
2	131	0.20		Vegetation 2 area, zone 3	[1]
2	132	0.000	LAKE(3)	Lake area, zone 3	[1]
2	133	2	VEGT(1,4	4) Vegetation type 1, zone 4	
2	134	1	VEGT(2,4	4) Vegetation type 2, zone 4	
2	135	0.40	VEGA (4)) Vegetation 2 area, zone 4	[1]
2	136	0.010	LAKE(4)	Lake area, zone 4	[1]
2	137	1		5) Vegetation type 1, zone 5	

Norges vassdrags- og energidirektorat, august 2005

2	138	2	VEGT(2,5) Vegetation type 2, zone 5	
2	139	0.34	VEGA(5) Vegetation 2 area, zone 5	[1]
2	140	0.000	LAKE(5) Lake area, zone 5	[1]
2	141	1	VEGT(1,6) Vegetation type 1, zone 6	
2	142	2	VEGT(2,6) Vegetation type 2, zone 6	
2	143	0.14	VEGA(6) Vegetation 2 area, zone 6	[1]
2	144	0.010	LAKE(6) Lake area, zone 6	[1]
2	145	1	VEGT(1,7) Vegetation type 1, zone 7	
2	146	2	VEGT(2,7) Vegetation type 2, zone 7	
2	147	0.020	VEGA(7) Vegetation 2 area, zone 7	[1]
2	148	0.010	LAKE(7) Lake area, zone 7	[1]
2	149	1	<pre>VEGT(1,8) Vegetation type 1, zone 8</pre>	
2	150	0	VEGT(2,8) Vegetation type 2, zone 8	
2	151	0.0	<pre>VEGA(8) Vegetation 2 area, zone 8</pre>	[1]
2	152	0.040	LAKE(8) Lake area, zone 8	[1]
2	153	1	VEGT(1,9) Vegetation type 1, zone 9	
2	154	0	VEGT(2,9) Vegetation type 2, zone 9	
2	155	0.0	VEGA(9) Vegetation 2 area, zone 9	[1]
2	156	0.010	LAKE(9) Lake area, zone 9	[1]
2	157	1	VEGT(1,10) Vegetation type 1, zone 10	
2	158	0	<pre>VEGT(2,10) Vegetation type 2, zone 10</pre>	
2	159	0.0	<pre>VEGA(10) Vegetation 2 area, zone 10</pre>	[1]
2	160	0.030	LAKE(10) Lake area, zone 10	[1]
FINI	S			

vegtype.dat file:

Туре	no	ICMAX	CXREL	TSDIFF	CVSNOW	FCREL	LPDEL	EPVAR
Mountain	1	.10000	1.2129	.75462	0.5	.59459	1.0000	0.5
Forest	2	1.5406	1.1043	4065	0.3	1.4922	1.0000	1.0
Shrub	3	1.0000	1.0000	0.0000	0.4	.80000	.70000	0.8
Rock	4	.05000	1.0000	0.0000	0.5	.20000	1.0000	0.1
Meadows	5	.10000	1.0000	0.0000	0.3	.50000	.80000	1.0

param.dat file and vegtype.dat file for Knappom

param.dat file:

```
START 1knappom
                         PNO
                                    Number of precipitation stations
 2
       0
                    2
 2
       0
                         PID1
                                    Identification for precip station 1
         Rena
 2
       0
                240.
                         PHOH1
                                    Altitude precip station 1
 2
       0.43553110000
                         PWGT1
                                    Weight precipitation station 1
 2
                          PID2
       0
         Flisa
 2
       0
                185.
                          PHOH2
 2
       0.59237110000
                          PWGT2
                                    Number of temperature stations
 2
       0
                    2
                         TNO
 2
                          TID1
                                    Identification for temp station 1
       0 Rena
 2
       0
                240.
                          THOH1
                                    Altitude temp station 1
 2
       0.17269620000
                         TWGT1
                                    Weight temp station 1
 2
                         TTD2
                                    Identification for temp station \ensuremath{\mathbf{2}}
       0 Flisa
 2
       0
                185.
                         THOH2
                                    Altitude temp station 2
       0.49410490000
 2
                         TWGT2
                                    Weight temp station 2
 2
                                    Number of discharge stations
       0
                         ONO
                    1
                         OID
 2
                                    Identification for discharge station
       0
         Knappom
                          QWGT
 2
                  1.0
       0
                                    Scaling factor for discharge
 2
       0
              1625.0
                          AREAL
                                     Catchment area
                                                                            [km2]
 2
       4
               0.000
                         MAGDEL
                                   Regulation reservoirs
                                                                           [1]
                         HYPSO ( 1,1), low point
 2
       5
              180.000
                                                                [m]
 2
       6
              271.000
                         HYPSO ( 2,1)
 2
              310.000
                         HYPSO ( 3,1)
       7
 2
       8
              340.000
                         HYPSO ( 4,1)
 2
                         HYPSO ( 5,1)
       9
              376.000
 2
      10
              411.000
                         HYPSO ( 6,1)
 2
      11
              444.000
                         HYPSO ( 7,1)
 2
              479.000
      12
                         HYPSO ( 8,1)
 2
      13
              511.000
                         HYPSO (9,1)
 2
              555.000
                         HYPSO (10,1)
      14
 2
      15
              780.000
                         HYPSO (11,1), high point
 2
               0.000
                         HYPSO (1,2), Part of total area below HYPSO (1,1) = 0
      16
 2
      17
               0.100
                         HYPSO (2,2)
                0.200
                         HYPSO ( 3,2)
 2
      18
 2
      19
                0.300
                         HYPSO ( 4,2)
 2
      2.0
                0.400
                         HYPSO ( 5,2)
 2
      21
                0.500
                         HYPSO ( 6,2)
 2
                0.600
                         HYPSO ( 7,2)
      22
                0.700
 2
      23
                         HYPSO ( 8,2)
                         HYPSO ( 9,2)
 2
      24
                0.800
 2
      25
                0.900
                         HYPSO (10,2)
 2
      26
                1.000
                         HYPSO (11, 2), Part of total area below HYPSO (11, 1) = 1
 2
      27
                0.000
                         BREPRO(1), Glacier area, part of total area, below HYPSO(1,1)
(=0.0)
 2
      37
                0.000
                         BREPRO(11), Glacier area, part of total area, below HYPSO(11,1)
 2
      38
                                    Day no for conversion of glacier snow to ice
              270.000
                         NDAG
 2
      39
      40 .08566936100
                                                                                    [C]
 2
                         ТΧ
                                    Threshold temperature for snow/ice
 2
      41 1.4682300000
                         ΤS
                                    Threshold temperature fo no melt
                                                                                    [C]
 2
      42 3.1161500000
                         СХ
                                    Melt index
                                                                               [mm/deg/day]
                                    Refreeze efficiency
 2
      43
                0.02
                         CFR
                                                                                    [1]
 2
      44
                0.08
                         T.V
                                    Max rel. water content in snow
                                                                                    [1]
      45 1.3768970000
 2
                         PKORR
                                    Precipitaion correction for rain
                                                                                    [1]
 2
      46 1.000000000
                          SKORR
                                    Additional precipitation corection for snow at gauge [1]
 2
      47
                         GRADALT
                                    Altitude for change in prec. grad.
                                                                                    [m]
 2
      48
                                    Precipitation gradient above GRADALT
                         PGRAD1
                                                                                    [1]
                0.02
 2
      49
                         CALB
                                    Ageing factor for albedo
                                                                                [1/day]
                0.33
 2
      50
                         CRAD
                                    Radiation melt component
                                                                                    [1]
 2
      51
                0.33
                         CONV
                                    Convection melt component
                                                                                    [1]
 2
      52
                0.33
                         COND
                                    Condensation melt component
                                                                                    [1]
 2
                                    Lake evapotranspiration adjustment fact
      60
                1.1
                         CEVPL
                                                                                    [1]
 2
      61
                 0.5
                         ERED
                                    Evapotranspiration red. during interception
                                                                                    [1]
 2
      62
                30.0
                          ICEDAY
                                    Lake temperature time constant
                                                                                    [d]
 2
      63 -.8539126000
                         TTGRAD
                                    Temperature gradient for days without precip [deg/100 m]
 2
      64 - 3962217000
                         TVGRAD
                                    Temperature gradient for days with precip
                                                                                   [deg/100 m]
 2
      65 2.400000E-4
                         PGRAD
                                    Precipitation altitude gradient
                                                                                   [1/100 m]
 2
      66
                1.500
                         CBRE
                                    Melt increase on glacier ice
                                                                                    [1]
                                    EP(1), Pot evapotranspiration, Jan
                                                                            [mm/day] or [1]
 2
      67
                0.100
                         ΕP
 2
      68
                0.200
                         ΕP
                                    EP( 2), Pot evapotranspiration, Feb
                                                                             [mm/day] or [1]
                0.300
 2
      69
                         ΕP
                                    EP( 3)
 2
      70
                0.800
                         ΕP
                                    EP( 4)
```

2	71	1.500	EP	EP(5)	
2	72	2.800	EP	EP(6)	
2	73	2.800	EP	EP(7)	
2	74	2.300	EP	EP(8)	
2	75	1.500	EP	EP(9)	
2	76	0.700	EP	EP(10)	
2	77	0.200	EP	EP(11)	
2	78	0.100	EP	EP(12)), Pot evapotranspiration, Dec	_
2		272.0400000	FC	Maximum soil water content	[mm]
2	80	1.0	FCDEL	Pot.evapotr when content = FC*FCDEL	[1]
2		1.3865770000	BETA	Non-linearity in soil water zone	[1]
2	82	100.00	INFMAX	Maximum infiltration capacity	[mm/day]
2	0 5	25005400000	12110 0	Ouish time constant unner see	[1/]
2 2		.25095400000	KUZ2	Quick time constant upper zone Threshold quick runoff	[1/day]
2		31.287480000 .05001002200	UZ1 KUZ1	Slow time constant upper zone	[mm] [1/day]
2		.93933140000	PERC	Percolation to lower zone	[mm/day]
2		.01164802800	KLZ	Time constant lower zone	[1/day]
2	90	0.00	ROUT	(1), Routing constant (lake area, km	-
2	91	0.00	ROUT	(2), Routing constant (rating curve	
2	92	0.00	ROUT	(3), Routing constant (rating curve	
2	93	0.00	ROUT	(4), Routing constant (rating curve	
2	94	0.00	ROUT	(5), Routing constant (drained area	÷ ·
2	95	0.00	DECAY	(1), Feedback constant	
2	96	0.00	DECAY	(2), Feedback constant	
2	97	0.00	DECAY	(3), Feedback constant	
2	98	0.17	CE	Evapotranspiration constant	[mm/deg/day]
2	99	0.5	DRAW	"draw up" constant	[mm/day]
2	100	61	LAT	Latitude	[deg]
2	101	-0.6	TGRAD(1)	Temperature gradient Jan	[deg/100m]
2	102	-0.6	TGRAD(2)	Temperature gradient Feb	[deg/100m]
2	103	-0.6	TGRAD(3)	Temperature gradient Mar	[deg/100m]
2	104	-0.6	TGRAD(4)	Temperature gradient Apr	[deg/100m]
2	105	-0.6	TGRAD(5)	Temperature gradient May	[deg/100m]
2	106	-0.6	TGRAD(6)	Temperature gradient Jun	[deg/100m]
2 2	107 108	-0.6 -0.6	TGRAD(7)	Temperature gradient Jul Temperature gradient Aug	[deg/100m] [deg/100m]
2	100	-0.8	TGRAD(8) TGRAD(9)	Temperature gradient Sep	[deg/100m]
2	110	-0.6	TGRAD(9)		[deg/100m]
2	111	-0.6	TGRAD (10)		[deg/100m]
2	112	-0.6		Temperature gradient Dec	[deg/100m]
2	113	20.0	SPDIST	Uniformly distributed snow acc	[mm]
2	114	5.0	SMINI	Inital soil moisture content	[mm]
2	115	0.0	UZINI	Initial upper zone content	[mm]
2	116	5.0	LZINI	Initial lower zone content	[mm]
2	121	2	VEGT(1,1)	Vegetation type 1, zone 1	
2	122	5	VEGT(2,1)	Vegetation type 2, zone 1	
2	123	0.33	VEGA(1)	Vegetation 2 area, zone 1	[1]
2	124	0.02		Lake area, zone 1	[1]
2	125	2		Vegetation type 1, zone 2	
2 2	126	5 0.16		Vegetation type 2, zone 2	[1]
	127			Vegetation 2 area, zone 2	[1]
2 2	128 129	0.05		Lake area, zone 2 Vegetation type 1, zone 3	[1]
2	130	5		Vegetation type 2, zone 3	
2	131	0.19		Vegetation 2 area, zone 3	[1]
2	132	0.02		Lake area, zone 3	[1]
2	133	2		Vegetation type 1, zone 4	
2	134	5		Vegetation type 2, zone 4	
2	135	0.17	VEGA(4)	Vegetation 2 area, zone 4	[1]
2	136	0.00	LAKE(4)	Lake area, zone 4	[1]
2	137	2	VEGT(1,5)	Vegetation type 1, zone 5	
2	138	5	VEGT(2,5)	Vegetation type 2, zone 5	
2	139	0.21		Vegetation 2 area, zone 5	[1]
2	140	0.01		Lake area, zone 5	[1]
2	141	2		Vegetation type 1, zone 6	
2	142	5		Vegetation type 2, zone 6	[1]
2	143	0.20		Vegetation 2 area, zone 6	[1]
2	144	0.00		Lake area, zone 6	[1]
2 2	145 146	5		Vegetation type 1, zone 7 Vegetation type 2, zone 7	
2	140	0.27		Vegetation 2 area, zone 7 Vegetation 2 area, zone 7	[1]
2	148	0.27		Lake area, zone 7	[1]
2	149	2		Vegetation type 1, zone 8	
2	150	5		Vegetation type 2, zone 8	
2	151	0.29		Vegetation 2 area, zone 8	[1]
2	152	0.00		Lake area, zone 8	[1]

Norges vassdrags- og energidirektorat, august 2005

	153	2	VEGT(1,9) Vegetation type 1, zone 9	
2	154	5	<pre>VEGT(2,9) Vegetation type 2, zone 9</pre>	
2	155	0.31	VEGA(9) Vegetation 2 area, zone 9	[1]
2	156	0.00	LAKE(9) Lake area, zone 9	[1]
2	157	2	<pre>VEGT(1,10) Vegetation type 1, zone 10</pre>	
2	158	5	<pre>VEGT(2,10) Vegetation type 2, zone 10</pre>	
2	159	0.32	VEGA(10) Vegetation 2 area, zone 10	[1]
2	160	0.00	LAKE(10) Lake area, zone 10	[1]
FINI	SH			

vegtype.dat file:

Туре	no	ICMAX	CXREL	TSDIFF	CVSNOW	FCREL	LPDEL	EPVAR
Mountain	1	.10000	1.0000	0.0000	0.5	.50000	.80000	0.5
Forest	2	2.5000	.84479	-1.526	0.3	3.0000	1.0000	1.0
Shrub	3	1.0000	1.0000	0.0000	0.4	.80000	.70000	0.8
Rock	4	.10000	1.0000	0.0000	0.5	.20000	1.0000	0.1
Meadows	5	.10000	1.2113	.22514	0.3	.28057	.99500	1.0

param.dat file and vegtype.dat file for Engeren

param.dat file:

```
START lengeren
                         PNO
                                    Number of precipitation stations
 2
       0
                    3
 2
                          PID1
                                    Identification for precip station 1
       0
         Drevsjø
 2
       0
               672.
                          PHOH1
                                    Altitude precip station 1
       0.19675400000
 2
                          PWGT1
                                    Weight precipitation station 1
 2
                          PID2
       0 Heggeriset
 2
       0
               481.
                          PHOH2
 2
       0.55309810000
                          PWGT2
                                    Identification for precip station 3
 2
       0 Gløtvola
                          PID3
 2
               696.
                          рнон3
                                 Altitude precip station 3
       0

    PWGH3
    Weight precipitation s

    TNO
    Number of temperature

    TID1
    Identification for tem

    THOH1
    Altitude temp station

    TWGT1
    Weight temp station 1

 2
       0.26935640000
                                    Weight precipitation station 3
 2
                                    Number of temperature stations
       0
                   1
 2
       0 Drevsjø
                                    Identification for temp station 1
 2
       0
                672.
                                    Altitude temp station 1
 2
       0
                 1.0
                   1
                         QNO
QID
 2
                                    Number of discharge stations
       0
                                    Identification for discharge station
 2
       0 Engeren
                   1.
                          QWGT
                                 Scaling factor for discharge
 2
       0
 2
       0
              400.0
                         AREAL
                                    Catchment area
                                                                            [km2]
               0.000
                         MAGDEL Regulation reservoirs
 2
      4
                                                                            [1]
                         HYPSO ( 1,1), low point
 2
      5
              472,000
                                                                [m]
 2
       6
              579.000
                          HYPSO ( 2,1)
 2
              692.000
                          HYPSO ( 3,1)
      7
 2
      8
              765.000
                          HYPSO (4,1)
 2
             806.000
                         HYPSO ( 5,1)
       9
             832.000
                         HYPSO ( 6,1)
 2
     10
 2
      11
             866.000
                         HYPSO ( 7,1)
             906.000
 2
     12
                         HYPSO ( 8,1)
 2
      13
              952.000
                         HYPSO ( 9,1)
 2
                         HYPSO (10,1)
            1012.000
     14
 2
     15
           1139.000
                         HYPSO (11,1), high point
            0.000
0.100
 2
                          HYPSO (1,2), Part of total area below HYPSO (1,1) = 0
      16
 2
      17
                         HYPSO ( 2,2)
               0.200
0.300
                         HYPSO ( 3,2)
 2
      18
 2
      19
                         HYPSO ( 4,2)
 2
      2.0
               0.400
                         HYPSO ( 5,2)
 2
      21
                0.500
                          HYPSO ( 6,2)
 2
               0.600
                         HYPSO ( 7,2)
      22
               0.700
                         HYPSO ( 8,2)
 2
      23
                          HYPSO ( 9,2)
 2
      24
                0.800
 2
      25
               0.900
                          HYPSO (10,2)
                          HYPSO (11, 2), Part of total area below HYPSO (11, 1) = 1
 2
      26
                1.000
 2
      27
                0.000
                         BREPRO(1), Glacier area, part of total area, below HYPSO(1,1)
(=0.0)
 2
      37
               0.000
                          BREPRO(2), Glacier area, part of total area, below HYPSO(2,1)
 2
      37
              0.000
                         BREPRO(3), Glacier area, part of total area, below HYPSO(3,1)
                0.000
 2
      37
                          BREPRO(4), Glacier area, part of total area, below HYPSO(4,1)
 2
      37
               0.000
                          BREPRO(5), Glacier area, part of total area, below HYPSO(5,1)
 2
      37
               0.000
                          BREPRO(6), Glacier area, part of total area, below HYPSO(6,1)
 2
      37
                0.000
                          BREPRO(7), Glacier area, part of total area, below HYPSO(7,1)
 2
      37
                0.000
                          BREPRO(8), Glacier area, part of total area, below HYPSO(8,1)
                0.000
                          BREPRO(9), Glacier area, part of total area, below HYPSO(9,1)
 2
      37
 2
     37
                0.000
                         BREPRO(10), Glacier area, part of total area, below HYPSO(10,1)
 2
      37
                0.000
                         BREPRO(11), Glacier area, part of total area, below HYPSO(11,1)
 2
     38
 2
      39
              270.000
                          NDAG
                                    Day no for conversion of glacier snow to ice
 2
      40 .96422240000
                          TΧ
                                                                                     [C]
                                    Threshold temperature for snow/ice
      41 .11047680000
 2
                          ТS
                                    Threshold temperature fo no melt
                                                                                     [C]
 2
      42 4.8042720000
                          СХ
                                    Melt index
                                                                                [mm/deg/day]
 2
      43
               0.01
                          CFR
                                    Refreeze efficiency
                                                                                     [1]
 2
      44
                0.06
                          LV
                                    Max rel. water content in snow
                                                                                     [1]
 2
      45 1.2795450000
                          PKORR
                                    Precipitaion correction for rain
                                                                                     [1]
 2
      46 1.1643520000
                          SKORR
                                    Additional precipitation corection for snow at gauge [1]
 2
                          GRADALT
      47
                                    Altitude for change in prec. grad.
                                                                                     [m]
 2
     48
                          PGRAD1
                                    Precipitation gradient above GRADALT
                                                                                     [1]
 2
      49
               0.02
                          CALB
                                    Ageing factor for albedo
                                                                                 [1/day]
 2
      50
                0.33
                          CRAD
                                    Radiation melt component
                                                                                     [1]
 2
      51
                0.33
                          CONV
                                    Convection melt component
                                                                                     [1]
                          COND
 2
      52
                0.33
                                    Condensation melt component
                                                                                     [1]
 2
      60
                 1.1
                          CEVPL
                                    Lake evapotranspiration adjustment fact
                                                                                     [1]
```

		o =			
2	61	0.5	ERED	Evapotranspiration red. during inter	-
2	62	30.0	ICEDAY	Lake temperature time constant	[d]
2		6000000000	TTGRAD	Temperature gradient for days without	ut precip [deg/100 m]
2	64	5509499000	TVGRAD	Temperature gradient for days with p	precip [deg/100 m]
2	65	.03226876100	PGRAD	Precipitation altitude gradient	[1/100 m]
2	66	1.500	CBRE	Melt increase on glacier ice	[1]
2	67	0.000	EP	EP(1), Pot evapotranspiration, Jan	[mm/day] or [1]
2	68	0.000	EP	EP(2), Pot evapotranspiration, Feb	[mm/day] or [1]
2	69	0.000	EP	EP(3)	
2	70	0.000	EP	EP(4)	
2	71	1.900	EP	EP(5)	
2	72	2.300	EP		
				EP(6)	
2	73	2.100	EP	EP(7)	
2	74	1.900	EP	EP(8)	
2	75	1.200	EP	EP(9)	
2	76	0.000	EP	EP(10)	
2	77	0.000	EP	EP(11)	
2	78	0.000	EP	EP(12)), Pot evapotranspiration, Dec	c [mm/day] or [1]
2	79	108.70380000	FC	Maximum soil water content	[mm]
2	80	0.7	FCDEL	Pot.evapotr when content = FC*FCDEL	[1]
2		1.2480900000	BETA	Non-linearity in soil water zone	[1]
2	82	100.00	INFMAX	Maximum infiltration capacity	[mm/day]
2	02	100.00	110111111	Haniman Infiliteración capacity	[mm, ady]
2	0 5	.15039260000	21120	Quick time constant uncer	[1/day]
2			KUZ2	Quick time constant upper zone	[1/day]
		100.0000000	UZ1	Threshold quick runoff	[mm]
2		.02704992600	KUZ1	Slow time constant upper zone	[1/day]
2		.75514810000	PERC	Percolation to lower zone	[mm/day]
2	89	.00464031350	KLZ	Time constant lower zone	[1/day]
2	90	0.00	ROUT	(1), Routing constant (lake area, kr	n2)
2	91	0.00	ROUT	(2), Routing constant (rating curve	const)
2	92	0.00	ROUT	(3), Routing constant (rating curve	
2	93	0.00	ROUT	(4), Routing constant (rating curve	
2	94	0.00	ROUT	(5), Routing constant (drained area	
2	95	0.00	DECAY	(1), Feedback constant	14010)
2	96			(2), Feedback constant	
		0.00	DECAY		
2	97	0.00	DECAY	(3), Feedback constant	
2	98	0.17	CE	Evapotranspiration constant	[mm/deg/day]
2	99	0.3	DRAW	"draw up" constant	[mm/day]
2	100	61.7	LAT	Latitude	[deg]
2	101	-0.6	TGRAD(1)	Temperature gradient Jan	[deg/100m]
2	102	-0.6	TGRAD(2)	Temperature gradient Feb	[deg/100m]
2	103	-0.6	TGRAD(3)	Temperature gradient Mar	[deg/100m]
2	104	-0.6	TGRAD(4)	Temperature gradient Apr	[deg/100m]
2	105	-0.6	TGRAD(5)	Temperature gradient May	[deg/100m]
2	106	-0.6	TGRAD(6)	Temperature gradient Jun	[deg/100m]
2	107	-0.6		Temperature gradient Jul	[deg/100m]
			TGRAD(7)		
2	108	-0.6	TGRAD(8)	Temperature gradient Aug	[deg/100m]
2	109	-0.6	TGRAD(9)	Temperature gradient Sep	[deg/100m]
2	110	-0.6	TGRAD(10)	Temperature gradient Oct	[deg/100m]
2	111	-0.6	TGRAD(11)	Temperature gradient Nov	[deg/100m]
2	112	-0.6	TGRAD(12)	Temperature gradient Dec	[deg/100m]
2	113	20.0	SPDIST	Uniformly distributed snow acc	[mm]
2	114	70.0	SMINI	Inital soil moisture content	[mm]
2	115	30.0	UZINI	Initial upper zone content	[mm]
2	116	70.0	LZINI	Initial lower zone content	[mm]
2	121	2		Vegetation type 1, zone 1	
2	122	0		Vegetation type 2, zone 1	
2	123	0.0		Vegetation 2 area, zone 1	[1]
				-	
2	124	0.036		Lake area, zone 1	[1]
2	125	2		Vegetation type 1, zone 2	
2	126	0		Vegetation type 2, zone 2	
2	127	0.0		Vegetation 2 area, zone 2	[1]
2	128	0.036		Lake area, zone 2	[1]
2	129	2	VEGT(1,3)	Vegetation type 1, zone 3	
2	130	0	VEGT(2,3)	Vegetation type 2, zone 3	
2	131	0.0		Vegetation 2 area, zone 3	[1]
2	132	0.036		Lake area, zone 3	[1]
2	133	2		Vegetation type 1, zone 4	
2	134	0		Vegetation type 2, zone 4	
2	135	0.0		Vegetation 2 area, zone 4	[1]
2	135				
		0.036			[1]
2	137	2		Vegetation type 1, zone 5	
2	138	0		Vegetation type 2, zone 5	
2	139	0.0		Vegetation 2 area, zone 5	[1]
2	140	0.036		Lake area, zone 5	[1]
2	141	2		Vegetation type 1, zone 6	
2	142	0	VEGT(2,6)	Vegetation type 2, zone 6	

Norges vassdrags- og energidirektorat, august 2005

2	1 4 0	0 0		We we to this of a week		C	r 1 1
2	143	0.0	. ,	Vegetation 2 area,			[1]
2	144	0.036	LAKE(6)	Lake area,	zone	6	[1]
2	145	2	VEGT(1,7)	Vegetation type 1,	zone	7	
2	146	0	VEGT(2,7)	Vegetation type 2,	zone	7	
2	147	0.0	VEGA(7)	Vegetation 2 area,	zone	7	[1]
2	148	0.036	LAKE(7)	Lake area,	zone	7	[1]
2	149	2	VEGT(1,8)	Vegetation type 1,	zone	8	
2	150	0	VEGT(2,8)	Vegetation type 2,	zone	8	
2	151	0.0	VEGA(8)	Vegetation 2 area,	zone	8	[1]
2	152	0.036	LAKE(8)	Lake area,	zone	8	[1]
2	153	5	VEGT(1,9)	Vegetation type 1,	zone	9	
2	154	0	VEGT(2,9)	Vegetation type 2,	zone	9	
2	155	0.0	VEGA(9)	Vegetation 2 area,	zone	9	[1]
2	156	0.036	LAKE(9)	Lake area,	zone	9	[1]
2	157	5	VEGT(1,10)	Vegetation type 1,	zone	e 10	
2	158	0	VEGT(2,10)	Vegetation type 2,	zone	e 10	
2	159	0.0	VEGA(10)	Vegetation 2 area,	zone	e 10	[1]
2	160	0.036	LAKE (10)	Lake area,	zone	e 10	[1]
FINI	SH						

vegtype.dat file:

Туре	no	ICMAX	CXREL	TSDIFF	CVSNOW	FCREL	LPDEL	EPVAR
Mountain	1	.10000	1.0000	0.0000	0.5	.50000	.80000	0.5
Forest	2	1.9908	.68595	.35658	0.3	.99690	.62449	1.0
Shrub	3	1.0000	1.0000	0.0000	0.4	.80000	.70000	0.8
Rock	4	.10000	1.0000	0.0000	0.5	.20000	1.0000	0.1
Meadows	5	.10000	1.0241	0894	0.3	.49416	.82390	1.0

Appendix B

param.dat file and vegtype.dat file for Kempten

param.dat file:

START	1 k	empten	
2	0	5	PNO Number of precipitation stations
2	0	Kempten	PID1 Identification for precip station 1
2	0	705.	PHOH1 Altitude precip station 1
2		.06811859200	PWGT1 Weight precipitation station 1
2		Isny	PID2 Identification for precip station 2
2		712.	PHOH2 Altitude precip station 2
2 2	0	.23106430000 Oberstaufen	PWGT2 Weight precipitation station 2 PID3 Identification for precip station 3
2	0	800.	PHOH3 Altitude precip station 3
2		.13080720000	PWGT3 Weight precipitation station 3
2		Hindelang	PID4 Identification for precip station 4
2	0	1053.	PHOH4 Altitude precip station 4
2	0	.20622590000	PWGT4 Weight precipitation station 4
2		Oberstdorf	PID5 Identification for precip station 5
2	0	806.	PHOH5 Altitude precip station 5
2		.57031560000	PWGT5 Weight precipitation station 5
2 2	0 0	Vernten 5	TNO Number of temperature stations
2	0	Kempten 705.	TID1 Identification for temp station 1 THOH1 Altitude temp station 1
2		.16558520000	TWGT1 Weight temp station 1
2		Isny	TID2 Identification for temp station 2
2	0	712.	THOH2 Altitude temp station 2
2	0	.14414690000	TWGT2 Weight temp station 2
2	0	Oberstaufen	TID3 Identification for temp station 3
2	0	800.	THOH3 Altitude temp station 3
2		.77379380000	TWGT3 Weight temp station 3
2 2	0	Hindelang	TID4 Identification for temp station 4 THOH4 Altitude temp station 4
2	0	1053. .19871250000	THOH4 Altitude temp station 4 TWGT4 Weight temp station 4
2	0	Oberstdorf	TID5 Identification for temp station 5
2	Õ	806.	THOH5 Altitude temp station 5
2	0		TWGT5 Weight temp station 5
2	0	1	QNO Number of discharge stations
2	0	Kempten	QID Identification for discharge station
2	0	1.	QWGT Scaling factor for discharge
2 2	0	948	AREAL Catchment area [km2]
2	4 5	0.000 658.000	MAGDEL Regulation reservoirs [1] HYPSO (1,1), low point [m]
2	6	731.000	HYPSO (2,1)
2	7	796.000	HYPSO (3,1)
2	8	866.000	HYPSO $(4,1)$
2	9	954.000	HYPSO (5,1)
2	10	1085.000	HYPSO (6,1)
2	11	1224.000	HYPSO (7,1)
2	12	1372.000	HYPSO (8,1)
2 2	13 14	1546.000 1782.000	HYPSO (9,1) HYPSO (10,1)
2	15	2639.000	HYPSO (11,1), high point
2	16	0.000	HYPSO $(1,2)$, Part of total area below HYPSO $(1,1) = 0$
2	17	0.100	HYPSO (2,2)
2	18	0.200	HYPSO (3,2)
2	19	0.300	HYPSO (4,2)
2	20	0.400	HYPSO (5,2)
2	21	0.500	HYPSO (6,2)
2 2	22 23	0.600 0.700	HYPSO (7,2)
2	23 24	0.800	HYPSO (8,2) HYPSO (9,2)
2	25	0.900	HYPSO (10,2)
2	26	1.000	HYPSO $(11,2)$, Part of total area below HYPSO $(11,1) = 1$
2	27	0.000	BREPRO(1), Glacier area, part of total area, below HYPSO(1,1)
(=0.0)			
2	37	0.000	BREPRO(2), Glacier area, part of total area, below HYPSO(2,1)
2	37	0.000	BREPRO(3), Glacier area, part of total area, below HYPSO(3,1)
2 2	37 37	0.000	BREPRO(4), Glacier area, part of total area, below HYPSO(4,1) BREPRO(5), Glacier area, part of total area, below HYPSO(5,1)
2	37 37	0.000 0.000	BREPRO(5), Glacier area, part of total area, below HYPSO(5,1) BREPRO(6), Glacier area, part of total area, below HYPSO(6,1)
2	51	0.000	Dibino (0,) oracier area, part or total area, below mrb0(0,1)

2	37	0.000), Glacier area, part of total area, b	
2 2	37 37	0.000 0.000), Glacier area, part of total area, }), Glacier area, part of total area, }	
2	37	0.020		0), Glacier area, part of total area, 0), Glacier area, part of total area,	
2 2	37 38	0.030	BREPRO(1	1), Glacier area, part of total area,	below HYPSO(11,1)
2	30 39	270.000	NDAG	Day no for conversion of glacier snow	v to ice
2		.96637180000	TX	Threshold temperature for snow/rain	[C]
2	41	1091748000	TS	Threshold temperature fo no melt	[C]
2		2.000000000	CX	Melt index	[mm/deg/day]
2	43	0.05	CFR	Refreeze efficiency	[1]
2 2	44	0.08	LV	Max rel. water content in snow	[1]
2		1.1660660000 1.0020430000	PKORR SKORR	Precipitaion correction for rain Additional precipitation corection for	[1] anus te wors ro
2	47	1.0020430000	GRADALT	Altitude for change in prec. grad.	[m]
2	48		PGRAD1	Precipitation gradient above GRADALT	[1]
2	49	0.02	CALB	Ageing factor for albedo	[1/day]
2	50	0.33	CRAD	Radiation melt component	[1]
2 2	51	0.33 0.33	CONV	Convection melt component	[1]
2	52 60	1.1	COND CEVPL	Condensation melt component Lake evapotranspiration adjustment fa	[1] act [1]
2	61	0.5	ERED	Evapotranspiration red. during interc	
2	62	30.0	ICEDAY	Lake temperature time constant	[d]
2		6018555000	TTGRAD	Temperature gradient for days without	
2		5493348000	TVGRAD	Temperature gradient for days with p	
2	65 66	0.000000000	PGRAD	Precipitation altitude gradient	[1/100 m]
2 2	60 67	1.500 0.100	CBRE EP	Melt increase on glacier ice EP(1), Pot evapotranspiration, Jan	[1] [mm/day] or [1]
2	68	0.200	EP	EP(2), Pot evapotranspiration, Feb	[mm/day] or [1]
2	69	0.300	EP	EP(3)	
2	70	0.800	EP	EP(4)	
2	71	1.500	EP	EP(5)	
2 2	72 73	2.800	EP	EP(6)	
2	74	2.800 2.300	EP EP	EP(7) EP(8)	
2	75	1.500	EP	EP(9)	
2	76	0.700	EP	EP(10)	
2	77	0.200	EP	EP(11)	
2	78	0.100	EP	EP(12)), Pot evapotranspiration, Dec	_
2 2	79 80	178.22500000 0.7	FC LPDEL	Maximum soil water content	[mm]
2		1.9180900000	BETA	Pot.evapotr when content = FC*FCDEL Non-linearity in soil water zone	[1] [1]
2	82	100	INFMAX	Maximum infiltration capacity	[mm/day]
2	05	.58490770000	KUZ2	Quick time constant upper zone	[1/dav]
2		28.370610000	UZ1	Threshold quick runoff	[1/day] [mm]
2		.13754690000	KUZ1	Slow time constant upper zone	[1/day]
2	88	3.000000000	PERC	Percolation to lower zone	[mm/day]
2		.05431537200	KLZ	Time constant lower zone	[1/day]
2	90	0.00	ROUT	(1), Routing constant (lake area, km2	
2 2	91 92	0.00 0.00	ROUT ROUT	(2), Routing constant (rating curve of (3), Routing constant (rating curve a)	
2	93	0.00	ROUT	(4), Routing constant (rating curve e	
2	94	0.00	ROUT	(5), Routing constant (drained area i	-
2	95	0.00	DECAY	(1), Feedback constant	
2 2	96	0.00	DECAY	(2), Feedback constant	
2	97 98	0.00 0.17	DECAY CE	(3), Feedback constant Evapotranspiration constant	[mm/deg/day]
2	99	0.3	DRAW	"draw up" constant	[mm/day]
2	100	47.6	LAT	Latitude	[deg]
2	101	-0.6	TGRAD(1)	Temperature gradient Jan	[deg/100m]
2	102	-0.6	TGRAD(2)	Temperature gradient Feb	[deg/100m]
2	103	-0.6	TGRAD(3)	Temperature gradient Mar	[deg/100m]
2 2	104 105	-0.6 -0.6	TGRAD(4) TGRAD(5)	Temperature gradient Apr Temperature gradient May	[deg/100m] [deg/100m]
2	105	-0.6	TGRAD(5)	Temperature gradient Jun	[deg/100m]
2	107	-0.6	TGRAD(7)	Temperature gradient Jul	[deg/100m]
2	108	-0.6	TGRAD(8)	Temperature gradient Aug	[deg/100m]
2	109	-0.6	TGRAD(9)	Temperature gradient Sep	[deg/100m]
2 2	110 111	-0.6 -0.6	TGRAD(10) TGRAD(11)		[deg/100m]
2	111 112	-0.6	TGRAD(11) TGRAD(12)		[deg/100m] [deg/100m]
2	113	20.0	SPDIST	Uniformly distributed snow acc	[mm]
2	114	120.0	SMINI	Inital soil moisture content	[mm]
2	115	0.0	UZINI	Initial upper zone content	[mm]
2	116	30.0	LZINI	Initial lower zone content	[mm]

Norges vassdrags- og energidirektorat, august 2005

2 121 5	5 VEGT(1,1) Vegetation type 1, zone 1	
2 122 2		
	049 VEGA(1) Vegetation 2 area, zone 1	[1]
2 124 0.0	026 LAKE(1) Lake area, zone 1	[1]
	5 VEGT(1,2) Vegetation type 1, zone 2	
2 126 2	2 VEGT(2,2) Vegetation type 2, zone 2	
2 127 0.1	198 VEGA(2) Vegetation 2 area, zone 2	[1]
2 128 0.0	006 LAKE(2) Lake area, zone 2	[1]
	5 VEGT(1,3) Vegetation type 1, zone 3	
	2 VEGT(2,3) Vegetation type 2, zone 3	
	237 VEGA(3) Vegetation 2 area, zone 3	[1]
2 132 0.0	<pre>D30 LAKE(3) Lake area, zone 3</pre>	[1]
2 133 5	5 VEGT(1,4) Vegetation type 1, zone 4	
2 134 2	2 VEGT(2,4) Vegetation type 2, zone 4	
2 135 0.3	343 VEGA(4) Vegetation 2 area, zone 4	[1]
2 136 0.0	002 LAKE(4) Lake area, zone 4	[1]
2 137 5	5 VEGT(1,5) Vegetation type 1, zone 5	
2 138 2	2 VEGT(2,5) Vegetation type 2, zone 5	
2 139 0.4	484 VEGA(5) Vegetation 2 area, zone 5	[1]
2 140 0.0	000 LAKE(5) Lake area, zone 5	[1]
2 141 5	5 VEGT(1,6) Vegetation type 1, zone 6	
2 142 2	2 VEGT(2,6) Vegetation type 2, zone 6	
2 143 0.6	603 VEGA(6) Vegetation 2 area, zone 6	[1]
2 144 0.0	000 LAKE(6) Lake area, zone 6	[1]
2 145 5	5 VEGT(1,7) Vegetation type 1, zone 7	
2 146 2	2 VEGT(2,7) Vegetation type 2, zone 7	
2 147 0.5	571 VEGA(7) Vegetation 2 area, zone 7	[1]
2 148 0.0	000 LAKE(7) Lake area, zone 7	[1]
2 149 1	<pre>VEGT(1,8) Vegetation type 1, zone 8</pre>	
2 150 2		
2 151 0.3	385 VEGA(8) Vegetation 2 area, zone 8	[1]
2 152 0.0	000 LAKE(8) Lake area, zone 8	[1]
2 153 1	VEGT(1,9) Vegetation type 1, zone 9	
2 154 2	2 VEGT(2,9) Vegetation type 2, zone 9	
2 155 0.1		[1]
2 156 0.0	DOO LAKE(9) Lake area, zone 9	[1]
2 157 1		
2 158 4	4 VEGT(2,10) Vegetation type 2, zone 10	
2 159 0.2	256 VEGA(10) Vegetation 2 area, zone 10	[1]
2 160 0.0		[1]
FINIS		

vegtype.dat file:

Туре	no	ICMAX	CXREL	TSDIFF	CVSNOW	FCREL	LPDEL	EPVAR
Mountain	1	.12675	1.7845	.43923	0.5	.38172	1.0000	0.5
Forest	2	2.3572	1.2407	8628	0.3	2.7687	.50000	1.0
Shrub	3	1.0000	1.0000	0.0000	0.4	.80000	.70000	0.8
Rock	4	.06657	1.3338	-1.950	0.5	.10666	.50000	0.1
Meadows	5	.19371	1.2721	-2.000	0.3	.17483	1.0000	1.0

param.dat file and vegtype.dat file for Wiblingen

param.dat file:

START	lwiblingen	
2 2	0 9	PNO Number of precipitation stations
2	0 Ulm	PID1 Identification for precip station 1
2	0 571.	PHOH1 Altitude precip station 1
2	0.03410726200	PWGT1 Weight precipitation station 1
2	0 Aulendorf	PID2 Identification for precip station 2
2	0 560.	PHOH2 Altitude precip station 2
2	0 .00614962640	PWGT2 Weight precipitation station 2
2	0 Schemmerhf.	PID3 Identification for precip station 3
2	0 519.	PHOH3 Altitude precip station 3
2	0.00186608520	PWGT3 Weight precipitation station 3
2	0 Memmingen	PID4 Identification for precip station 4 PHOH4 Altitude precip station 4
2 2	0 610. 0.10754300000	PHOH4 Altitude precip station 4 PWGT4 Weight precipitation station 4
2	0 .10754500000 0 Kempten	PID5 Identification for precip station 5
2	0 705.	PHOH5 Altitude precip station 5
2	0.11189990000	PWGT5 Weight precipitation station 5
2	0 Isny	PID6 Identification for precip station 6
2	0 712.	PHOH6 Altitude precip station 6
2	0.22593670000	PWGT6 Weight precipitation station 6
2	0 Oberstaufen	PID7 Identification for precip station 7
2	0 800.	PHOH7 Altitude precip station 7
2	0.01569455100	PWGT7 Weight precipitation station 7
2	0 Hindelang	PID8 Identification for precip station 8
2	0 1053.	PHOH8 Altitude precip station 8
2 2	0.25108510000	PWGT8 Weight precipitation station 8
2	0 Oberstdorf 0 806.	PID9 Identification for precip station 9 PHOH9 Altitude precip station 9
2	0.33770870000	PWGT9 Weight precipitation station 9
2	0 9	TNO Number of temperature stations
2	0 Ulm	TID1 Identification for temp station 1
2	0 571.	THOH1 Altitude temp station 1
2	0.01263112800	TWGT1 Weight temp station 1
2	0 Aulendorf	TID2 Identification for temp station 2
2	0 560.	THOH2 Altitude temp station 2
2	0.04050949700	TWGT2 Weight temp station 2
2	0 Schemmerhf.	TID3 Identification for temp station 3
2 2	0 519.	THOH3 Altitude temp station 3
2	0 .11593730000 0 Memmingen	TWGT3 Weight temp station 3 TID4 Identification for temp station 4
2	0 Menuningen 0 610.	THOH4 Altitude temp station 4
2	0.00892891770	TWGT4 Weight temp station 4
2	0 Kempten	TID5 Identification for temp station 5
2	0 705.	THOH5 Altitude temp station 5
2	0.12228280000	TWGT5 Weight temp station 5
2	0 Isny	TID6 Identification for temp station 6
2	0 712.	THOH6 Altitude temp station 6
2	0.20849080000	TWGT6 Weight temp station 6
2	0 Oberstaufen	TID7 Identification for temp station 7
2 2	0 800. 0 1.000000000	THOH7 Altitude temp station 7 TWGT7 Weight temp station 7
2	0 1.00000000000000000000000000000000000	TID8 Identification for temp station 8
2	0 1053.	THOH8 Altitude temp station 8
2	0.69547150000	TWGT8 Weight temp station 8
2	0 Oberstdorf	TID9 Identification for temp station 9
2	0 806.	THOH9 Altitude temp station 9
2	0 .10237740000	TWGT9 Weight temp station 9
2	0 1	QNO Number of discharge stations
2	0 Wiblingen	QID Identification for discharge station
2	0 1.	QWGT Scaling factor for discharge
2	0 2154	AREAL Catchment area [km2]
2 2	4 0.000 5 469.000	MAGDEL Regulation reservoirs [1]
2	5 469.000 6 566.000	HYPSO (1,1), low point [m] HYPSO (2,1)
2	7 640.000	HIPSO (2,1) HYPSO (3,1)
2	8 678.000	HYPSO (4,1)
2	9 711.000	HYPSO (5,1)
2	10 743.000	HYPSO (6,1)
2	11 819.000	HYPSO (7,1)
2	12 913.000	HYPSO (8,1)
2	13 1132.000	HYPSO (9,1)

2 2 2 2 2 2 2 2 2	14 15 16 17 18 19 20	1491.000 2639.000 0.000 0.100 0.200 0.300 0.400		1,1), high point 1,2), Part of total area below HYPSO (1,1) = 0 2,2) 3,2) 4,2)
2	21	0.500	HYPSO (
2	22	0.600	HYPSO (
2 2	23 24	0.700 0.800	HYPSO (HYPSO (
2	25	0.900	HYPSO (1	
2	26	1.000		1,2), Part of total area below HYPSO $(11,1) = 1$
2	27	0.000	BREPRO (1), Glacier area, part of total area, below HYPSO(1,1)
2	37	0.000	BREPRO (2), Glacier area, part of total area, below HYPSO(2,1)
2	37	0.000), Glacier area, part of total area, below HYPSO(3,1)
2 2	37 37	0.000 0.000), Glacier area, part of total area, below HYPSO(4,1)), Glacier area, part of total area, below HYPSO(5,1)
2	37	0.000		b), Glacier area, part of total area, below HYPSO(6,1)
2	37	0.000), Glacier area, part of total area, below HYPSO(7,1)
2 2	37 37	0.000 0.000		 Glacier area, part of total area, below HYPSO(8,1) Glacier area, part of total area, below HYPSO(9,1)
2	37	0.000		.0), Glacier area, part of total area, below HIPSO(3,1)
2 2	37 38	0.000	BREPRO (1	1), Glacier area, part of total area, below HYPSO(11,1)
2	39	270.000	NDAG	Day no for conversion of glacier snow to ice
2 2		.73234470000 .46913270000	TX TS	Threshold temperature for snow/rain[C]Threshold temperature fo no melt[C]
2		2.6169560000	CX	Melt index [mm/deg/day]
2	43	0.05	CFR	Refreeze efficiency [1]
2 2	44	0.08	LV	Max rel. water content in snow [1]
2		.81192630000 1.0000000000	PKORR SKORR	Precipitaion correction for rain [1] Additional precipitation corection for snow at gauge [1]
2	47	1250	GRADALT	Altitude for change in prec. grad. [m]
2		.00408769430	PGRAD1	Precipitation gradient above GRADALT [1]
2 2	49 50	0.02 0.33	CALB CRAD	Ageing factor for albedo [1/day] Radiation melt component [1]
2	51	0.33	CONV	Convection melt component [1]
2	52	0.33	COND	Condensation melt component [1]
2		1.1		
	60 61		CEVPL	Lake evapotranspiration adjustment fact [1]
2 2	60 61 62	0.5	ERED ICEDAY	Evapotranspiration red. during interception [1] Lake temperature time constant [d]
2 2 2	61 62 63	0.5 30.0 5127715000	ERED ICEDAY TTGRAD	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m]
2 2 2 2	61 62 63 64	0.5 30.0 5127715000 6067750000	ERED ICEDAY TTGRAD TVGRAD	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m]
2 2 2	61 62 63 64	0.5 30.0 5127715000	ERED ICEDAY TTGRAD	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m]
2 2 2 2 2 2 2 2	61 62 64 65 66 67	0.5 30.0 5127715000 6067750000 .07749183500 1.500 0.100	ERED ICEDAY TTGRAD TVGRAD PGRAD CBRE EP	Evapotranspiration red. during interception [1]Lake temperature time constant [d]Temperature gradient for days without precip [deg/100 m]Temperature gradient for days with precip [deg/100 m]Precipitation altitude gradient [1/100 m]Melt increase on glacier ice [1]EP(1), Pot evapotranspiration, Jan [mm/day] or [1]
2 2 2 2 2 2 2 2 2 2	61 62 64 65 66 67 68	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\end{array}$	ERED ICEDAY TTGRAD TVGRAD PGRAD CBRE EP EP	Evapotranspiration red. during interception [1]Lake temperature time constant [d]Temperature gradient for days without precip [deg/100 m]Temperature gradient for days with precip [deg/100 m]Precipitation altitude gradient [1/100 m]Melt increase on glacier ice [1]EP(1), Pot evapotranspiration, Jan [mm/day] or [1]EP(2), Pot evapotranspiration, Feb [mm/day] or [1]
2 2 2 2 2 2 2 2 2 2 2	61 62 64 65 66 67 68 69	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\end{array}$	ERED ICEDAY TTGRAD TVGRAD PGRAD CBRE EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3)
2 2 2 2 2 2 2 2 2 2	61 62 64 65 66 67 68	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\end{array}$	ERED ICEDAY TTGRAD TVGRAD PGRAD CBRE EP EP	Evapotranspiration red. during interception [1]Lake temperature time constant [d]Temperature gradient for days without precip [deg/100 m]Temperature gradient for days with precip [deg/100 m]Precipitation altitude gradient [1/100 m]Melt increase on glacier ice [1]EP(1), Pot evapotranspiration, Jan [mm/day] or [1]EP(2), Pot evapotranspiration, Feb [mm/day] or [1]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\end{array}$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\end{array}$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.300\end{array}$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(6) EP(7) EP(8)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\end{array}$	ERED ICEDAY TTGRAD TVGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 64 65 66 67 70 71 72 73 74 75 76 77	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 1.500\\ 0.700\\ 0.200\end{array}$	ERED ICEDAY TTGRAD TVGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(6) EP(7) EP(8) EP(9) EP(10) EP(11)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 1.500\\ 0.700\\ 0.700\\ 0.200\\ 0.100\end{array}$	ERED ICEDAY TTGRAD TVGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(6) EP(7) EP(8) EP(9) EP(10) EP(11) EP(12), Pot evapotranspiration, Dec [mm/day] or [1]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 1.500\\ 0.700\\ 0.200\end{array}$	ERED ICEDAY TTGRAD TVGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(6) EP(7) EP(8) EP(9) EP(10) EP(11)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.7\\ 1.0000000000\end{array}$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(9) EP(10) EP(11) EP(12), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.7\end{array}$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(9) EP(10) EP(11) EP(12), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 70 71 72 73 74 75 76 77 78 79 80 81 82 85	0.5 30.0 5127715000 .007749183500 1.500 0.100 0.200 0.300 0.800 1.500 2.800 2.800 2.800 2.800 0.700 0.200 0.700 0.200 0.100 146.50320000 0.7 1.000000000 100 .33647940000	ERED ICEDAY TTGRAD TVGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP FC LPDEL BETA INFMAX	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(10) EP(11) EP(12), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 85 86	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\606775000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 1.00000000\\ 0.7\\ 1.000000000\\ 100\\ .33647940000\\ 22.935940000\\ \end{array}$	ERED ICEDAY TTGRAD TVGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(10) EP(11) EP(12), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day] Threshold quick runoff [mm]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 66 77 78 79 80 81 82 85 86 87	0.5 30.0 5127715000 .007749183500 1.500 0.100 0.200 0.300 0.800 1.500 2.800 2.800 2.800 2.800 0.700 0.200 0.700 0.200 0.100 146.50320000 0.7 1.000000000 100 .33647940000	ERED ICEDAY TTGRAD TVGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP FC LPDEL BETA INFMAX	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(10) EP(11) EP(12), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 70 71 72 73 74 75 77 78 79 80 81 82 85 88 87 88 88 88	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.700\\ 0.700\\ 0.700\\ 0.700\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.7\\ 1.0000000000\\ 0.7\\ 1.00000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.0000000000\\ 0.7\\ 1.0000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.0000000000\\ 0.7\\ 1.0000000000\\ 0.7\\ 1.0000000000\\ 0.00000000\\ 0.00000000\\ 0.00000000$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(10) EP(11) EP(12), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day] Threshold quick runoff [mm] Slow time constant upper zone [1/day] Time constant lower zone [1/day]
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 77 78 79 80 81 82 85 86 78 89 90	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.77\\ 1.0000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP FC LPDEL BETA INFMAX KUZ2 UZ1 KUZ2 UZ1 KUZ2 VZ1 KUZ2	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(10) EP(11), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day] Threshold quick runoff [mm] Slow time constant lower zone [1/day] Time constant lower zone [1/day] (1), Routing constant (lake area, km2)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 970 71 72 73 74 75 76 77 77 78 80 81 82 85 86 87 88 89 90 91	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.77\\ 1.0000000000\\ 100\\ 100\\ .33647940000\\ 100\\ .33647940000\\ .00\\ .02899410200\\ 0.00\\ 0.00\\ \end{array}$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(10) EP(11) EP(12)), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day] Threshold quick runoff [mm] Slow time constant lower zone [1/day] Time constant lower zone [1/day] (1), Routing constant (lake area, km2) (2), Routing constant (rating curve const)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 70 71 72 73 74 75 76 77 77 78 79 80 81 82 85 86 78 89 90	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.77\\ 1.0000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 1.000000000\\ 0.7\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$	ERED ICEDAY TTGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP FC LPDEL BETA INFMAX KUZ2 UZ1 KUZ2 UZ1 KUZ2 VZ1 KUZ2	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(9) EP(10) EP(11) EP(12)), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day] Threshold quick runoff [mm] Slow time constant upper zone [1/day] Percolation to lower zone [1/day] Time constant lower zone [1/day] Time constant lower zone [1/day] (1), Routing constant (rating curve const) (3), Routing constant (rating curve zero)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 85 86 87 88 88 89 90 91 92 93 94	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\6067750000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 2.300\\ 1.500\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.$	ERED ICEDAY TTGRAD TVGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(10) EP(10) EP(11) EP(12)), Pot evapotranspiration, Dec [mm/day] or [1] Maximum soil water content [mm] Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day] Threshold quick runoff [mm] Slow time constant (lake area, km2) (2), Routing constant (rating curve const) (3), Routing constant (rating curve exp) (5), Routing constant (drained area ratio)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 85 86 87 88 89 90 91 92 93	$\begin{array}{c} 0.5\\ 30.0\\5127715000\\606775000\\ .07749183500\\ 1.500\\ 0.100\\ 0.200\\ 0.300\\ 0.800\\ 1.500\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 2.800\\ 0.100\\ 1.500\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.100\\ 146.50320000\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.100\\ 1.500\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.700\\ 0.200\\ 0.100\\ 0.00$	ERED ICEDAY TTGRAD TVGRAD PGRAD CBRE EP EP EP EP EP EP EP EP EP EP EP EP EP	Evapotranspiration red. during interception [1] Lake temperature time constant [d] Temperature gradient for days without precip [deg/100 m] Temperature gradient for days with precip [deg/100 m] Precipitation altitude gradient [1/100 m] Melt increase on glacier ice [1] EP(1), Pot evapotranspiration, Jan [mm/day] or [1] EP(2), Pot evapotranspiration, Feb [mm/day] or [1] EP(3) EP(4) EP(5) EP(6) EP(7) EP(8) EP(9) EP(10) EP(11) Pot.evapotr when content = FC*FCDEL [1] Non-linearity in soil water zone [1] Maximum infiltration capacity [mm/day] Quick time constant upper zone [1/day] Threshold quick runoff [mm] Slow time constant upper zone [1/day] Time constant lower zone [1/day] Time constant lower zone [1/day] Time constant lower zone [1/day] (1), Routing constant (rating curve const) (3), Routing constant (rating curve exp)

Norges vassdrags- og energidirektorat, august 2005

2 97	0.00	DECAY	(3), Feedback constant	
2 98	0.17	CE	Evapotranspiration constant	[mm/deg/day]
2 99	0.3	DRAW	"draw up" constant	[mm/day]
2 100	47.9	LAT	Latitude	[deg]
2 101	-0.6	TGRAD(1)	Temperature gradient Jan	[deg/100m]
2 102	-0.6	TGRAD(2)	Temperature gradient Feb	[deg/100m]
2 103	-0.6	TGRAD(3)	Temperature gradient Mar	[deg/100m]
2 104	-0.6	TGRAD(4)	Temperature gradient Apr	[deg/100m]
2 105	-0.6	TGRAD(5)	Temperature gradient May	[deg/100m]
2 106	-0.6	TGRAD(6)	Temperature gradient Jun	[deg/100m]
2 107	-0.6	TGRAD(7)	Temperature gradient Jul	[deg/100m]
2 108	-0.6	TGRAD(8)	Temperature gradient Aug	[deg/100m]
2 109	-0.6	TGRAD(9)	Temperature gradient Sep	[deg/100m]
2 110	-0.6		Temperature gradient Oct	[deg/100m]
2 111	-0.6		Temperature gradient Nov	[deg/100m]
2 112	-0.6		Temperature gradient Dec	[deg/100m]
2 113	20.0	SPDIST	Uniformly distributed snow acc	[mm]
2 114	100.0	SMINI	Inital soil moisture content	[mm]
2 115	0.0	UZINI	Initial upper zone content	[mm]
2 116	30.0	LZINI	Initial lower zone content	[mm]
2 121	5		1) Vegetation type 1, zone 1	
2 122	2		1) Vegetation type 2, zone 1	
2 123	0.315		Vegetation 2 area, zone 1	[1]
2 124	0.009	LAKE(1)	Lake area, zone 1	[1]
2 125	5		2) Vegetation type 1, zone 2	
2 126	2	VEGT(2,	2) Vegetation type 2, zone 2	
2 127	0.255	VEGA (2) Vegetation 2 area, zone 2	[1]
2 128	0.016	LAKE(2)	Lake area, zone 2	[1]
2 129	5		3) Vegetation type 1, zone 3	
2 130	2	VEGT(2,	3) Vegetation type 2, zone 3	
2 131	0.165	VEGA(3)	Vegetation 2 area, zone 3	[1]
2 132	0.002	LAKE(3)	Lake area, zone 3	[1]
2 133	5	VEGT(1,	4) Vegetation type 1, zone 4	
2 134	2	VEGT(2,	4) Vegetation type 2, zone 4	
2 135	0.180	VEGA (4) Vegetation 2 area, zone 4	[1]
2 136	0.008	LAKE(4)	Lake area, zone 4	[1]
2 137	5	VEGT(1,	5) Vegetation type 1, zone 5	
2 138	2	VEGT(2,	5) Vegetation type 2, zone 5	
2 139	0.158	VEGA (5) Vegetation 2 area, zone 5	[1]
2 140	0.005	LAKE(5)	Lake area, zone 5	[1]
2 141	5	VEGT(1,	6) Vegetation type 1, zone 6	
2 142	2	VEGT(2,	6) Vegetation type 2, zone 6	
2 143	0.233	VEGA(6)	Vegetation 2 area, zone 6	[1]
2 144	0.002	LAKE(6)	Lake area, zone 6	[1]
2 145	5	VEGT(1,	7) Vegetation type 1, zone 7	
2 146	2	VEGT(2,	7) Vegetation type 2, zone 7	
2 147	0.335	VEGA(7)	Vegetation 2 area, zone 7	[1]
2 148	0.014	LAKE(7)	Lake area, zone 7	[1]
2 149	5	VEGT(1,	8) Vegetation type 1, zone 8	
2 150	2	VEGT(2,	8) Vegetation type 2, zone 8	
2 151	0.528			[1]
2 152	0.000		Lake area, zone 8	[1]
2 153	1	VEGT(1,	9) Vegetation type 1, zone 9	
2 154	2	VEGT(2,	9) Vegetation type 2, zone 9	
2 155	0.540		Vegetation 2 area, zone 9	[1]
2 156	0.000	LAKE(9)	Lake area, zone 9	[1]
2 157	1		10) Vegetation type 1, zone 10	
2 158	4		10) Vegetation type 2, zone 10	
2 159	0.137) Vegetation 2 area, zone 10	[1]
2 160	0.000		Lake area, zone 10	[1]
FINIS				

vegtype.dat file:

Туре	no	ICMAX	CXREL	TSDIFF	CVSNOW	FCREL	LPDEL	EPVAR
Mountain	1	.43292	.96958	-1.054	0.5	.18101	.50000	0.5
Forest	2	1.0000	1.1462	1.7849	0.3	3.0000	.50000	1.0
Shrub	3	1.0000	1.0000	0.0000	0.4	.80000	.70000	0.8
Rock	4	.25045	.50428	1.7291	0.5	.15073	.79509	0.1
Meadows	5	.25118	.73600	.26931	0.3	.18988	1.0000	1.0

This series is published by Norwegian Water Resources and Energy Directorate (NVE)

Published in the Report series 2005

- No. 1 Stein Beldring, Berit Arheimer, Jóna Finndís Jónsdóttir, Bertel Vehviläinen: Experience From Predictions in Ungauged Basins (PUB) in the Nordic Countries (22 pp.)
- No. 2 Bjarne Kjøllmoen (Ed.): Glaciological investigations in Norway in 2004 (90 pp.)
- No. 3 Panagiotis Dimakis, Hervé Colleuille, Wai Kwok Wong: Pollution Impacts on Norwegian Groundwater Bodies (20 pp.)
- No. 4 Jochen Hochrainer: Model calibration and frequency analyzes (35 pp.)