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Preface 
In order to describe the variability in snow depth or SWE in catchment scale or large 
scale hydrological and snow models, snow distribution functions are often used to 
describe the variability. In rainfall- runoff models, such as the HBV, a predefined log 
normal distribution is used whereas in the DDD model a dynamical gamma distribution 
(based on precipitation variability and terrain/vegetation classes) is used to describe the 
spatial variability in snow depth or SWE. An objective of the research project “Better 
SNOW models for predictions of natural Hazards and HydroPOwer applications” 
(SNOWHOW; 244153/E10), was  to investigate the spatial distribution of snow at 
different scales and its dependency terrain and vegetation classes and wind,  using an 
extensive snow data set from Hardangervidda, Southern Norway. This report presents 
result of this study.  

This report is a deliverable to the research project SNOWHOW; funded by the 
Norwegian Research Council, as well as Glommen and Laagen Brukseierforening, E-CO, 
Trøndelag Energiverk and HYDRO Energi. In addition, research done within NVE’s 
FoU-project 80208 has also contributed to this report. 

Tuomo Saloranta made many corrections and improvements to the text. 
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Summary 
In the mountain areas of Norway, snow cover has a major influence on the environment. 
Due to strong winds and open terrain, the snow is heavily redistributed and the snow 
depth is highly variable. To investigate snow conditions on Hardangervidda (one of 
Europe’s largest mountain plateaus), the Norwegian Water Resources and Energy 
Directorate (NVE) has conducted snow measurement campaigns across Hardangervidda 
in spring 2008 and 2009 using airborne Lidar Scanning at the approximate time of annual 
snow maximum (mid-April). When aggregating snow and terrain data from 10x10 meters 
to 0.5 km2, we find that the standard deviation of the terrain parameter squared slope, 
land cover and the mean snow depth (SD) to a large degree explains the observed 
variability of SD. A model for SD variability is proposed that, in addition to addressing 
the dependencies between the variability of SD and the terrain characteristics also takes 
into account the observed non-linear relationship between the mean and the standard 
deviation of SD. When validated against independent observed SD variability, retrieved 
from the same area, the model explains about 85% of the observed variability.  From 48 
empirical distributions of SD at Hardangervidda, each comprised of about 4000 SD 
values, qualitative and quantitative tests have shown that the Gamma distribution is a 
better fit than the Normal- and Log-Normal distributions.  The parameters for the model 
of the spatial variability of SD can be determined from a GIS analysis of a detailed digital 
terrain- and land cover model.  Implementing such a model in a hydrological rainfall-
runoff model will not add any additional calibration parameters and will hence enhance 
its physical basis and hopefully improve hydrological predictions in ungauged 
catchments, and for a changed climate. 
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1 Introduction 
Snow is an integral component of many countries’, including Norway’s, hydrologic, 
ecological and atmospheric system. In Norway 30% of annual precipitation falls as snow 
and thus contributes to similar amount of annual runoff (Beldring and others, 1999). In 
the mountain areas, even a larger part, 50–60% of annual precipitation, falls as snow.  
The knowledge of snow amounts and its spatial distribution has a critical impact on the 
prediction of water availability, the timing of snowmelt rates and runoff which are  
important for the prediction of spring melt floods, hydropower production planning and 
water resource management. In addition, the spatial features of snow are crucial for 
avalanche warning/formation, reliable simulations of the energy and mass exchange 
between land and the atmosphere, ecology (plants and animal life) and the spatial extent 
and degree of permafrost(Gisnås and others, 2016). 

The snow depth (SD) at a given place is a result of the precipitation, snow redistribution 
and compaction history for each consequtive snow layer (Sturm & Wagner, 2010). At the 
peak of winter, the snow distribution in mountain areas shows a strong heterogeneity. The 
complex interaction between spatially variable precipitation, topography, wind, radiation 
and vegetation, shape the spatial variability of the accumulation and melting of snow.  In 
addition, these processes act on different spatial scales ranging from 10 to 1000s of 
meters (e.g. Elder and others, 1991, Blöschl, 1999, Liston and others, 2007). These 
complex interactions make both representative sampling and the modelling of snow 
challenging. 

A multitude of physically- and empirically-based models, of varying degree of 
complexity, are used for predicting the amount of snow and its spatial distribution. Some 
models operate on a fine resolution grid scale (ranging from points, a few meters to 
hundreds of meters) (see e.g. Brun and others, 1992, Liston & Elder, 2006) attempting to 
include a detailed, multi-layered and physically based process representation. The models 
requires fine resolution meteorological- and terrain data, and are hence demanding in 
terms of both information need and computation time and are generally not used for 
larger areas or at a national scale. Other models are typically more effective in their 
approach where the aim is to represent the spatial distribution of snow over areas of some 
extent through the use of probability distribution functions (PDF’s). In such models, i.e. 
catchment hydrological rainfall- runoff models, the frequency of snow amounts over an 
area is more important than their exact location. Recently, many field-based studies have 
investigated catchment SD distribution by relating measured SD variability to small-scale 
terrain parameters and vegetation type (see Clark and others, 2011 for a comprehensive 
review of recent literature) or just to the mean SD (Pomeroy and others, 2004, Egli & 
Jonas, 2009, Egli and others, 2011). Both linear or multi-linear regression models and 
binary regression tree models have been used to relate the mean- and standard deviation 
of SD or the coefficient of variation of snow to terrain parameters (e.g. slope, aspect and 
elevation). Typically, these types of models can explain about 18 to 91 % of the SD 
variability (Grünewald and others, 2013). The models are often site specific and thus not 
transferable to other sites with other characteristics. Grünewald and others (2013) used 
multiple linear regression to examine SD data from several mountainous areas around the 
world. Results from this study shows good model performance at each site but a global 
model containing all data sets could only explain 23% (or 30% excluding catchments 
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with glaciers), of the variability. Grünewald and others (2013) therefore argued that the 
SD and terrain is less universally related than hypothesized by Lehning and others (2011) 
and the application of a global model is limited. The performance of the linear regression 
model is dependend on the spatial scale of the data for which the model has been 
developed. Jost and others (2007) showed, for example, that the performance of their 
model decreased if individual samples were used instead of plot averaged snow values. 
Similar results were also found in  Grünewald and others (2013). At the very small scale, 
simple local terrain characteristics have been unable to explain the SD distribution 
(Deems and others, 2006, Trujillo and others, 2009, Grünewald and others, 2010, 
Grünewald and others, 2013). Much of the fine scale snow variability seems to be a result 
of small scale terrain effects which are not captured by the local terrain parameters 
derived from one grid point of a digital terrain model (DTM) (Jost and others, 2007, 
Grünewald and others, 2013).  

Many studies have shown that a realistically modelled spatial distribution of both SD and 
snow water equivalent (SWE) is important for the temporal evolution of SD, SWE, 
snowmelt and snow covered area (SCA) (Buttle & McDonnell, 1987, Liston and others, 
1999, Luce and others, 1999, Essery & Pomeroy, 2004, Luce & Tarboton, 2004). In large 
scale meteorological- and catchment scale hydrological models, the subgrid SD 
variability is often resolved implicitly using subgrid parametrisation. Often, different 
PDFs’ have been used to represent the effect of spatial variability of snow both as result 
of redistribution (Luce & Tarboton, 2004, Liston, 2004), and as result of spatial varying 
precipitation (Alfnes and others, 2004, Skaugen, 2007, Skaugen & Weltzien, 2016). 
Another approach is to assume a relationship between SWE and SCA, i.e. the snow 
depletion curve. Based on observations, many studies have shown that the snow 
distribution, especially at the time of maximum accumulation, can be approximated by a 
two-parameter Log-normal distribution (Donald and others, 1995, Sælthun, 1996), a two-
parameter Gamma distribution (Kuchment & Gelfan, 1996, Skaugen, 2007, Kolberg & 
Gottschalk, 2010, Skaugen & Randen, 2013) or a Normal distribution (Marchand & 
Killingtveit, 2004, Marchand & Killingtveit, 2005). Helbig and others (2015) investigated 
the spatial PDF of SD for three large alpine areas close to the time of maximum snow and 
found that the gamma and the normal distributions were better suited than the Log-normal 
distribution. Similar results was also found by Winstral and Marks (2014) who 
investigated 11 year of snow data from a semiarid intermountain watershed. In order to 
determine the appropriate shape of the PDF, one is obliged to estimate the statistical 
moments (the mean and standard deviation usually suffice for a two-parameter 
distribution). Liston (2004) tried to relate fixed statistical moments of the PDF to terrain 
variability, air temperature and wind.  In Alfnes and others (2004), Skaugen (2007) and 
Skaugen and Randen (2013), however, it was demonstrated through the repeated 
measurements of the same snow course during the accumulation and melting seasons that 
the spatial PDF of SWE changed its shape continuously during the periods of 
accumulation and melting. A consequence of this finding was that Skaugen and Weltzien 
(2016) chose a dynamical Gamma distribution as the model for the spatial frequency 
distribution of SWE, due to its attractive mathematical properties and flexibility. 

One of the reasons for the quite substantial volume of studies discussing the proper 
spatial frequency distribution of snow is the difficulty of retrieving datasets of sufficient 
magnitude to estimate PDF’s with a reasonable certainty. This is especially problematic 
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in areas where wind is a dominant influence on snow distribution, as in mountains, tundra 
and shrub lands (Elder and others, 1991, Sturm and others, 2001b, Sturm and others, 
2001a, Hiemstra and others, 2002, Liston & Sturm, 2002, Marchand & Killingtveit, 2004, 
Schirmer and others, 2011). The large spatial variability in SD and SWE in alpine 
catchments makes it is difficult to obtain representative snow-depth data by traditional 
measurement techniques (Elder and others, 1991, Anderton and others, 2004, Erickson 
and others, 2005). To obtain sufficient information about the actual snow distribution 
with traditional means, extensive measurement designs with a large number of snow 
courses are required (e.g. Elder and others, 2009). In recent years the advances in laser 
ranging technology (LiDAR) both airborne Lidar (AL) and terrestrial (TL) together with 
digital photogrammetry (DP) have offered powerful tools for SD measurements in both 
alpine and forest areas and several studies have used these techniques (e.g. Hopkinson 
and others, 2004, Deems and others, 2006). These relative new techniques give reliable 
high quality, high resolution (spatially) and accurate SD information, and thus allow for 
analysing the distribution of SD over multiple scales (e.g. Melvold & Skaugen, 2013). 
Recently AL, TL and DP data have also been used to investigate possible relations 
between SD and terrain characteristic (e.g. elevation, slope, aspect, Winstral’s wind 
index, terrain roughness, etc) (e.g. Grünewald and others, 2010, Lehning and others, 
2011, Veitinger and others, 2014, Helbig and others, 2015). Lidar snow-depth data have 
also been used to verify different snow modelling approaches, from the relatively simple 
statistical model to high-resolution dynamical models (Trujillo and others, 2007, Trujillo 
and others, 2009, Mott and others, 2010). 

In this study we intend to further investigate the relationship between the spatial 
variability of SD and terrain parameters. We will use spatially very detailed 
measurements of both SD and the terrain obtained through AL data from Hardangervidda, 
Southern-Norway. In addition, we will implement and test the model for the PDF of snow 
presented in Skaugen and Weltzien (2016) with parameters estimated from terrain 
parameters instead of the observed variability of precipitation. This represents a 
development of the model, since terrain parameters, in principle, are obtainable 
everywhere, provided there is a sufficiently detailed DTM. Information on the spatial 
variability of precipitation, however, can be difficult to obtain, especially in mountainous 
areas where snow information is of particular interest and precipitation observations are 
scarce. This study uses SD as its snow variable instead of SWE simply because SD is the 
variable measured by AL. We, nevertheless, believe that the results from this study will 
give relevant insights on the spatial variability of SWE, which is the commonly used 
snow variable in hydrological models. In the conversion between SD and SWE we need 
the snow density, which is believed to vary less in space than SD (Sturm and others, 
2010). A similarity in the relationships between SD and terrain and SWE and terrain is 
therefore reasonable. 
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2 Study area and data 
2.1 Study area 
Hardangervidda is a mountain plateau situated in the eastern part of the western coastal 
mountain range of Norway (Figure 1). It is one of the largest mountain plateaus in 
northern Europe and covers an area of about 6500 km2. Most of the plateau is above 1000 
m above sea level (m a.s.l.) and hence above the treeline.  There are many lakes, streams 
and rivers and most of the plateau is treeless and covered by boulders, gravel, bogs, 
coarse grasses, mosses and lichens. The low alpine regions in the northeast and southwest 
are dominated by grass heaths and dwarf shrub. In the highest part in the west and 
southwest there is mostly bare rock or lichen/marsh tundra. In the east, the landscape is 
open and flat at about 1100 m a.s.l while in the west and south there are mountain ranges 
up to 1700 m a.s.l. In the far northwest, the terrain plunges abruptly down to the fjord 
Sørfjorden. The western coastal mountain range is a significant orographic feature 
oriented normally to the prevailing westerly wind flow that dominates the weather in 
Norway. Moist air masses are lifted by the large-scale bulk of the mountain and produce 
an increase in precipitation with elevation on the windward slopes, as well as a decrease 
on the leeward side of the range and thus on the eastern part of Hardangervidda. Based on 
the information from SeNorge.no (http://www.SeNorge.no) the snow accumulation period 
begins in mid-September in the highest areas and snowfalls persist throughout the winter 
months. Maximum snow accumulation is usually in mid- to late April which give 7 
months of snow accumulation on Hardangervidda mountain plateau. Hardangervidda is 
characterized by large variations in precipitation, mostly due to the complex topography 
of the area and a strong west-east gradient in precipitation. Mean annual precipitation can 
vary between 750 mm and < 3000 mm over a distance of a few tens of kilometres and 
50–60% of annual precipitation, falls as snow. The weather station at Sandhaug is the 
most relevant to our study since the station is situated in the middle of one of our 80 km 
long snow measurement transects at the elevation of 1250 m a.s.l. (Figure 1). The station 
is operated by the Norwegian meteorological institute and is situated in a relative flat, 
insheltered area. The wind recorded there is expected to be representative for the overall 
wind condition of this part of Hardangervidda (all data from the station were downloaded 
from (www.met.no)). It automatically measures wind direction and speed (10 m above 
ground), maximum gust for the last 10 and 60 minutes, air temperature including 
maximum and minimum temperatures and dew point temperature as well as relative air 
humidity. Unfortunately, the station does not measure precipitation nor SD. 
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Figure 1. Map of southern Norway and of Hardangervidda showing location of 
flight-lines (fl.), and the Sandhaug meteorological station. 

Snow conditions at Hardangervidda are important for hydropower production and 
recreation. Snow cover and depth also influence the reindeer semi-nomadic use of their 
winter habitat (Strand and others, 2006). Snow cover and SD is one of the main factors 
determining the distribution of plants in alpine areas by affecting the soil temperature, 
growing season and soil water content (Odland & Munkejord, 2008b, Odland & 
Munkejord, 2008a). On lakes at Hardangervidda the spring SD effects the growth of 
brown trout since it controls the break-up time of ice (Borgstrøm & Museth, 2005). The 
annual temperatures at Hardangervidda vary from -5 to +2°C depending on the location 
seNorge.no.  

2.2 Snow depth from laser ranging technology 
(LiDAR) 

In order to study the SD distribution close to snow maximum in spring 2008 and 2009 at 
Hardangervidda, we adopted AL altimetry due to its high resolution and cost-efficient 
features. AL data were collected at a nominal 1.5x1.5 m ground-point spacing for a 240 
km2 area. The AL data were collected using a Leica ALS50-II instrument with a 1064 nm 
wavelength scanning lidar mounted in a fixed-wing aircraft with a flying height above the 
ground of ~1800 m. The intensity per pulse of the first and last returns were recorded. 
Data were collected between 3-21 April 2008, 21-24 April 2009 and 21 September 2008. 
The spring survey dates represent the approximate time of maximum snow accumulation. 
The autumn dataset represents the minimum snow cover where only perennial snow 
patches still exist and with leaf-off conditions. For the three surveys, six flight lines of AL 
data were collected to determine the overall snow condition on Hardangervidda (see 
Figure 1). Each flight line is 80 km long, follows a west-east orientation and has a 
scanning width of 1000 m. In order to reduce slope-induced errors, only a 500 m wide 
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central part of the swath width was used. Each flight line is separated by 10 km in the 
north/south direction in order to investigate any change from north to south. In addition, 
the lidar contractor (Terratec AS) used one flight line that was perpendicular to the main 
direction in order to adjust the lines against each other. The lidar contractor collected and 
post-processed all data. Automated post-processing of the lidar returns were performed, 
using waveform analysis and spatial filters. All the AL datasets were delivered in 
Universal Tranverse Mercator (UTM) coordinates with orthometric heights. The 
delivered products included lidar returns classified as ground (in order to remove 
vegetation and buildings from the terrain), not classified and intensity. The dataset of 
lidar returns for Hardangervidda contained over 400*106 points for each survey time.  

2.3 Surface DEM generation and snow depth 
Based on point clouds of 1.5 m resolution, winter and summer DTMs were produced 
using a gridding scheme in which each original data point classified as ground was 
assigned to the nearest 2 m grid cell and assumed to represent the height of the entire cell. 
If a subsequent data point was located in the same cell, we used the mean height to 
represent the height of the entire cell. The number of original data points per grid cell 
varied from 0 (in steep slopes and on water bodies) to 9, with a modal value of 2-3. Areas 
with zero original data points create large or small voids in the DTM and only the 
smallest were interpolated using an interpolation method for hydrologically corrected 
raster surface based on Hutchinson (1989). A horizontal and vertical co-registration 
between DTMs was performed to avoid having erroneous SD changes from systematic 
shifts between DTMs.  

Following the rasterization of the lidar data, the “snow free” September 2008 DTM was 
subtracted from the snow surface elevation, the April DTMs to produce grids of SD. In 
the SD data set both negative and very high (36 m) SDs exists and some of these values 
are obviously erroneous. Following Melvold and Skaugen (2013) the large negative 
values (defined as <-10m) and large positive values (defined as > +10m) were excluded 
from the dataset. The rest of the negative SD were set to zero (see Melvold & Skaugen, 
2013 for more information). In practice, the data points removed represent <0.01% of the 
total area sampled and had a negligible influence on the snow-depth statistics. We also 
neglected all measurements from water bodies (lakes and rivers). In total we obtained ~8 
x 106 SD measurements for each flight line which gives about ~ 48 x 106 points for each 
season. Melvold and Skaugen (2013) have compared AL derived DTM data with global 
navigation satellite systems (GNSS) obtained in spring 2008 along flight-line 2 in order 
to investigate the accuracy of the AL data. They found elevation error ranged from -0.95 
m to +0.51 m with a mean error of 0.012 m. The standard error was 0.12 m, very close to 
the error of 0.11 m as stated by the manufacturer. A more detailed description of errors is 
found in Melvold and Skaugen (2013) and in general for AL data by Baltsavias (1999) 
and Hodgson and Bresnahan (2004) and for snow in particular in McCreight and others 
(2014).  
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3 Methods 
3.1 Terrain parameters 
In addition to the snow information, AL data gives also high-resolution terrain 
information since AL gives area-wide surface topography information. Based on the 
September AL data it is possible to create a 2x2 m DTM from a, more or less, snow free 
surface. In this study the  2 m resolution DTM was resampled to 10 m resolution 
(LasDTM) in order to compare to the  national DTM of 10 m resolution (DTM10), 
provided by the Norwegian mapping authorities (Statens kartverk). The resampling takes 
the average of all input elevations that are encompassed by the extent of the coarser cell. 
This procedure result in a smoothing of the terrain and reduce the amount of data voids. 
The reduction of data voids are important when terrain parameters are to be estimated 
since their calculation is based on a 3x3 neighbourhood operation on a grid.  

Based on the new LasDTM we computed several standard terrain parameters. Most 
terrain variables used in the classification of terrain are local, i.e calculated using the first 
and second derivatives of the immediate terrain surface. Terrain parameters chosen for 
our analysis were: elevation, relative elevation, aspect, aspect classes (e.g. northing), 
mean squared slope, wind shelter index (S) and vector roughness measure (VRM). 

The standard topographical variables elevation, slope, and aspect were obtained using 
standard GIS software (ArcGIS software, ESRI). In addition to elevation, we also 
evaluated the relative elevation estimated as the difference between the absolute and the 
minimum elevation in a given area.  

Aspect identifies the slope direction, i.e. the downslope direction of the maximum rate of 
change in value from each cell to its neighbours (measured in radians). As aspect is a 
circular terrain parameters, it is often classified into compass orientation. In our case, we 
used eight aspect classes north, northeast, east, southeast, south, southwest, west, 
northwest.  

Mean squared slope represents the rate of maximum change in elevation value from each 
cell (in radians).  

Wind shelter index (Si) is a terrain-based upwind/downwind slope predictor developed by 
Winstral and others (2002) describing the exposure or shelter to prevailing winds of a 
location. The index ranges from -1 to 1 where negative values correspond to wind-
exposed terrain and positive values corresponds to wind-sheltered terrain. The wind 
shelter index we used is a version of the Winstral algorithm modified by Plattner and 
others (2004) for modelling snow accumulation patterns on a glacier in the Austrian Alps. 
The wind shelter index of Plattner and others (2004) is defined as:  

𝑆𝑖 = arctan (max ቄ
୸(୶బ)ି୸(୶)

|୶బି୶|
∶ x ∈ Sቅ ),                    (1) 

where 𝑆𝑖 = 𝑆𝑖(x଴, 𝑎, ∆𝑎, 𝑑), is the set of grid nodes within a distance ≤ 𝑑 from x଴, only 
considering grid nodes in directions between (𝑎 − ∆𝑎) and (𝑎 + ∆𝑎) from x଴. Si the 
degree of shelter or exposure range from -1 to 1, where negative values corresponds to 
exposure. The S values was transformed according to 𝑆 =  𝑒௦௜ in order be in line with 
previous study by Gisnås and others (2016). To determine necessary parameters 
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(𝑎, ∆𝑎, 𝑑) temporal development of wind during the accumulation seasons was studied 
using data from Sandhaug meteorological station (Fig.1). The station has been operating 
since autumn 2008 and does not cover the time of the first lidar scanning survey in spring 
2008. Analysis of prevailing winds at Sandhaug for 2009-2011, showed that most often 
wind comes from west to northwest (300°) and from east to southeast (120°). The daily 
mean wind velocities from those directions are also rather high: 6-8 and 5-7 m/s 
respectively in 2009-2010, and 7-9 and 4-6 m/s in 2010-2011. Based on the wind data 
from Sandhaug the prevailing wind direction (a) were set to 300°.  As in Gisnås and 
others (2016) we used a maximum search distance (d = 100 m) and a chosen width of 30° 
with the two azimuths extending (∆𝑎) 15° to each side of a.  

Surface roughness of a terrain has been defined as variability of a topographical surface at 
a given scale. A range of methods and definitions of roughness exist for different 
scientific disciplines (e.g. biology, geomorphology), see Grohmann and others (2011) for 
an overview often used in geomorphology.  VRM has been developed for GIS from a 
vector approach of Hobson (1972) by Sappington and others (2010). In order to calculate 
the VRM, one must decompose the unit vectors normal (orthogonal) to each grid cell into 
their, x, y and z components using slope and aspect.  Based on this unit vector a resultant 
vector is then obtained by summing up the single components over a 3 x 3 neighbourhood 
centred one each cell, using a moving window operation (see figure 2 in Sappington and 
others (2010)). The magnitude of the resultant vector is normalised over the same 
neighbourhood and subtracted from 1 which results in a dimensionless VRM. VRM is a 
measure of surface roughness that range from 0 (flat) to 1 (most rugged). See Sappington 
and others (2010) for a more detailed description of the derivation of VRM. 

In addition to the terrain and the wind-based parameter, also the effect of vegetation have 
been investigated. The AL data covers areas with low-growing vegetation composed of 
most of heather (Calluna), segdes and grasses in the central part of Hardangervidda. In 
the lower areas in e.g. in the south part of Hardangervidda the AL data covers areas of 
open boreal deciduous forest (e.g. Kastdalen & Hjeltnes, 2012). A vegetation/canopy 
fraction is calculated for each grid cell using the National Land Cover Data (AR50 
https://register.geonorge.no/register/versjoner/produktark/norsk-institutt-for-
biookonomi/ar50) vegetation class. Only grid cells with more than 20 percent of 
deciduous forest and/or heather were classified as vegetated.  

3.2 Spatial aggregation of snow depth- and terrain 
parameters 

In Norway, daily maps of interpolated temperature and precipitation on a 1x1 km grid  
have for more than a decade been used by the Norwegian water Resources and Energy 
Directorate as the meteorological basis for various operational forecasting services, such 
as flood forecasting, landslide- and avalanche forecasting. In addition, daily maps of 
various snow parameters are produced based on the gridded meteorological maps (the 
seNorge.no snow model Engeset and others, 2004, Saloranta, 2012, Saloranta, 2016). In 
order to explain the subgrid spatial variability of SD at a scale similar to the operational 
hydrological services, including the seNorge.no snow model, we calculated the statistical 
moments of SD (mean, standard deviation, skewness, and kurtosis) from the individual 
SDs for a rectangular grid of 500x1000 m.  Such a procedure is in line with the 
observation of Jost and others (2007), enhancing the correlation between snow statistics 
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and terrain. Since our AL data only covers a 500 m wide transect we calculated the 
statistical moments for 500x1000 m grid cells instead of 1x1 km grids (Fig. 2). The 
statistical moments were only calculated for grid cells with more than 80 % (i.e. ~4000) 
of valid SD values. In addition to calculating the statistical moments the 500 x 1000 m 
SD data were also used to determine which analytical statistical model that best suit the 
empirical distributions of SD.  This strategy allowed us to use as many observations as 
possible over as large an extent as possible while trying to maintain sufficient sampling 
density to ensure unbiased estimates of the statistical moments and to decide on  a model 
for the probably density function of SD. The analysis can, of course, be extended to other 
grid sizes and to a more random shift of the origin of the grid in order to perform an 
analysis of scale dependence, but this is considered to be out of the scope of the present 
study.  

To relate the SD to terrain parameters the corresponding statistical moments are also 
calculated for each of the seven terrain parameters.  When aggregating the terrain 
parameters over 500x1000 m grid cells we ensured a match in areal support between the 
independent variable (SD) and the dependent variables (terrain characteristics) (Erxleben 
and others, 2002).  

3.3 A model for the spatial variability of snow depth 
The dynamic input to a model for the PDF of snow (SD or SWE) will typically be (solid) 
precipitation, i.e. a mean areal value of snow being representative for a grid cell, a 
catchment or parts of a catchment. We hence need a functional relationship between the 
mean and higher statistical moments (we settle for the variance in this study) in order to 
estimate a spatial PDF of snow. In (Skaugen and Weltzien, 2016), the observed 
relationship between the spatial mean and standard deviation of precipitation was used to 
formulate such a relationship. It was further noticed that the relationship between the 
spatial mean and the standard deviation of precipitation was nonlinear in that the rate of 
increase of the spatial standard deviation deviated from that of the spatial mean as the 
spatial mean increased. For small values of the spatial mean the relationship between the 
mean and the standard deviation was approximately linear, whereas for higher values of 
the spatial mean, the standard deviation increased with a smaller rate or not at all. Such a 
behaviour has been observed for measurements of SWE during the accumulation season. 
The coefficient of variation, CV (spatial standard deviation over the spatial mean) 
decreases as the accumulation seasons proceeds (see Alfnes and others, 2004). Skaugen 
and Weltzien (2016) presented a model for the spatial variance of SWE in which 
decreasing temporal correlation is the cause of an attenuating contribution of variance as 
the accumulation proceeds. The parameters for the model for the spatial variances were 
estimated from the observed spatial mean E(Z’) and spatial variability Var(Z’) of 
precipitation. Given an input of the spatial mean of (solid) precipitation, the spatial 
variability and the spatial mean of the accumulated sum of SWE (𝑍′) is estimated as: 

𝑉𝑎𝑟(𝑍′) =  𝐸(𝑍ᇱ)
ଵ

ఈబ

[1 + (𝑛 − 1)𝑒𝑥𝑝(−𝑛/𝐷)] =
ఔ

ఈమ,                       (2) 

𝐸(𝑍′) = 𝑛
ఔబ

ఈబ
=  

ఔ

ఈ
,                                          (3) 

where 𝜈଴ and 𝛼଴ are the shape  and scale parameters of a gamma distributed unit snowfall 
(0.1 mm), 𝑛 is the number of accumulated unit snowfalls, 𝐷 is the decorrelation range 
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where the correlation between snowfall units equals 1/𝑒 (Zawadski, 1973) and 𝜈, and 𝛼, 
are the shape and scale parameters of the gamma distributed accumulated SWE. The 
relation between the spatial mean and the spatial variability to the parameters of the 
gamma distribution are: 

𝜈 =
ா(௓ᇲ)మ

௏௔௥(௓ᇲ)
 and 𝛼 =

ா(௓ᇲ)

௏௔௥(௓ᇲ)
.       (4) 

In this study we intend to test this model for the spatial variability of SD, and estimate its 
parameters (∝଴, 𝜈଴ and 𝐷) using terrain information. If the two first moments of the 
distribution for the PDF of snow are estimated (the spatial mean and the spatial variance), 
a suitable statistical model (Log-normal, Gamma, Normal) can be used to represent the 
spatial PDF of snow in hydrological models.  

3.4 Exploratory analysis 
In order to investigate possible relationships between the terrain parameters and SD 
variability, an analysis using scatterplots and correlation matrices was carried out. The 
analysis was performed at a local scale where all 10x10 m grid cells located within each 
larger grid cell (500x1000 m) were used. Based on this approach the maximum number of 
observation N was 5000 for each larger grid. The analysis was also performed for grid 
cells of 500x1000 m between snow- and terrain statistics and between snow statistics. 
The symbols used for the statistics are shown in Table 1. The analysis was performed for 
each of the six flight lines, for the pooled data of all six flight lines and for the different 
landscape classes. The Spearman rank correlation method was used since it has no 
assumption of normally distributed variables. 

Table 1. List of prefix us on for snow S and terrain T statistics.   

Variable Explanation 

Med Median for max 5000 10x10 m grid-cell values within 500x1000 m. 

M Mean for max 5000 10x10 m grid-cell values within 500x1000 m 

Std Standard deviation for max 5000  10x10 m grid-cell values within 500 
x1000 m 

Skw Skewness for max 5000  10x10 m grid-cell values within 500x1000 m 

Kurt Kurtosis for max 5000  10x10 m grid-cell values within 500x1000 m 

Sh Shape parameter of the gamma distribution estimated from max 5000 
10x10 m grid-cell values within 500x1000 m 

Sc Scale parameter of the gamma distribution estimated from max 5000  
10x10 m grid-cell values within 500x1000 m 

CV Coefficient of variation for max 5000  10x10 m grid-cell values within 
500x1000 m 

LSC Landscape class: 1= bare rock, 2= more than 20% wetlands/forest  
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4 Results 
A main objective of this study is to investigate if terrain- or other variables can be used to 
estimate the parameters of the spatial frequency distribution of snow. In this section, we 
will hence investigate the linear and non-linear relations between the snow- and terrain 
characteristics in addition to take advantage of the wealth of the AL data to investigate 
the shape of the empirical distributions of SD and their possible analytical expressions.  
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Figure 2. The figure gives an overview of the processing steps used in order to 
develop a model for subgrid variability of snow. On the left hand side of the figure, 
a-c, we show the process of finding a suitable statistical model for the spatial PDF of 
SD. On the right hand side (d-f) we show the process of relation standard deviation 
of snow to a terrain parameter.  a), the initial SD pattern found in a rectangle of 500 
x 1000 m from the western part of Hardangervidda. SD ranges from 0.0 (orange) to 
8 (green) meters. b), the cumulative distribution function of SD shown in (a). c), the 
skewness and kurtosis of SD data from Hardangervidda for all flight lines for the 
year 2008 (for explanation see text). d), the snow depth as shown in (a) in addition 
the spatial pattern of squared slope for the same area. e), shows high resolution, 
10x10 m, SD shown in (d) plotted against the high resolution squared slope shown in 
(d).  f), shows standard deviation of SD and squared slope after spatial aggregation. 
Only data for flight line 2 for the year 2008 is shown. g), model of the spatial 
variability of SD fitted to the 2008 AL data for different terrain- and landscape 
classes, see figure 5 and text for explanation.  

 

4.1 What is a suitable statistical model for the 
spatial PDF of snow depth? 

There has been an ongoing debate in the literature on which statistical model is best 
suited for describing the spatial frequency distribution of SWE (or SD) (see references 
above). A consensus seems to have been reached that the distribution appears to be 
(positively) skewed for alpine areas and more normal (symmetric) for forested areas. 
Figure 2a shows the spatial pattern of SD for a rectangular grid of 500 x 1000 m from the 
western part of Hardangervidda. The snow depth range from 0 to 8 meters. Figure 2b 
shows a typical cumulative distribution function of SD. The distribution is clearly skewed 
and the empirical distribution is well approximated using a Gamma distribution. Given 
the high number of data points (each statistic is estimated from approximately 4000 
values) in this study, we have the opportunity to estimate statistical moments of high 
order with reasonable certainties. A Cullen and Frey graph (Cullen & Frey, 1999) 
compares the skew and kurtosis of observed data to theoretical values for different 
statistical models, such as the Gamma and the Lognormal. These two models are typical 
candidates when an analytical expression for the spatial frequency distribution of snow is 
needed. In a Cullen and Frey graph, normally distributed values will be located at the 
point skewness = 0 and kurtosis = 3 (Yevjevich, 1972 p.128). Figure 2 c and Figure 3 a, b 
shows how the skewness and kurtosis of SD data from Hardangervidda for all flight lines 
for the years 2008 (a) and 2009 (b) compare to the theoretical values of the Normal, Log-
normal and Gamma distribution. There is a substantial scatter for both years, but if one 
have to choose, the Gamma distribution seems to be the best suited. A random sample of 
four 500 x 1000 cells were drawn from each of the six flight lines each year. When 
subjected to goodness of fit tests for choice of distribution, such as the Anderson-Darling 
test and the Kolmogorov-Smirnov test (see Delignette-Muller & Dutang, 2015), 38 out of 
48 (80%) empirical distributions were best approximated using the Gamma distribution 
(not shown). 
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Figure 3 a. Cullen and Frey graph of the skew and kurtosis of observations for 500 
X 1000 meter grid cells at Hardangervidda 2008 compared to the theoretical values 
of the Gamma and Lognormal distribution.  
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Figure 3 b. Cullen and Frey graph of the skew and kurtosis of observations for 500 
X 1000 meter grid cells at Hardangervidda 2009 compared to the theoretical values 
of the Gamma and Lognormal distribution. 

4.2 Correlation between snow and terrain 
parameters  

We have investigated the relationship between the different snow and terrain parameters 
both at local (10x10 m) and at aggregated scale (500x1000 m, the approximate 
seNorge.no scale). In order to identify relations between snow and terrain parameters.   

At the local scale we found no significant correlation between high-resolution 10x10 m 
SD data and terrain data. Figure 2 e and 4 illustrate how SD averaged over the 10x10 m 
grid cells comprised in a 500x1000 m grid cell relates to squared slope averaged over the 
same resolution. Clearly, no pattern can be seen and the correlation is low and not 
significant. Similar results are found for the other terrain parameters and for other areas 
(not shown).   

Correlation analysis was also performed for snow- and terrain statistics derived at the 
500x1000 m scale (the approximate seNorge.no scale).  For both years, the highest 
correlations were found between standard deviation of SD and the terrain parameters 
expressing slope variability (standard deviation of slope squared slope and VRM) and S 
(see Table 2). The relationships between mean SD and the mean of terrain parameters are 
weaker (see Table 3) than for the standard deviation. The parameters expressing mean 
slope and mean VRM show the highest correlations to mean SD. For the other statistics, 
the relationships are weaker as shown for CV in Table 4 (higher moments are not shown). 

For the individual flight lines the correlation between standard deviation of SD and 
squared slope ranged from 0.42 to 0.82 (in 2008) and 0.43 to 0.81 (in 2009). For the 
pooled data the correlation coefficients were 0.67 and 0.61 for 2008 and 2009 
respectively. The standard deviation of wind shelter index (S) as well as the VRM also 
correlate well with the standard deviation of SD but correlations are slightly weaker (see 
Table 1). From Tables 1 and 2 one can also see the high correlation among the terrain 
parameters. This suggests that only one of the parameters should be used since little new 
information is obtained by including additional terrain parameters.  Since the slope is 
simpler to calculate than VRM, and is independent of wind data (unlike S) it was decided 
to use the (squared) slope as the chosen terrain parameters for this study. Figure 2 f, 
illustrates how the Std of SD relates to the Std of squared slope on average for each 500 x 
1000 m rectangle along flight lines 2 for year 2008 (correlation 0.75 and  n = 51). 
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Figure 4. SD against squared slope at averaged over 10x10 m grid cell sampled from 
one grid cell of 500x1000 m. This example is for flight line 1 from 2018.  

 

Table 2. Rank correlation between standard deviation of SD and the standard 
deviation of different terrain parameters for pooled data sets in 2008 and 2009. Only 
significant (p-value < 0.001) correlation are shown. 

2008 
Std 
Slope 

Std  
Sq slope 

Std  
Aspect 

Std 
VRM 

Std 
exp(S) 

Std 
Elevation Std SD 

Std Slope 1.00 1.00   0.92 0.89 0.78 0.66 
Std  
Sq slope   1.00   0.92 0.88 0.78 0.67 
Std Aspect     1.00     -0.25   
Std VRM       1.00 0.87 0.67 0.70 
Std exp(S)         1.00 0.64 0.63 
Std 
Elevation           1.00 0.55 
Std SD             1.00 

2009 
Std 
Slope 

Std Sq 
slope 

Std 
Aspect 

Std 
VRM 

Std 
exp(S) 

Std 
Elevation 

Std  
SD 

Std Slope 1.00 1.00   0.92 0.89 0.78 0.60 
Std  
Sq slope   1.00   0.92 0.89 0.79 0.61 
Std Aspect     1.00     -0.25 0.18 
Std VRM       1.00 0.87 0.68 0.64 
Std exp(S)         1.00 0.65 0.56 
Std 
Elevation           1.00 0.49 
Std SD             1.00 
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Table 3. Rank correlation between mean of SD and the mean of different terrain 
parameters for pooled data sets in 2008 and 2009. Only significant (p-value < 0.001) 
correlation are shown. 

2008 
M  
Slope 

M  
Sq slope 

M  
Aspect 

M  
VRM 

M  
exp(S) 

M  
Elevation 

M  
SD 

M Slope 1.00 1.00 NA 0.88 0.34 0.24 0.59 
M Sq slope   1.00 NA 0.88 0.34 0.24 0.60 
M Aspect     1.00 NA -0.51     
M VRM       1.00 0.33 0.27 0.61 
M exp(S)         1.00     
M 
Elevation           1.00 0.41 
M SD             1.00 

2009 
M  
Slope 

M  
Sq slope 

M  
Aspect 

M  
VRM 

M  
exp(S) 

M  
Elevation 

M  
SD 

M Slope 1.00 1.00   0.88 0.34 0.25 0.44 
M Sq slope   1.00   0.89 0.35 0.25 0.44 
M Aspect     1.00   -0.50     
M VRM       1.00 0.34 0.28 0.48 
M exp(S)         1.00     
M 
Elevation           1.00 0.62 
M SD             1.00 

 
Table 4. Rank correlation between CV of SD and the CV of different terrain 
parameters for pooled data sets in 2008 and 2009. Only significant (p-value < 0.001) 
correlation are shown. 

2008 
CV 
Slope 

CV  
Sq slope 

CV 
Aspect 

CV 
VRM 

CV 
exp(S) 

CV 
Elevation 

CV 
SD 

CV Slope 1.00 0.93       -0.43   
CV          
Sq slope   1.00       -0.19   
CV Aspect     1.00         
CV VRM       1.00 0.88 0.64 0.49 
CV exp(S)         1.00 0.62 0.49 
CV 
Elevation           1.00 0.18 
CV SD             1.00 

2009 
CV 
Slope 

CV 
Sq slope 

CV 
Aspect 

CV 
VRM 

CV 
exp(S) 

CV 
Elevation 

CV 
SD 

CV Slope 1.00 0.93       -0.44   
CV          
Sq slope   1.00       -0.20   
CV Aspect     1.00         
CV VRM       1.00 0.88 0.65 0.52 
CV exp(S)         1.00 0.62 0.54 
CV 
Elevation           1.00 0.25 
CV SD             1.00 
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4.3 Correlation analysis for the statistical moments 
of snow depth and squared slope   

Based on the finding in the previous section we will further investigated the relations 
between snow and the terrain parameter squared slope (hereafter denoted T). In addition, 
we will also look at the relations between various statistics of snow. Since the number of 
values used to estimate the statistics was so high (~4000), statistics normally associated 
with a high degree of uncertainty such as skewness and kurtosis where also included in 
the analysis. The 500x1000 m grid cells were classified into bare-rock and wetland/forest 
types and when pooling all 500x1000 m  grid cells for the 6 courses together for the 2009 
data, we could see that the snow statistics were significantly correlated to land scape 
classes (LSC) (see Table 5). 

 

Table 5. Rank correlation between snow statistics and terrain statistics for all 
courses, 2009. Prefixscript used are defined in Table 1. Subscript _S denotes snow 
and subscript _T denotes the terrain, variable squared slope. Only significant (p-
value < 0.001) correlations are shown. 

 Med_T M_T Std_T Skw_T Kurt_T Sh_T Sc_T CV_T LSC 

Med_S 0.30 0.32 0.36 0.23 0.23  -0.23  -0.35 

M_S 0.36 0.39 0.43 0.23 0.24  -0.23  -0.42 

Std_S 0.53 0.56 0.60 0.21 0.24  -0.21  -0.55 

Skw_S          

Kurt_S -0.18 -0,18 -0.17      0.27 

Sh_S          

Sc_S          

CV_S 0.45 0.47 0.51      -0.49 

LSC -0.22 -0.23 -0.25      1 

 

Based on this finding, we continue the correlation analysis for separate landscape classes. 
The number of 500x1000 m classified, as bare rock is 382 and 66 cells are classified as 
wetland/forest. Tables 6 and 7 show correlation matrices for snow statistics against terrain 
statistics. Similarly, we conducted a correlation analysis between snow statistics in order 
to investigate relationship between SD parameters (e.g. M_S versus  Std_S). The 
correlation matrices are shown in tables 8 and 9.  
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Table 6. Correlation between snow statistics and terrain statistics for all courses, 
2008 and 2009 for LSC = 1, bare rock. Prefixscript used are defined in Table 1. S 
denotes snow and T denotes terrain. Only significant (p-value < 0.001) correlations 
are shown. 

2008 Med_T M_T Std_T Skw_T Kurt_T Sh_T Sc_T CV_T 

Med_S 0.49 0.50 0.49 0.20 0.22  -0.20  

M_S 0.53 0.55 0.54 0.22 0.24  -0.22  

Std_S 0.64 0.66 0.67 0.25 0.27  -0.25  

Skw_S         

Kurt_S -0.33 -0.33 -0.30      

Sh_S -0.28 -0.28 -0.26      

Sc_S         

CV_S 0.37 0.39 0.43   -0.18   

2009 Med_T M_T Std_T Skw_T Kurt_T Sh_T Sc_T CV_T 

Med_S 0.36 0.38 0.40 0.25 0.26  -0.25  

M_S 0.42 0.45 0.47 0.27 0.27  -0.27  

Std_S 0.57 0.60 0.63 0.28 0.29  -0.28  

Skw_S         

Kurt_S -0.22 -0.21 -0.20      

Sh_S -0.21 -0.21 -0.20  -0.17    

Sc_S         

CV_S 0.39 0.41 0.45   -0.2   
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Table 7. Correlation between snow and terrain statistics for all courses, 2008 and 
2009 for LSC = 2, wetlands/forest. Only significant (p-value < 0.01) correlations are 
shown. 

2008 Med_T M_T Std_T Skw_T Kurt_T Sh_T Sc_T CV_T 

Med_S 0.34 0.34 0.37      

M_S 0.32 0.33 0.36      

Std_S   0.38      

Skw_S         

Kurt_S         

Sh_S         

Sc_S         

CV_S         

2009 Med_T M_T Std_T Skw_T Kurt_T Sh_T Sc_T CV_T 

Med_S -0.55 -0.56 -0.49   0.45   

M_S -0.53 -0.53 -0.45   0.44  0.4 

Std_S         

Skw_S         

Kurt_S         

Sh_S         

Sc_S         

CV_S   0.43      
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Table 8. Correlation between snow statistics for all courses, LSC=1, bare rock 2008 
and 2009. Only significant (p-value < 0.001) correlations are shown. 

2008 Med_S M_S Std_S Skw_S Kurt_S Sh_S Sc_S CV_S 

Med_S 1 0.99 0.18 -0.68 -0.71 -0.82 0.66  

M_S  1 0.87 -0.62 -0.70 -0.77 0.6  

Std_S   1 -0.37 -0.64 -0.54 0.36 0.47 

Skw_S    1 0.86 0.96 -0.99 0.43 

Kurt_S     1 0.87 -0.85  

Sh_S      1 -0.97 0.32 

Sc_S       1 -0.42 

CV_S        1 

2009 Med_S M_S Std_S Skw_S Kurt_S Sh_S Sc_S CV_S 

Med_S 1  0.81 -0.69 -0.72 -0.85 0.69  

M_S 0.98 1 0.89 -0.61 -0.69 -0.80 0.61  

Std_S   1 -0.38 -0.58 -0.58 0.38 0.42 

Skw_S    1 0.92 0.96 -1.0 0.47 

Kurt_S     1 0.93 -0.92 0.18 

Sh_S      1 -0.96 0.35 

Sc_S       1 -0.47 

CV_S        1 

 

From Table 6 which show the results from bare-rock classes we note that especially the 
mean and standard deviation of snow are well correlated with the mean and standard 
deviation of squared slope. The higher statistical moments for  snow, such as the 
skewness and kurtosis are not significantly, or very weakly correlated with squared slope. 
Table 8, on the other hand, shows how the first moment, the mean of snow is highly 
correlated to the higher moments of snow (variance, skewness and kurtosis). In addition, 
we see that the shape and scale of the gamma distribution is highly correlated to the mean 
SD.  
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Table 9. Correlation between snow statistics for all courses, 2008 and 2009 for LSC 
= 2, wetlands/forest. Only significant (p-value < 0.001) correlations are shown. 

2008 Med_S M_S Std_S Skw_S Kurt_S Sh_S Sc_S CV_S 

Med_S 1 0.99 0.44      

M_S  1 0.48      

Std_S   1     0.78 

Skw_S    1 0.59 0.96 -0.98  

Kurt_S     1 0.61 -0.63  

Sh_S      1 -0.98  

Sc_S       1  

CV_S        1 

2009 Med_S M_S Std_S Skw_S Kurt_S Sh_S Sc_S CV_S 

Med_S 1 0.99 0.51   -0.43   

M_S  1 0.60      

Std_S   1     0.74 

Skw_S    1  0.98 -1.0 0.61 

Kurt_S     1 0.87 -0.87 0.40 

Sh_S      1 -0.98 0.58 

Sc_S       1 -0.61 

CV_S        1 

 

As very few data points describe the snow/terrain statistics for forest/wetlands, very few 
correlations were found significantly different from zero. Indeed, in Table 7, we see that 
M_S is correlated to the M_T and Std_T, but with opposite signs for the two years. The 
Std_S is only significantly correlated to Std_T for 2009. In Table 9, we find that the M_S 
is correlated to Std_S, but not to the higher statistical moments of snow. 

4.4 Application of model for the spatial variability 
for the Hardangervidda data 

The correlation analysis above has shown that parameters describing the variability of the 
terrain are highly correlated to the variability of snow at least for the bare rock class 
(LSC=1). We can also see that the variability of snow, and higher moments such as skew 
and kurtosis are highly correlated with the mean of snow. Hence we conclude that the 
spatial variability of snow is a function of the mean of snow, a dynamic variable and the 
spatial variability of the terrain, a static variable. In addition, figures 4 and 5 show that the 
relation between  M_S vs Std_S, often is non-linear, which in Skaugen and Weltzien 
(2016) was explained by the presence of correlation between the snowfall (precipitation) 
units. 

Figures 5 and 6 show scatter plots of M_S vs Std_S and the fitted model developed in 
Skaugen and Weltzien (2016) for the Hardangervidda data for 2008 and 2009. The 
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models are fitted to different classes of Std_T for LSC=1, 0.0< Std_T <0.05, 0.05< Std_T 
< 0.1, Std_T >0.1 and to the landscape class LSC=2, Wetland/Forest. It was not possible 
do differentiate with respect to Std_T for LSC=2. The thresholds for Std_T were decided 
from a qualitative assessment that appeared consistent for both 2008 and 2009.  

 

 

 

Figure 5. Model of the spatial variability of SD fitted to the 2008 AL data. The 
colours indicate model and observations for different classes of squared slope and 
landscapes. Blue: Std_T >0.1, magenta: 0.05 < Std_T < 0.1, black: 0.0< Std_T < 0.05 
and green: wetlands and forest. All units are in meters. 
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Figure 6. Model of the spatial variability of SD fitted to the 2009 AL data. The 
colours indicate model and observations for different classes of squared slope and 
landscapes. Blue: Std_T >0.1, magenta: 0.05 < Std_T < 0.1, black: 0.0< Std_T < 0.05 
and green: wetlands and forest. All units are in meters  

Table 10 shows the estimated parameters, the scale of the unit snowfall 𝛼଴, and the 
decorrelations length (measured in meters of snow) D of the developed models. Non-
linear functions were fitted to the LSC=1 and Std_T greater than 0.05. For Sdt_T <0.05 
and for LSC=2 it was only possible to fit linear curves.  

The snow variability for the two years shows a very similar behaviour and the models for 
both years and the mean for the two years are shown in Figure 7.  
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Table 10. Parameters of Std_S model 2008 and 2009 and mean model for different 
Std_T values for LSC=1, and for LSC=2. 

Std_T 𝛼଴ D Type 
2008    
>0.1 1.3886 2.5275 Non-Linear 
0.05-0.1 2.3428 4.7912 Non-Linear 
0.0-0.05 0.3982  Linear 
Wtl/Forest 0.2825  Linear 
2009    
>0.1 1.3066 2.3010 Non-Linear 
0.05-0.1 1.9227 4.11 Non-Linear 
0.0-0.05 0.4530  Linear 
Wtl/Forest 0.3696  Linear 
Mean model    
>0.1 1.3476 2.4143 Non-Linear 
0.05-0.1 2.1328 4.4506 Non-Linear 
0.0-0.05 0.4256  Linear 
Wtl/Forest 0.3261  Linear 

 

 

Figure 7. Snow variability models estimated for 2008, 2009 and mean model. All 
units are in meters. 
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4.5 Model validation 
In a previous section, we have demonstrated that the gamma distribution is an appropriate 
model for describing the spatial frequency distribution of SD. The model we have 
presented in the above section is for estimating the spatial variability of SD and through 
the correlation analysis we have found that the spatial variability of SD is dependent on 
the mean SD and the spatial variability of the terrain estimated as the standard deviation 
of the variable T (Eq. 2). From Figure 7 we conclude that the data from 2008 and 2009 
from Hardangervidda give grounds for different models dependent on threshold values of 
Std_T and for classes of landscape types (LSC= 1, bare rock and LSC = 2, 
wetlands/forests). In figures 8-19 we show how the spatial variability of SD from 
observations from 4 randomly selected cells for each of the six flight lines for each of the 
years 2008 and 2009 compare with the models based on 2008 and 2009 data and for the 
mean model. For the model based on 2008 data we validate using 2009 data and vice 
versa. The mean model is validated on 2008 and 2009 data. In Table 8, very high 
correlations are shown between the mean snow depth and the standard deviation of snow 
depth with 0.87 and 0.89 respectively for the years 2008 and 2009. It is therefore 
instructive to investigate if such a linear relationship between the standard deviation and 
the spatial mean as input can be an alternative, or even a better model. Such a linear 
model is equivalent to assume a constant coefficient of variation of snow depth. Figure 11 
shows the result of a model where the spatial standard deviation of snow depth is a linear 
function of the spatial mean. The value of the constant CV, based on the selected cells 
from 2008 and 2009 is 𝐶𝑉 =  0.58. 

 

 

Figure 8. Model for the spatial variability of SD (Eq.2) based on 2008 data validated 
on 2009 data. Green circles indicate estimates for wetlands/forest. 
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Figure 9. Model for the spatial variability of SD (Eq.2) based on 2009 data validated 
on 2008 data. Green circles indicate estimates for wetlands/forest. 

 

Figure 10. Mean model for the spatial variability of SD (Eq.2) validated on 2008 and 
2009 data. Green circles indicate estimates for wetlands/forest. 
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Figure 11. Model for the spatial variability of SD assuming a linear relationship 
between M_S and Std_S (constant CV) validated on 2008 and 2009 data. Green 
circles indicate estimates for wetlands/forest. 

 
Table 11. Explained variance and bias for estimating the observed spatial variability 
of SD for 24 empirical distributions of SD (48 empirical distributions are used for 
the mean model and constant CV model). 

Model Explained 
variance, R2 

Bias 
(modelled/observed) 

Mod_2009 for 2008 data 0.86 1.01 
Mod_2008 for 2009 data 0.83 0.93 
Mean model for 2008 and 2009 data 0.85 0.98 
Constant CV model (CV=0.58) for 2008 and 
2009 data 

0.70 1.07 

 

From Table 11 we see that the explained variance for the proposed model is quite high, 
and clearly higher than the model which assumes a constant CV. The bias is generally 
small, and very small for the mean model. Note that the mean model and the constant CV 
model are not validated against independent data, but rather from a random sample from 
the values with which they were calibrated. 
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5 Discussion 
5.1 Terrain parameters and spatial aggregation 
As expected, we found no significant correlation between high-resolution 10x10 m SD 
data and terrain data. Figure 4 illustrates the lack of correlation between terrain parameter 
squared slope and snow depth averaged over a 10x10 m grid. Similar results were also 
found for the other terrain parameters (not shown). These results are in line with the 
studies of Deems and others (2006), Jost and others (2007), Trujillo and others (2009), 
Grünewald and others (2010) and Grünewald and others (2013). These studies show that 
at very small scale, local terrain characteristics cannot explain the SD variability. Much of 
the local snow variability seems to be a result of small scale snow and terrain effects 
which are not captured by the terrain parameters derived for one grid point of a DTM. 
The local terrain parameter is typically calculated by a moving window operation (often 
3x3 cells) and is hence representative of a larger scale than the SD data. In addition, the 
snow depth variation may be the result of processes that may have been initiated at some 
distance from the point in question. Such features include cornices and avalanches; snow 
slugging etc. A good correlation with terrain parameters thus requires averaging 
(Grünewald and others, 2013, Jost and others, 2007). These results highlight that the scale 
of observation of SD needs to match the observational scale of the terrain variables 
supposed to explain its variability.  

5.2 Linear relationships between terrain and snow 
It has been a longstanding ambition to model snow variables from topographical and 
vegetation characteristics of the landscape. Many studies report quite modest correlations 
between snow and these characteristics (Jost and others, 2007, Lehning and others, 2011, 
Gisnås and others, 2016) and furthermore, these correlations are dependent on the spatial 
support of the dependent variable and the independent variables (Erxleben and others, 
2002, Jost and others, 2007). Jost and others (2007) highlights that correlations decrease 
together with scale and that good correlations between snow parameters and terrain 
require averaging.  For the applied scale in this study, 0.5 km2 we find significant 
correlations between snow statistics, such as the mean and the standard deviation of SD 
and the statistics (mean and standard deviation) of the squared slope calculated from the 
10x10m grid cell values comprised by the 0.5 km2 grid. In addition, we find significant 
correlations to landscape classes (Table 5) when we stratify the data into bare rock 
(LSC=1) and wetland/forest (LSC=2). For stratified data according to LSC, we find, on 
average for 2008 and 2009,that the correlation between the standard deviation of squared 
slope and the standard deviation of SD is 0.65 for LSC=1 (Table 6). For LSC=2 these 
correlations are lower (Table 7), or not significant. Gisnås and others (2016) and Lehning 
and others (2011) also found high correlations in Norway and Switzerland respectively, 
when relating SD variability to various roughness indexes for alpine areas.  

The tables 8 and 9 show correlations between snow statistics. Especially for LSC=1, the 
correlations between the mean and the standard deviation of SD is high. Pomeroy and 
others (2004) found similar correlations for various landscape types in Canada.  

The results from these correlation analysis show that the spatial variability of SD is 
highly correlated with the mean SD (see also constant CV model in section 4.5). In 
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addition, the spatial variability of snow is also correlated to the terrain roughness, here 
quantified by squared slope and also to landscape classes. These features form the basis 
of the model for spatial variability of snow which is proposed in this paper. 

5.3 Statistical model for the PDF of snow 
The Cullen and Frey graphs (figures 2 and 3 Cullen & Frey, 1999) show that the Normal, 
the Log-Normal and the Gamma distribution may, for individual snow courses, all be 
reasonable choices for the spatial frequency distribution of snow. If, however, we have to 
choose one type of distribution, the Gamma distribution tends to be in best agreement 
with the empirical distributions, which was also the conclusion of Gisnås and others 
(2016). In addition to being the best fit to the empirical distributions, the Gamma 
distribution has attractive mathematical features, which have been used to model spatial 
distribution of SWE in hydrological models (Skaugen, 2007, Skaugen & Randen, 2013, 
Skaugen & Weltzien, 2016). In such a model, the spatial distribution of SWE is 
dynamical, i.e. its shape evolves according to accumulation and melting events in a way 
similar to what is observed for measured spatial distributions of SWE (see Alfnes and 
others, 2004, Skaugen, 2007).  

5.4 Modelling the spatial variability of snow 
The abundance of data presented in this study confirms and illustrates quite clearly the 
non-linear relationship between the spatial mean and standard deviation of SD (see 
figures 4 and 5). Although a linear approach seem appropriate for small and medium 
mean SDs, we can see, in figures 4 and 5, that the rate of increase for the standard 
deviation decreases as the mean increases. The validation of the models in section 4.5 
illustrates that the additional information carried in terrain and landscape type information 
allows for a higher precision in estimating the spatial standard deviation of snow 
depth.(see also Helbig and others, 2015 for a discussion on this topic). The presented 
model captures the nonlinear relationship  by introducing correlation (Eq. 2), and by 
stratifying the model according to squared slope and landscape classes, the results for 
estimating the spatial variability of SD shown in figures 7-9 are quite convincing with 
explained variance for validation dataset of about 86% (see table 11). The models are 
validated for a random collection grid cells within the same region but for a different 
year. These results compare well to results presented in Jost and others (2007) for 
catchment-scale snow variability and to Grünewald and others (2013), where the spatial 
variability was modelled locally with explained variance of 30 to 91 % but the global 
model only achieved 23% explained variance. Although the results are presented for data 
acquired at a time of (the assumed) “peak accumulation”, the model (figures 7-9) 
performs well over a range of mean SD values, which suggests that the model can be used 
to estimate the spatial variability at any time during the snow season. In addition, the 
model appears to work well for both landscape classes. The model needs, however to be 
further validated for larger areas ( > 0.5 km2) and for different regions. 

In Skaugen and Weltzien (2016) the spatial variability of precipitation, measured at 2 
meters above the ground was used to determine 𝑎଴ and D. It is not surprising that the 
spatial variability of precipitation and the spatial variability of the terrain both carry 
relevant information for describing the spatial distribution of snow. Johansson and Chen 
(2003) demonstrate the relation between between wind and topography on the spatial 
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distribution of precipitation, and Lehning and others (2008) find that the topography-
induced modification of the wind field close to the surface plays an important role for the 
spatial distribution of snow.  In addition, Skaugen and Weltzien (2016),showed that the 
parameter 𝑎଴, estimated from the spatial variability of precipitation measured at 2 meters 
above the ground was found to be significantly correlated to the landscape type (forest 
and alpine). 

The obvious next step is to implement the snow distribution model in a hydrological 
model. From a pre-analysis of the catchment in question, landscape classes and squared 
slope can be estimated. From the internal accounting of the mean SWE of the 
hydrological model, an estimate of the spatial variability, and hence the parameters of the 
gamma distribution can be calculated.  This can be achieved without including any 
additional calibration parameters to the hydrological model.  
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6 Conclusions and outlook 
At the local scale (10x10 m) we found no significant correlation between terrain 
parameters and SD. In order to investigate any possible correlation we aggregated our 
snow and terrain parameters to a larger scale. In this study we have aggregated the data to 
500x1000 m (the approximate seNorge.no scale) since one of our goals have been to 
developed subgrid snow distribution for the seNorge.no snow model and other 
operational nation-wide models using the same resolution. A natural next step is to repeat 
this study for other spatial resolutions and for other regions. We demonstrated that the 
standard deviation of several terrain parameters are highly correlated with the standard 
deviation of SD. The terrain parameters, and the squared slope in particular, could thus be 
used to explain large parts of the spatial variability of snow. The collection of terrain 
parameters investigated in this study were highly correlated, which suggests that little 
additional information is gained by including more than one terrain parameter.   

In order to establish which analytical statistical distribution best represents the SD 
distribution at Harangervidda, we analysed 48 empirical distributions, of which each 
consisted of approximately 4000 SDs. Visually, by inspecting Cullen and Frey graphs, 
and quantitatively, by Anderson-Darlington test and Kolmogorov-Smirov test, the 
Gamma distribution emerged as the most suitable distribution. 

A correlation analysis showed that the observed, spatial standard deviation of SD at the 
chosen scale of aggregation was significantly correlated to the spatial standard deviation 
of the squared slope.  In addition, the spatial standard deviation of SD was significantly 
correlated to landscape class (bare rock and wetland/forest) and to the mean spatial SD.  

A model for the spatial standard deviation of SD has been proposed that takes into 
account the dependence of snowdepth variability to terrain roughness, landscape class, 
mean spatial SD and the non-linear relationship between SD variability and mean spatial 
SD. When validated against data from different years, the model explained about 85% of 
the observed variability of SD. With this model, the parameters of the Gamma 
distribution can be estimated. The Gamma distribution can hence serve as a model for 
snow distribution in hydrological models.  

This exercise needs to be repeated for increasingly larger spatial scales so that model 
application for elevation zones of catchments or entire catchments is ensured. In addition, 
AL data from a different region (or a country) should be investigated to verify the 
generality of the method. 
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