

NORGES VASSDRAGS- OG ENERGIVERK

VASSDRAGSDIREKTORATET HYDROLOGISK AVDELING

FELTAVGRENSNING PÅ NORDRE JOSTEDALSBREEN

OPPDRAGSRAPPORT

2 - 89

NORGES VASSDRAGS- OG ENERGIVERK BIBLIOTEK

OPPDRAGSRAPPORT

FELTAVGRENSNING PÅ NORDRE JOSTEDALSBREEN

Dato: 1989-03-08 Rapporten er: Åpen Opplag: 100

Saksbehandler/Forfatter:

Mike Kennett Brekontoret

Answarlig: W MA В

Oppdragsgiver:

STATKRAFT

Sammendrag:

Breradarkjøringer på Austdalsbreen og Sygneskardsbreen utført i 1986 er benyttet til å beregne dreneringsgrensen mellom Jostedalen og Stryn, og mellom Kupvatnet, Austdalsvannet og Stegholtbreen. I tillegg er grenser i henhold til isoverflate- og bunntopografi trukket.

Kartene for disse tre grenser viser at dreneringsgrensen i dette området ligger nær isoverflategrensen med maksimaldifferanse ca. 300 m, mens den er dårlig korrelert med bunntopografigrensen.

INNHOLD

,

1.	INNLEDNING	3
2.	TEORI	3
3.	RESULTATER	5
4.	DISKUSJON	9
5.	KONKLUSJON	10
6.	REFERANSER	11

Side

FORORD

Foreliggende rapport er et resultat av bestilling B-01/6817 fra Statkraft.

Bakgrunnen for arbeidet var et ønske om å bestemme dreneringsgrensene i breområdene i forbindelse med Jostedal kraftanlegg. Dette er gjort ved bruk av breradardata skaffet i 1986 (Oppdragsrapport nr. 8-87).

Tolkningen av grensene og utarbeidelsen av denne rapport er utført av avdelingsingeniør Mike Kennett.

Oslo, mars 1989

Arne Tollan avdelingsdirektør

1. INNLEDNING

Bestemmelse av dreneringsgrenser for et område er nødvendig for å beregne områdets spesifikke avløp.

Dreneringsgrensens beliggenhet på en bre er avhengig av både overflatetopografi og bunntopografi. Tidligere ble grensene trukket på grunnlag av isoverflaten alene, fordi at det var praktisk umulig å måle istykkelse over større områder. Idag kan bunntopografien kartlegges forholdsvis raskt ved bruk av breradar.

Brekontoret anskaffet i 1981 i samarbeid med andre norske institusjoner en islandsk breradar (Sverrisson m. flere, 1980). I 1984 og 1985 ble det utført subglasial kartlegging med breradar på midtre Jostedalsbreen (Sætrang og Wold, 1986) og i 1986 på Svartisen (Sætrang, 1988) og nordre Jostedalsbreen (Sætrang og Holmkvist, 1987). Dataene fra nordre Jostedalsbreen er benyttet i denne rapporten.

Tre forskjellige skiller er beregnet i denne rapporten:

a) Isoverflategrensen, som beskriver vannskillet som om breen var ugjennomtrengelig og alt vannet ville renne på isoverflaten;

b) Bunntopografigrensen, som beskriver vannskillet hvis breen var borte, eller hvis alt vannet i og under breen skulle strømme i kanaler med atmosfærisk trykk;

og c) Bunnpotensialgrensen (kap. 2), som beskriver vannskillet på bunnen av breen. Denne antas å ligge nærmest dreneringsgrensen på isoverflaten.

3. TEORI

Vann som dannes av smelting på breoverflaten, og eventuelt regnvann, får inngang til breen ved perkolasjon gjennom snøen, eller gjennom sprekker i isoverflaten. Shreve (1972) har vist at vann i isen beveger seg vinkelrett på ekvipotensiale flater der potensialet er definert som

$$\Phi = P_{\omega} + (R_{\omega} * g * Z)$$
(1).

Z er punktets høyde over havet, P_w er vanntrykk, R_w er vannets tetthet og g er tyngdens akselerasjon. Vann på brebunnen går vinkelrett på Φ_b koter, der Φ_b er potensialets størrelse på bunnen.

Vann i likevekt med isen har trykk P_w lik istrykket P_i , mens det i en vannkanal minker med økning i vannstrømmen Q og kanalhelling (Røthlisberger, 1972). Vanntrykket blir atmosfærisk dersom Q når en kritisk verdi (Hooke, 1984).

Omkring dreneringsgrensene er kanalene små og Q ubetydelig, derfor antar vi at

 $P_{i} = R_{i} * g * (Z_{o} - Z)$

$$P_{w} = P_{i} \tag{2}$$

der

(3),

 R_i er isens tetthet og Z_o er isoverflatehøyde.

Fig. 1 viser et tenkt tverrsnitt gjennom en bre, med Φ koter beregnet fra ligningene (1) t.o.m. (3). Retningene til vannstrømmene i og under breen er også tegnet. Φ_b er beregnet ved å sette Z lik bunnhøyde, Z_b . Vannskillet på bunnen tilsvarer bunnpotensialgrensen $\langle \Phi_b \rangle$ og ligger mellom bunntopografigrensen $\langle Z_b \rangle$ og isoverflategrensen $\langle Z_o \rangle$. Ved å følge vannstrømsretningen baklengs fra $\langle \Phi_b \rangle$ til isoverflaten, kan man se at dreneringsgrensen (d.v.s. vannskillet på isoverflaten), $\langle V \rangle$, ligger mellom $\langle Z_o \rangle$ og $\langle \Phi_b \rangle$. I dette eksemplet ligger $\langle V \rangle$ nær $\langle Z_o \rangle$ fordi isoverflaten, og derfor de ekvipotensiale flatene, er bøyd forholdsvis mye.

Fig. 1. Et tenkt tverrsnitt gjennom en bre med potensialflater i Φ (tynt stiplet). Pilene viser englasiale og subglasiale vannstrømsretninger. Z_o - isoverflatehøyde; Z_b - bunnhøyde; Φ_b - potensial på bunnen (tykk stiplet); $\langle Z_o \rangle$ og $\langle Z_b \rangle$ - posisjon til henholdsvis isoverflategrensen og bunntopografigrensen; $\langle \Phi_b \rangle$ og $\langle V \rangle$ - posisjon til dreneringsgrensen henholdsvis på bunnen og isoverflaten.

I fig. 2 er det vist et virkelig tverrsnitt gjennom Jostedalsbreen, ved sadel-området mellom Fremstekåpa og Klubben (se fig. 6). Her er isoverflaten nokså flat, slik at <V> ligger nærmere $\langle \Phi_b \rangle$ enn $\langle Z_o \rangle$.

3. RESULTATER

Kart over bunntopografien (Z_b) og bunnpotensialet (Φ_b) er konstruert ved bruk av et interpolasjonsprogram "Surface" (Sampson, 1975), og er vist i fig. 3 og 4. Datagrunnlaget er:

a) radio-ekko data fra 1986,

b) NGO's 1:50 000 topografiske kart (konstruert etter fotografering i 1966),

c) digitalbarometer høydedata (fra 1986),

og d) istykkelse antatt fra isoverflatehelling, α . Data punktfordelingen er vist i fig. 5.

Breradaren ble ikke kjørt på alle deler av breen pga. bratt terreng og sprekker. På disse stedene ble det nødvendig å anta istykkelsen for å få mer fullstendige kart. Istykkelsen H er beregnet ved å anta at skjærstrekk τ på bunnen er lik 1 bar (dvs. 100 000 N/m²), der

$$\tau \approx R_i * G * H * \sin \alpha \qquad (4).$$

Denne antagelse er ofte brukt i glasiologien. H blir meget unøyaktig, men er likevel til hjelp for å definere grensene. Punkter der H er antatt slik er vist med sirkler i fig. 5.

NGO's kart er for grovt på sadelområdene der det er stor avstand mellom kotene. Dessuten kunne isoverflategrensen $\langle Z_o \rangle$ ha flyttet seg siden flyfotografering for kartet i 1966. Fig. 6 viser usikkerheten i plassering på $\langle Z_o \rangle$ fra kartet. Bestemmelse av bunnpotensialgrensen $\langle \Phi_b \rangle$ er meget følsom for isoverflatens form, derfor kan vi fra kartet alene anta lignende usikkerhet i $\langle \Phi_b \rangle$.

Fig. 3. Bunntopografi og bunntopografigrense <Z_b > (kortstiplet). NGO punkter: 1 - Leirvasshøi, 2 -Svartefjellet, 3 - Rundeggi, 4 - Stormosa.

Digitalbarometer data ble imidlertid samlet under radarmålingene. Disse gir 2 m høydeoppløsning, men vi mangler nøyaktige referansetrykkmålinger for å kunne beregne absolutt høyde. Likevel kan vi anta at lufttrykket ikke forandret seg innen korte tidsintervaler. Dermed har profiler omtrent vinkelrett på isoverflategrensen $\langle Z_o \rangle$ blitt brukt til å fastlegge flere punkter langs $\langle Z_o \rangle$, ved å plukke ut stedet der trykket er lavest langs hvert profil.

For de fleste sadelområdene (unntatt Stornosa - Svartefjellet) er forskjellen mellom denne antagelse og den fra kartet mindre enn 75 m, derfor antar vi at bunnpotensialgrensen $\langle \Phi_b \rangle$ i disse områdene er omtrent riktig selv om kartet var grunnlag for Φ_b beregningene. For sadelområdet Stornosa - Svartefjellet er det imidlertid 600 m forskjell. Derfor er barometerdataene her benyttet til å beregne den nøyaktige formen på isoverflaten ved å tilpasse profilene på krysspunktene. Denne beregnede isoverflaten er brukt i beregninger for bunnpotensialet Φ_b og grensen $\langle \Phi_b \rangle$.

Jostedal-Stryn grensene er beregnet f.o.m. Tverrfjellet (fig. 7,

punkt A) t.o.m. fylkesgrensen (punkt F). I tillegg er grensene mellom Kupvatnet, Austdalsvannet og Stegholtbreen beregnet f.o.m. Austdalsnuten (punkt D) og Kupvatnets utløp (punkt E).

Fig. 4. Bunnpotensial og bunnpotensialgrense $\langle \Phi_b \rangle$ (heltrukket). [-] - området der digitalbarometer data er brukt i plassering av $\langle \Phi_b \rangle$. NGO punkter som på fig. 3.

Bunntopografigrensen, bunnpotensialgrensen og isoverflategrensen er vist i henholdvis fig. 3, fig. 4 og fig. 6, og alle tre sammen i fig. 7. En nærmere studie av figurene viser at bunnpotensialgrensen ligger nær isoverflategrensen, men er forskjøvet litt mot tynnere is i forhold til isoverflategrensen i samsvar med fig. 1 og 2.

Tabell I viser beregnede arealer.

Digitaliserte punkter på isoverflate-, bunntopografi- og bunnpotensialgrensen er vist i henholdsvis vedlegg 1, 2 og 3. Usikkerheten i plassering av grensene er tatt på skjønn som ±100 m, og i beregnede arealer som ±0.5 km².

Bunntopografigrensen $\langle Z_b \rangle$ mellom Austdalsvannet og Stegholtbreen er usikker p.g.a. manglende breradardata på Stegholtbreen. Omkring (X=424000, Y=67000) finnes det antagelig en terskel, men vi vet ikke om den er høyere enn terskelen mellom Klubben og Stornosa

Fig. 5. Datafordelingen: breradarprofiler (heltruknelinjer) og punkter med antatt tykkelse (sirkeler). NGO punkter som på fig. 3. A - Austdalsbreen, St - Stegholtbreen, V -Vetledalsbreen, Sy - Sygneskardbreen, Si - Sikilbreen.

(X=425000, Y=66500, ca. 1230 m o.h.). Vi har antatt at den er lavere, derfor går grensen som tegnet i fig. 3. Hvis den sørligste terskelen er høyere går grensen over denne og ikke opptil Klubben. Dermed blir Austdalsvannets $\langle Z_b \rangle$ areal (Tabell I) økt med 1.5 km².

Tabell I. Beregnede arealer for isoverflate-, bunntopografi- og bunnpotensialgrensen ($\langle Z_{o} \rangle$, $\langle Z_{b} \rangle$ og $\langle \Phi_{b} \rangle$).

а 1	Areals definisjon*	<z<sub>o> (km²)</z<sub>	<z<sub>b> (km²)</z<sub>	$\langle \Phi_b \rangle$ (km ²)
Stegholtbreen	ADCBA	22.1	12.8	21.8
Austdalsvannet	DED	11.8	20.8	12.0
Kupvatnet	EFE	9.3	15.9	9.1
Total (Jostedal)	AFEDCBA	43.2	49.5	42.9

* Se også fig. 7. Strekningen langs grensen er understreket. B og C har NGO (X,Y) koordinater: B (421500,62400), C (421500,69244).

4. DISKUSJON

Dreneringsgrensen ligger mellom bunnpotensialgrensen $\langle \Phi_b \rangle$ og isoverflategrensen $\langle Z_o \rangle$ (fig. 1 og 2). Den største avstanden mellom de siste to oppstår i sadel-områder, hvor isoverflaten er nesten flat. Her antar vi at dreneringsgrensen er nærmest bunnpotensialgrensen slik som i fig. 2. I andre områder er bunnpotensialgrensen og isoverflategrensen nokså lik hverandre. Derfor kan bunnpotensialgrensen i fig. 4 brukes som den omtrentlige dreneringsgrensen.

Islag i snø og firn kan føre til at smeltevann transporteres parallelt med snøoverflaten. Likevel er det lite sannsynlig at vannet kan bevege seg mer enn noen få meter før det når en vannkanal e.l. i snøen der det fort kan komme ned til isoverflaten. Isoverflaten vil også kunne være en stedvis impermeabel flate, særlig der det finnes påfrossen is. Dessuten kan svakheter, sprekker e.l. i isen påvirke vannets vei gjennom isen. På grunn av manglende observasjoner antar vi imidlertid at vannet i Jostedalsbreen beveger seg vinkelrett på ekvipotensialeflater slik som Shreve's (1972) teori tilsier.

Vi har antatt i beregningene av bunnpotensialgrensen $\langle \Phi_b \rangle$ at vanntrykket er lik istrykket (lign. 2), men dette kan vi ikke være sikre på uten direkte trykkmålinger under breen. Stor smelting om sommeren kan føre til mindre vanntrykk og en flytting av $\langle \Phi_b \rangle$ vekk fra isoverflategrensen $\langle Z_o \rangle$ og mot bunntopografigrensen $\langle Z_b \rangle$. I fig. 7 kan vi se at dette vil gi et større dreneringsareal til Austdalsvannet.

Klimaforandringer kan føre til en betydelig flytting av dreneringsgrensen i løpet av noen år. Målinger på Midtre Folgefonni (Østrem og Tvede, 1986), som bare er 2 km bred, viser at det høyeste punktet på breen har flyttet seg ca. 70 m vestover mellom 1959 og 1981.

5. KONKLUSJON

Dreneringsgrensen på isoverflaten ligger mellom bunnpotensialgrensen og isoverflategrensen (fig. 7, $\langle \Phi_b \rangle$ og $\langle Z_o \rangle$), hvorav den første antagelig er den nærmeste. Bunnpotensialgrensen tilsvarer vannskillet på bunnen, og ligger mellom isoverflategrensen og bunntopografigrensen (fig. 3). Den maksimale avstanden mellom dreneringsgrensen og isoverflategrensen er ca. 300 m på nordre Jostedalsbreen. Dette viser at isoverflategrensen kanskje kan brukes som den omtrentlige dreneringsgrensen på andre breer der det ikke finnes istykkelsedata. Resultater fra Vatnajøkull i Island (Bjørnsson, 1988) viser imidlertidig at disse to grensene også kan være forskjøvet fra hverandre med flere kilometer. Dreneringsgrensen er dårlig korrelert med bunntopografigrensen (fig. 7, $\langle Z_b \rangle$).

Fig. 6.

Isoverflatetopografi og isoverflategrense $\langle Z_o \rangle$ (langstiplet). (-) - tverrsnitt i fig. 2. $\langle - \rangle$ - usikkerhet i plassering av $\langle Z_o \rangle$ fra NGO's kart alene. [-] - områdene der digitalbarometer data er brukt til plassering av $\langle Z_o \rangle$. NGO punkter som på fig. 3.

Dreneringsgrensen er meget følsom for isoverflatetopografien. NGO's 1:50 000 kart er for dårlige de stedene isoverflaten er nesten flat, d.v.s. på sadelområder, og gir stor usikkerhet i plassering av overflategrensen og bunnpotensialgrensen. Digitalbarometer-data er et bra hjelpemiddel, men et referansebarometer er nødvendig for å få absolutte høyder.

Sporstoffmålinger kan gjøres for å bekrefte eller avkrefte den beregnede dreneringsgrensen.

Fig. 7. Isoverflate-, bunntopografi- og bunnpotensialgrenser (henholdsvis $\langle Z_o \rangle$, $\langle Z_b \rangle$ og $\langle \Phi_b \rangle$). Kjente punkter som på fig. 3. Arealer St (Stegholtbreen), Av (Austdalsvannet) og Kv (Kupvatnet) er beregnet i tabell I.

6. REFERANSER

Bjørnsson, H.

1988: Hydrology of ice caps in volcanic regions. -Societas Scientarium Islandica, University of Iceland.

Hooke, R.L.

1984: On the role of mechanical energy in maintaining subglacial water conduits at atmospheric pressure. -Journal of Glaciology, v.30, no.105, p.180-187.

Røthlisberger, H.

1972: Water pressure in intra- and subglacial channels. -Journal of Glaciology, v.11, no.62, p.177-204.

Sampson, R.J.

1978: Surface II graphic system. -Computer Services Section, Kansas Geological Survey, Lawrence, Kansas.

Shreve, R. L.

1972: Movement of water in glaciers. -Journal of Glaciology, v.11, no.62, p.205-214.

Sætrang, A. C.

1988: Kartlegging av istykkelse på vestre Svartisen 1986. -Oppdragsrapport 3-88, Hydrologisk avdeling, Norges vassdrags- og energiverk.

Sætrang, A. C. og Holmqvist, E.

1987: Kartlegging av istykkelse på nordre Jostedalsbreen. -Oppdragsrapport 8-87, Hydrologisk avdeling, Norges vassdrags- og energiverk.

Sætrang, A. C. og Wold, B.

1986: Results from the radio-echo sounding on parts of the Jostedalsbreen ice cap, Norway. -Annals of Glaciology, v.8, p.156-158.

Sverrisson, M., Johannesson, A. og Bjørnsson, H.

1980: Radio-echo equipment for depth sounding of temperate glaciers. -Journal of Glaciology, v.25, no.93, p.477-487.

Østrem, G. og Tvede, A.

1986: Comparison of glacier maps - a source of climatological information? -Geogr. Ann., v.68A (3), 225-231.

VEDLEGG 1

Digitalisert isoverflategrensen.

F.o.m. punkt A (fig. 7) t.o.m. punkt F:

NGO-X	NGO-Y	NGO-X	NGO-Y	NGO-X	NGO-Y	NGO-X	NGO-Y
424300	62400	421934	65126	426006	65287	428110	67900
424317	62655	421816	65404	426188	65393	428100	68169
424386	62865	421834	65595	426327	65460	428042	68361
424394	63038	421971	65726	426518	65495	428247	68367
424110	63260	422092	65784	426682	65492	428604	68409
423970	63470	422310	65745	426848	65478	428845	68570
423762	63647	422434	65562	427003	65451	429095	68685
423527	63778	422561	65477	427140	65419	429300	68800
423336	63773	422703	65503	427287	65368	429528	68932
423162	63771	422927	65588	427395	65329	429619	69075
423031	63822	423168	65615	427564	65337	429844	69237
422968	63862	423391	65552	427651	65376	429943	69254
422906	64041	423800	65341	428320	65685	430121	69216
422722	64334	424195	65362	428408	65802	430258	69622
422572	64445	424471	65341	428295	66105	430176	69838
422478	64416	424723	65278	428245	66451	429905	70037
422355	64372	424959	65111	428362	66818	430052	70454
422235	64424	425197	64838	428367	67089	430010	70682
422187	64514	425437	64906	428254	67253	430269	71042
422147	64684	425705	65081	428157	67478	430389	71369
422157	64943	425864	65189	428157	67620	430414	71623

F.o.m. punkt D:

428124 66035 428408 65802 F.o.m. punkt E:

NGO-X	NGO-Y	NGO-X	NGO-Y
422869	69244	425746	70914
423143	69083	425800	70620
423294	68951	425980	70430
423450	68864	426067	70305
423739	68760	426156	70152
424089	68589	426309	69942
424481	68304	426398	69825
424715	68097	426483	69753
424885	68032	426550	69708
425217	67850	426684	69705
425568	67684	426807	69716
425711	67634	426950	69621
425803	67496	427187	69423
425850	67344	427253	69361
425853	67108	427328	69198
426099	67090	427411	69013
426227	67035	427538	68799
426426	66923	427741	68594
426967	66615	427915	68449
427151	66509	428042	68361
427314	66393		
427502	66312		
427702	66199		
427936	66151		

Digitalisert bunntopografigrensen.

F.o.m. punkt A (fig. 7) t.o.m. punkt F:

NGO-X	NGO-Y	NGO-X	NGO-Y	NGO-X	NGO-Y	NGO-X	NGO-Y
424300	62400	422990	66209	426148	64359	429876	67769
424087	62472	423138	66114	426295	64281	430153	67868
423940	62484	423334	66158	426536	64242	430465	67828
423821	62573	423512	66124	426678	64175	430672	67760
423739	62647	423661	66071	426817	64092	430837	67701
423707	62746	423855	65994	426973	63992	430974	67670
423602	62894	424017	65937	427054	63895	431118	67669
423458	63084	424179	65878	427139	63735	431319	67785
423329	63257	424351	65775	427122	63924	431399	67817
423214	63367	424400	65705	427055	64116	431725	67981
423116	63477	424437	65672	427034	64305	431796	68249
423013	63628	424496	65628	427056	64417	431711	68519
422986	63788	424574	65622	427167	64553	431566	68683
422913	63947	424691	65673	427319	64674	431374	68846
422772	64128	424746	65716	427478	64766	431202	68968
422666	64260	424796	65739	427635	64836	431101	69113
422537	64349	424901	65755	427714	64985	431057	69242
422410	64448	424957	65742	427750	65180	431012	69445
422294	64565	425087	65700	427858	65365	431012	69683
422173	64678	425125	65613	427997	65480	431007	69921
422079	64823	425154	65465	428320	65685	431009	70120
421971	64976	425181	65351	428384	65814	431005	70285
421877	65155	425194	65190	428366	66094	430992	70511
421839	65322	425195	65051	428387	66326	430984	70699
421889	65524	425197	64964	428428	66526	430998	70978
421988	65647	425197	64838	428525	66720	430822	71129
422155	65758	425339	64659	428650	66894	430718	71210
422339	65956	425519	64601	428885	67198	430616	71456
422491	66091	425666	64572	429114	67390	430414	71623
422663	66180	425823	64520	429375	67557		
422786	66205	425997	64452	429632	67655		

F.o.m.	punkt	D:	F.o.m.	punkt	Е:
NGO-X	NGO-Y		NGO-X	NGO-Y	
422869	69244		425746	70914	
423055	68402		425800	70620	
423691	67894		425980	70430	
423766	67721		426067	70305	
423794	67609		426156	70152	
423881	67511		426309	69942	
424047	67412		426398	69825	
424462	67386		426483	69753	
424617	67384		426550	69708	
424777	67379		426684	69705	
424958	67385		426807	69716	
425070	67373		426950	69621	
425193	67352		427187	69423	
425359	67248		427506	68893	
425380	67241		427647	68720	
425404	67237		427915	68408	
425441	67228		427964	68314	
425528	67208		427987	68205	
425505	67139		427988	68084	
425455	67090		427978	67892	
425405	67053		427980	67773	
425279	66971		428013	67657	
425162	66875		428370	67264	
425037	66736		428457	67190	
424878	66411		428512	67107	
424848	66213		428566	66950	
424826	66073		428525	66720	
424819	65924				
424901	65755				

VEDLEGG 3

Digitalisert bunnpotensialgrensen.

F.o.m. punkt A (fig. 7) t.o.m. punkt F:

NGO-X	NGO-Y	NGO-X	NGO-Y	NGO-X	NGO-Y	NGO-X	NGO-Y
121300	62400	121031	65126	A26727	65357	128166	68512
424300	62655	121016	65404	420727	65227	420100	60570
424317	02000	421010	00404	420034	00027	420290	0000/0
424380	02800	421834	00090	420920	65303	428433	68647
424394	63038	421971	65726	427031	65282	428559	68700
424196	63231	422092	65784	427176	65243	428688	68703
424091	63313	422310	65745	427286	65228	428882	68687
423912	63448	422434	65562	427401	65233	429249	68777
423745	63532	422561	65477	427517	65259	429459	68862
423639	63611	422703	65503	427587	65287	429537	68925
423569	63680	422927	65588	427666	65329	429600	69018
423497	63742	423141	65694	427764	65398	429670	69101
423336	63773	423349	65659	428320	65685	429712	69135
423162	63771	423487	65638	428408	65802	429844	69237
423031	63822	423752	65618	428295	66105	429943	69254
422968	63862	424002	65569	428245	66451	430121	69216
422906	64041	424723	65278	428362	66818	430258	69622
422722	64334	424959	65111	428367	67089	430176	69838
422572	64445	425197	64838	428254	67253	429905	70037
422478	64416	425437	64906	428092	67527	430052	70454
422355	64372	425761	65090	428004	67796	430010	70682
422235	64424	426019	65246	427953	68000	430269	71042
422187	64514	426259	65329	427966	68154	430389	71369
422147	64684	426457	65381	427970	68376	430414	71623
422157	64943	426599	65384	427983	68425		

426825 66552 427009 66371