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Preface 
The Norwegian Water resources and Energy Directorate (NVE) determines the distribution system 
operators’ (DSOs) allowed revenues every year. NVE applies Data Envelopment Analysis (DEA) as 
benchmarking method when determining the DSOs’ allowed revenues. The DEA model calculates 
each company’s relative efficiency by comparing all companies’ output/input ratios. The outputs are 
proxies for the tasks the DSOs have to solve when building, maintaining and operating the grid. The 
input is a measure of the DSOs’ costs related to their tasks.  

The power sector is changing and so is the tasks of the DSO. We want to explore new output variables 
for describing the task related to building, maintaining and operating grid infrastructure. It is important 
that the variables take into account that customers have different demand for power and energy. They 
should also take into account where demand, generation and injection from adjacent grids are located 
in the electricity network. The cost of transporting electricity depends on both volume of 
power/energy and the transportation distance for the power/energy. We call a compounded variable 
that includes both the distance and the volume for the electric power/energy distance.  

NVE has asked THEMA Consulting Group to provide a method for estimating measures of electric 
power and energy distance. The report presents different mathematical approaches for finding the 
optimal power distance and gives a discussion on advantages and challenges with these. The 
conclusion is that it is computationally difficult to calculate the optimal power distance, but that we 
should investigate some alternative approaches.  

Oslo, February 2019 

Ove Flataker Tore Langset 
Director,  Head of Section, 
Energy Regulatory Authority Section for Economic Regulation 
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Computing the power distance parameter

1. The power distance as a new measure in
revenue regulation

Norges Vassdrags- og Energidirektorat (NVE) is
responsible for regulating Norwegian electricity
network companies (Distribution System Operator
(DSO)). A key element of the regulation of distri-
bution grids is NVE’s Data Envelopment Analysis
(DEA) models. NVE’s DEA models are designed to
benchmark the costs of a network company given a
set of outputs that describe the tasks of the given
company. In the distribution grid, the outputs are
the number of customers, kilometres of lines and
the number of substations as proxies for demand
facing each DSO.

NVE is now considering whether and how to re-
place the existing output measures by exogenous
measures for electric power and energy distance.
In this report, THEMA provides a method for es-
timating measures of electric power distance and
energy distance, as well as a discussion of the ap-
plicability of the proposed method. The main part
of the report concerns the calculation of the power
distance, and in Chapter 3 we discuss how tomove
from the electric power distance to a measure of
the energy distance.

1.1. Motivation for studying the
electric power distance

The current outputs of the distribution grid, being
number of customers, kilometres of lines and the
number of substations, are all proxies for describ-
ing the actual task of the DSO. The actual task is
to cover demand at its customers, subject to geo-
graphical limitations and challenges with weather
and climate. NVE wishes to define a more precise
measure of the actual task of each DSO, that cap-

tures the increasingly heterogeneous companies.
The electric power distance 𝑃𝑑 is defined as the

distance of a line 𝐿 multiplied with the amount of
power 𝑃 transported on the line. The relationship
between the cost of transporting power and the
amount of power transported is however a logar-
ithmic relationship. To account for the logarithmic
relationship between cost and power we introduce
the 𝛼-parameter as a value between 0 and 1, and
define the electric power distance as the distance
𝐿 multiplied with 𝑃 to the power of 𝛼.

𝑃𝑑 = 𝐿𝑃𝛼

The relevant measure for the task of a DSO
is the minimum electric power distance within its
grid area, given an obligation to cover all loads and
to handle power fed into the grid from distributed
generation. The minimum electric power distance
is found through an optimisation procedure min-
imising the relevant distances the power must be
distributed to satisfy the exogenous demand.

The magnitude of the power distance strongly
depends on the underlying distribution of demand,
and therefore captures that the task of supplying
power to clients depends on the demand distri-
bution. A simple example of two DSOs with the
same topology but different distribution of demand
illustrate how the tasks of the two companies are
in fact very different.

Figure 1.1 depict a simple radial grid for the
two DSOs. Both companies have demand nodes
at a distance of 1 and 11 km from the substation,
the same grid topology, amount of customers, and
number of substations. The difference between
DSO A and DSO B is that A has to provide 1 MW of
demand at node 1, and 10 MW of demand at node

4 © THEMA Consulting Group (2018)



1. The power distance as a new measure in revenue regulation

Figure 1.1.: Example of two DSOs with the same topo-
logy, but different demand distribution

2, while B has the opposite demand distribution.
It can be argued that DSO B has an easier

task of supplying energy to its clients - or in other
words that DSO B has a lower output in terms of
transported power and energy when accounting
for the distance. Using the definition of electric
power distance as proposed above, this effect will
be captured:

𝑃𝑑,A = (11MW)𝛼 ⋅ 1 km + (10MW)𝛼 ⋅ 10 km
= 111MWkm

and

𝑃𝑑,B = (11MW)𝛼 ⋅ 1 km + (1MW)𝛼 ⋅ 10 km
= 21MWkm

Here we used 𝛼 equal 1.0, but other values would
give a similar effect.

Some relevant observations regarding the
value of 𝛼:

𝛼 = 0: Power demand becomes irrelevant, and
𝑃𝑑 is equal to the minimum length of lines en-
suring that all nodes are connected–aproblem
known as theminimum spanning tree. This is a
classical problem in the class of mixed-integer
problems.

𝛼 = 1: Assumes that the cost of transporting
power increase linearly with amount of power
transported.

0 < 𝛼 < 1: The area studied in this report.
This parameter choice models economies of
scale in increasing power transfer capacity of

a line. The problem becomes non-linear with
an 𝛼 between 0 and 1.

The example with DSO A and DSO B illustrates
how the two companies might look similar with
the current outputs in the DEA model, while the
actual tasks are quite different. Due to the non-
linear relationship between cost and power, the
tasks of the two companies are not as different as
suggested when 𝛼 = 1, but a power distance given
an 𝛼 between 0 and 1 might be better equipped to
describe the actual task of the companies than the
existing outputs.

1.2. Properties of the power
distance parameter

The definition of the power distance parameter in
this report is based on existing grid topology. That
is, power can only travel between nodes where
there is actual physical grid, but there are no con-
straints on the amount of power that is allowed
to flow on each line. The mathematical model
described in Section 1.4 does not compute an op-
timal topology based on the distribution of nodes
and demand, but only the minimal grid needed to
supply demand within the given topology. If 𝛼
is smaller than 1, any optimal grid will be a tree
(in a graph theoretic sense) - meaning an optimal
grid minimising the electric power distance is not
meshed and have no loops.

However, computing the power distance is not
trivial. With an 𝛼-parameter between 0 and 1,
the problem, which is formalised in Section 1.4,
becomes non-linear and non-convex. This implies
thatminimising the electric power distance is a NP-
hard problem with both global and local optima.

To highlight the issue created by non-convexity,
a simple example is described in Figure 1.2. The
figure illustrates a node with demand 1 MW con-
nected by two different paths of length 2 and 1. 𝛼
is assumed equal to 0.5. If we compute the electric
distance for different fractions of power sent via
each line, we find two optima marked by circles in

© THEMA Consulting Group (2018) 5
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2 km

1 kmSub

1 MW

Figure 1.2.: Example highlighting the non-convex prop-
erty of the problem

0 20 40 60 80 100

1

1.5

2

relative flow via the short line [%]

po
w
er

di
st
an

ce
𝑃 𝑑 local

optimum

global
optimum

Figure 1.3.: Power distance as a function of the share
of power transported via the short line

Figure 1.3. Either, all power is sent via line 1, or
all power is sent via line 2. All though it seems
obvious from Figure 1.3 that the optimal solution
is to send all power via the short line, a numerical
algorithm trying to find the power distance might
end up with all power flowing via the long line,
which is a globally suboptimal local optimum.

The implications of the properties of the power
distance parameter are revisited and explained in
more detail later in this report. In short, finding the
optimal electric power distance for a given grid is a
complex and time consuming task.

1.3. Test cases

To test the optimisation problem and solution pro-
cedure, we have defined two different test cases

based on publicly available data.

1. Radial Test Case

2. Meshed Test Case

Both the radial and the meshed test case can
be defined with one or more substations, and with
or without distributed generation.

1.3.1. Radial Test Case

The radial test case is based on an IEEE distribution
test system with 34 nodes and one feed-in source.
The system was created in 1994 and is based on
an actual distribution network in Arizona with a
nominal voltage of 24.9 kV. The system is a long
and lightly loaded radial system.

We have adapted the system to fit our purpose,
adding distributed generation, and adjusting loads
in the system. The layout of the radial system is
found in Figure 1.4
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Figure 1.4.: IEEE radial test case with one or two
substations

The radial test case has been studied for three
different configurations, all listed below.

One substation at node 1

Two substations (node 1 and 24)

Two substations (node 1 and 24) and distrib-
uted generation (node 10, 13, 31 and 33)
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1. The power distance as a new measure in revenue regulation

For the configurations with two substations,
the radial grid holds similar properties to the
meshed grid with respect to the solution proced-
ures discussed in the remaining chapters of this
report.

1.3.2. Meshed Test Case

The meshed test case consists of 22 nodes. It
is based on a CIGRE medium voltage distribution
network with 15 nodes, two substations and dis-
tributed generation. It has been adapted to fit our
purpose, in part by adding 7 new nodes. Aswith the
radial test case, themeshed test case is defined for
three different configurations.

One substation at node 1

Two substations (node 1 and 12)

Two substations (node 1 and 12) and distrib-
uted generation (node 3, 4, 5, 6, 7, 8 and 9)

Figure 1.5 provides a schematic description of
the meshed test case.
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Figure 1.5.: Meshed medium voltage distribution sys-
tem test case from the Cigre library

In Section 2.7 we discuss the results from the
meshed grid with substation at node 1.

1.4. Mathematical formulation

The most relevant parameters and variables of the
power distance problemare explained in the follow-

ing lists. At the end of the section, we formulate the
problem itself.

Sets

We consider the following sets

𝑁 Set of all nodes, indexed 𝑖 or 𝑗
𝑁𝑆 Subset of substations, indexed 𝑗
𝐸 Set of all lines

𝐸+𝑗 Subset of all import lines at node 𝑗
𝐸−𝑗 Subset of all export lines at node 𝑗

Note: we require the flows on lines to be pos-
itive. Hence, we have two directed lines between
connected nodes 𝑖 and 𝑗, one representing flow
from 𝑖 to 𝑗 and the other representing flow from 𝑗 to
𝑖. For an example network of three nodes, we have
the set of lines 𝐸 to be

𝐸 = {𝑝12, 𝑝21, 𝑝13, 𝑝31, 𝑝23, 𝑝32} . (1.1)

The subset of import lines at node 2, 𝐸+2 , is
{𝑝12, 𝑝32}, and the subset of export lines from node
2, 𝐸−2 , is {𝑝21, 𝑝23}. All lines appear once in 𝐸 and
once in exactly two of the subsets. For example,
the line 𝑝12 is in 𝐸, 𝐸−1 and 𝐸+2 .

Parameters

We consider the following parameters

𝐷𝑗 Demand in node 𝑗
𝐺𝑗 Generation in node 𝑗
𝐿𝑒 Length of line e

is a line between 𝑖 and 𝑗
𝑆𝑗 Upper limit on power through

substation

𝑆𝑗 Lower limit on power through
substation

© THEMA Consulting Group (2018) 7
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Variables

We consider the following variables

𝑝𝑒 ∈ ℝ+ Power flow on line 𝑒
𝑠𝑗 ∈ ℝ Power to/from substa-

tion 𝑗

Objective function

The objective is to minimise the cost of power
transfer, under the assumption that the marginal
cost decreases (𝛼 < 1). In addition, the direction
of the flow does not affect the cost, hence the
cost function uses the absolute value of the flow,
denoted by | ⋅ |. The cost function is given by

𝑃d = min
𝑝𝑒

∑
𝑒∈𝐸

𝐿𝑒 |𝑝𝑒|𝛼 (1.2)

The absolute operator can be dropped if one poses
the condition that 𝑝𝑒 ≥ 0, which we will do in the
following, see also (1.5).

The reader is reminded that this cost function
is non-convex under the assumption that 0 ≤ 𝛼 < 1.

Constraints

At each node, the sum of power fed into the node
must match the local demand, generation, or sup-
ply from a substation

∑
𝑖∈𝐸+

𝑗

𝑝𝑖 − ∑
𝑒∈𝐸−

𝑗

𝑝𝑒 + 𝑠𝑗 = 𝐷𝑗 − 𝐺𝑗 ∀𝑗 ∈ 𝑁 (1.3)

The first term in the sum denotes the (positive)
flows into the node, the second term the (positive)
flows out of the node. While it would be more
elegant to allow negative flows, the requirement
in the cost function that 𝑝𝑒 is positive makes this
formulation necessary.

In addition, there are some basic constraints on
the variables

𝑆𝑗 ≤ 𝑠𝑗 ≤ 𝑆𝑗 ∀𝑗 ∈ 𝑁 (1.4)

𝑝𝑒 ≥ 0 ∀𝑒 ∈ 𝐸 (1.5)

Constraint (1.5) ensures that all flows are positive,
which is essential for the cost function. In theory,
this allows flows in both directions on the same
line, however, the cost imposed on flows prevents
this from happening.

In any node that is not a substation, 𝑆𝑗 and 𝑆𝑗
is equal to zero, and 𝑠𝑗 will not take a value.

Feasibility

The current formulation implies the relationship

∑
𝑗∈𝑁

𝑆𝑗 = ∑
𝑗∈𝑁

(𝐷𝑗 − 𝐺𝑗) ,

stating that total energy supplied by substations is
equal to the total net demand. If the substation
capacity, limited by (1.4), and the distributed gener-
ation in the system is insufficient to cover demand,
the problem has no solution. The interpretation is
that some energy can not be supplied. To allow
for systems with too little capacity in certain hours,
the problem could be redefined by adding a slack-
variable to Constraint (1.3), associated with a high
cost in the objective function. This cost could be in-
terpreted as representing kvalitetsjusterte inntekts-
rammer ved ikke levert energi (cost of energy not
supplied, KILE) costs incurred by a concessionary
failing to supply sufficient energy.

8 © THEMA Consulting Group (2018)



2. Reformulation and solution approaches

2. Reformulation and solution approaches

This chapter describes different solution ap-
proaches for the power distance problem stated
in Section 1.4. Calculating the minimum power
distance for a given, meshed topology is a non-
convex problem, and only a brute-force approach
testing all possible solutions can guarantee a
global optimum. Methods for finding a local
optimum perform well in our test systems, but can
not guarantee global optimality.

We begin by providing an overview of an over-
all procedure that can be applied to all solution
approaches, proceed by describing the individual
steps, and end by giving examples and results
highlighting the issues discussed throughout the
chapter.

2.1. Overall algorithm

Figure 2.1 provides a high level overview of the
overall solution algorithm applied to the power dis-
tance problem described in the previous chapter.
In this chapter, the different steps in the solution
algorithm is described in more detail.

2.2. Pre-processing to reduce
complexity

Grid configurations found in practical applications
may consist of a significant number of nodes. This
can be challenging for any solution approach. How-
ever, the properties of the problem and of real world
networks allow for some simplification.

The power distance can be directly computed
for any radial grid. Challenges concerning the non-
convexity of the problem only arise when the grid
is meshed. Hence, to reduce the problem size, in

Initialise problem
based on input

Does the problem
(still) have

radial feeders?
Locate feeder

Calculate
and store

power distance
for feeder

Remove feeder
from problem

Is the remaining
problem meshed?

Reformulate
problem

Normalise
problem

Set initial
condition for
optimisation
procedure

SOLVE
optimisation
problem

Calculate
and store

power distance
for problem

The total power distance is the
sum of all stored power distances

yes

no

yes

no

pre-processing

Figure 2.1.: Flowchart of the overall solution algorithm

a pre-processing stage all radial feeders can be
separated from the problem, and solved independ-
ently. The steps of the pre-processing procedure
is highlighted by a red, dotted box in Figure 2.1,
and the algorithm for identifying radial feeders is
summarised as a simplified pseudo-code in Al-

© THEMA Consulting Group (2018) 9
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gorithm 1.

Algorithm 1 Identify radial feeders
1: procedure ǣȰȨǞǘǣǦǓ_ǦȨȨȰȨǚǙ(𝐿, 𝑖)
2: 𝑛 ← 0
3: 𝐴0 ← 𝐴
4: 𝐷 ← 𝒟
5: for 𝑖 ← 1..𝑁 do
6: if 𝑑𝑖 = 1 & 𝑆𝑖 = 0 then ▷ This is a leaf
7: 𝑘 ← 𝑖
8: 𝑗 is neighbour of 𝑘
9: 𝑛 ← 𝑛 + 1 ▷ New subgraph

10: add line 𝑘, 𝑗 to 𝐴𝑛
11: remove line 𝑘, 𝑗 from 𝐴0
12: 𝑑𝑖 ← 0
13: while 𝑑𝑗 = 2 & 𝑆𝑗 = 0 do
14: 𝑑𝑗 ← 0
15: 𝑘 ← 𝑗
16: 𝑗 ← neighbour of 𝑘
17: add line 𝑘, 𝑗 to 𝐴𝑛
18: remove line 𝑘, 𝑗 from 𝐴0
19: end while
20: 𝑑𝑗 ← 𝑑𝑗 − 1
21: Add net demand of 𝐴𝑛 to node 𝑗
22: end if
23: end for
24: return 𝐴1, .., 𝐴𝑛
25: end procedure

First, we need a matrix 𝐴 that has positive
elements if there exists a connection between two
nodes. 𝐴 is a logical and symmetric matrix of
size 𝑁𝑥𝑁, where 𝑁 is the number of nodes in the
grid, and can be created based on the input to the
optimisation problem. If there exists a line between
node 𝑗 and 𝑖, elements 𝐴𝑖𝑗 and 𝐴𝑗𝑖 has the value
1. If there is no line between the two nodes, the
elements hold the value 0.

To locate the radial feeders, we need to search
for nodes that are at the end of a feeder. To identify
these nodes, we start by applying the definition of
the Laplacian matrix to 𝐴,

ℒ = 𝒟−𝒜 ,

Where 𝒟 is the degree matrix, and 𝒜 is the
adjacencymatrix here represented by𝐴. Themath-

ematical relationship is used to identify subgraphs.
In the adjacency matrix, each element indicates if
a pair of nodes is adjacent or not in the graph.
The adjacency matrix in this problem definition is
a simple graph1, i.e. the adjacency matrix is a sym-
metric (0,1)-matrix with zeros on the diagonal. The
degree matrix 𝒟 is a diagonal matrix which con-
tains information about the degree of each node.
The degree is the number of edges connected to
one node. I.e. if node 𝑖 is connected to both node
𝑗 and 𝑘, the degree of node 𝑖 is 2. 𝑑𝑖 refers to the
diagonal element 𝑖 of the degree matrix 𝒟. For a
graph with 5 nodes as defined in Figure 2.2, we get
the following Laplacian matrix, degree matrix, and
adjacency matrix.

1

2
3

4

5

Figure 2.2.: Simple graph with 5 nodes

ℒ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 0 0
−1 2 −1 0 0
0 −1 3 −1 −1
0 0 −1 1 0
0 0 −1 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

−

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 0
0 0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

If a node has degree 𝑑𝑖 = 1 and no substation,
it is a leaf and is at the end of a feeder (line 6 in
Algorithm 1). The algorithm proceeds along the

1undirected and without multiple edges or loops

10 © THEMA Consulting Group (2018)
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feeder until a node with more than two neighbours
(𝑑𝑖 > 2) is found. The identified nodes can be
separated as a subgraph representing a radial end
of the original graph. This algorithm is applied
to each leaf, and all radial feeders are identified
and removed from the original graph. The returned
graph 𝐴0 holds all substations, and a potentially
meshed grid connecting them. The subgraphs 𝐴1
to 𝐴𝑛 are purely radial grids, for which the power
distance can be computed directly.

Figure 2.3 highlight the radial feeders identified
in the meshed test case with one substation. The
radial feeders are marked by red or yellow dashed
lines. The algorithm moves from node number 1
to 2 and so on, and identifies the first radial feeder
12-13-14. The feeder is removed from the problem,
and the algorithm proceeds to feeder 17-16-15.
The next radial feeder that is identified is 19-18-15-
14-8. At last, the radial feeders 21-20-7 and 22-9
are removed from the problem.
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Figure 2.3.: Simple graph with 5 nodes

After the pre-processing procedure of remov-
ing radial feeders, the remaining part of the grid
in Figure 2.3 is marked by black lines. It is still a
meshed grid, but with a reduced size.

Further pre-processing

For the potentially meshed graph 𝐴0, further pre-
processing steps can be applied.

1. The graph may still hold nodes with degree 2,
but without any demand or generation. These
nodes add additional states to the optimisation

problem, but will not affect the final result.
Hence, these nodes can be removed from the
graph.

2. There may be subgraphs connected by only
one node. These subgraphs can be separated
from themain problem, as the flow through this
so called articulation point is fixed. Tarjan’s
algorithm 2 can be used to identify articulation
points.

Operators of the distribution grid usually have
the option to open circuit breakers in order to re-
move unnecessary loops in the grid. This is done
for a number of operational reasons. Using this in-
formation would allow to further simplify networks,
and even to reduce the number of cycles ormeshes
that are creating the challenges in computing the
power distance. However, there are challenges
with this approach. First, data about circuit breaker
settings is usually not available. Second, it would
allow the grid operator to increase the power dis-
tance defining his output by setting the breakers
into specific positions.

2.3. Reformulation

The problem described in Section 1.4, and specific-
ally the cost function in (1.2) constitute a geometric
problem. Geometric problems are not generally
convex, but reformulations of the cost function and
constraints allow some geometric problems to be
transformed into convex problems[1].

The basic idea is to apply a change of variables
by taking the logarithm of the variable that has an
exponent. Using ̃𝑝 = log 𝑝 and 𝐿̃ = log 𝐿 we have

𝑃𝑑 = min ∑
𝑒∈𝐸

e𝑝̃𝑒𝛼+𝐿̃𝑒 , (2.1a)

2Tarjan’s Algorithm: An algorithm in graph theory for finding
strongly connected components.
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Computing the power distance parameter

s.t. ∀𝑗 ∈ 𝑁

∑
𝑖∈𝐸+

𝑗

e𝑝̃𝑖 − ∑
𝑒∈𝐸−

𝑗

e𝑝̃𝑒 + 𝑠𝑗 = 𝐷𝑗 − 𝐺𝑗 (2.1b)

𝑆 ≤ 𝑠𝑗 ≤ 𝑆 (2.1c)

Note that ̃𝑝𝑒 is unbounded in ℝ. This implies,
that 𝑝𝑒 is strictly positive as the logarithm is only
defined for positive arguments. The change of
variables therefore includes a different constraint
on 𝑝𝑒 than (1.5), namely 𝑝𝑒 > 0.

The canonical reformulation proceeds by tak-
ing the logarithm of this function

̃𝑃𝑑 = min log ( ∑
∀𝑒∈𝐸

e𝑝̃𝑒𝛼+𝐿̃𝑒) , (2.2)

but in our case this is not possible for the con-
straints, as the constraints may take a non-positive
value and the logarithm is not defined for argu-
ments that are not strictly positive.

The issue arises as we violate one of the condi-
tions for the reformulation, namely that all terms3

in both the cost function and the constraints have
positive coefficients, see (4.41) in [1]. However,
as we need to allow for flows in both directions
on any line, we either have negative coefficients or
negative power flows – either of which violates a
pre-condition for the reformulation.

The reformulation does provide a convex cost
function, and hence allows application of non-
linear solution approaches. However, even after
the reformulation the problem is non-convex in
the constraints, meaning that there are local op-
tima. Finding the global optimum is np-hard or np-
complete, and the solution time grows exponen-
tially with the number of decision variables. In our
case the number of decision variables equals the
number of lines in the grid.

3more precisely, all monomials constituting the geometric
problem

2.4. Normalisation

The problem consists of exponential functions. If
the arguments ̃𝑝 and 𝐿̃ are large, the exponential
terms may become very large. The numerical al-
gorithms could become inaccurate, or it may not
be possible to even represent the terms on a com-
puter. For example, the largest 8-Byte floating point
number is typically 1.7 × 10308. If (𝛼 ̃𝑝 + 𝐿̃) is larger
than 709, this value would be exceeded. It is there-
fore recommended to normalise the parameters
before solving the problem, using a normalisation
factor for power, ̄𝑝, and for distance, 𝐿̄.

𝑝′𝑒 = 𝑝𝑒/ ̄𝑝 , 𝑠′𝑗 = 𝑠𝑗/ ̄𝑝 , (2.3)

𝐷′
𝑗 = 𝑝𝑒/ ̄𝑝 , 𝐺′

𝑗 = 𝐺𝑗/ ̄𝑝 , (2.4)

𝐿′𝑒 = 𝐿𝑒/𝐿̄ , (2.5)

where

̄𝑝 = max
𝑗

𝐷𝑗 , 𝐿̄ = max
𝑒

𝐿𝑒 . (2.6)

We have chosen themaximumdemand at any node
and the longest line as normalisation factors, but
other factors could be used as well. The trans-
formed variables ̃𝑝 and 𝐿̃ are similarly normalised

̃𝑝′𝑒 = log (𝑝𝑒̄𝑝 ) , 𝐿̃′ = log (𝑝𝑒̄𝑝 ) . (2.7)

Finally, the power distance is formulated as

𝑃𝑑 = 𝐿̄ ̄𝑝𝛼 ∑
𝑒∈𝐸

e𝑝̃′𝑒𝛼+𝐿̃′𝑒 , (2.8)

The constraints simply use the scaled variables
instead of the original variables, i.e.,

∑
𝑖∈𝐸+

𝑗

e𝑝̃′𝑖 − ∑
𝑒∈𝐸−

𝑗

e𝑝̃′𝑒 + 𝑠′𝑗 = 𝐷′
𝑗 − 𝐺′

𝑗 (2.9)

In the remainder of the report we use the original
variables to simplify notation. In all test runs, we
have scaled the inputs according to the equations
above.
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2. Reformulation and solution approaches

2.5. Initial condition and local
optima

The problem, as already stated, is inherently non-
convex. A non-convex problem will have several
locally optimal solutions, but just one globally op-
timal solution.

2.5.1. Local versus global optima

A simple illustration of local versus global optima
for a minimisation problem can be found in Fig-
ure 2.4. In Figure 2.4 we have 4 local optima,
of which only one of them is the global optimum
(number 4). A mathematical solver will check if it
can find a better solution bymoving in any direction
from the current solution (increasing or decreasing
the value of𝑥). In a local optimum, the solver will
not find a better solution in any direction, and it
has no way of knowing if it has found the global
optimum.

Figure 2.4.: Local versus global optima for aminimisa-
tion problem

Imagine that you are standing at the bottom
of a valley equal to local optimum number 3 in
Figure 2.4. You can only see hillsides in all direc-
tions, and you can conclude that you are standing
at the lowest point in the area. However, there
could exist a lower point behind the hills. You could
move towards optimum number 2, but you are not
guaranteed to find a lower point. Even if you are

standing at optimum number 4, which is the global
optimum, you have no way of knowing that you are
at the lowest point.

Non-convex problems are defined as NP-hard
or NP-complete, and there is no known way to find
a solution quickly. The only way of knowing if you
have found the global optimum for a non-convex
optimisation problem is to check every single solu-
tion, and the time required to solve the problem
increases rapidly as the size of the problem grows.

For problems of the size studied in this report,
it is possible to find the globally optimal solution
by searching through the entire solution space.
However, the problem has bad scalability, and it
could be challenging, if not impossible, to find and
guarantee the globally optimal power distance for
realistically sized problems.

In Section 2.6 we present three ways of solv-
ing the electric power distance problem. Two of
these approaches can only guarantee a local op-
timum, but they are expected to be much faster
than the brute force approach (approach 3) where
we search through the entire solution space. There
are however ways to increase the probability that
the local optimum found by a solver is a quite good
optimum.

2.5.2. The importance of the initial
condition

All solvers start with a feasible solution to the prob-
lem as an initial condition from where it searches
for a better solution. Such an initial condition can
be defined by the user, and it could be designed
based on known properties of the problem. The
initial condition set the basis for the search per-
formed by the solver, and if the initial condition is
far from the optimal solution it could end up at a
poor local optimum.

In Figure 2.5 there are two red crosses rep-
resenting different initial conditions for a solver
searching for the optimal solution. Starting in cross
number 1, the solverwill search for a better solution
in the direction of local optimum number 1. Once
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Figure 2.5.: Different initial conditions

it reaches the local optimum, it will stop searching
even though there are in fact two better solutions
to the problem. If we are able to provide the solver
with an initial condition starting in cross number 2,
it will find the globally optimal solution! All though
it could be possible to design initial conditions
that provide some certainty that we have reached
a good solution, there is no guarantee that this
solution is in fact the global optimum.

2.5.3. Designing the initial condition

There are several approaches that could be applied
when designing the initial condition. We will test
the following approaches:

Power flow Computing the power flow is a prob-
lem with well-known solution approaches. The
flows from a power flow can be directly used to
initialise the decision variables in the power dis-
tance problem. In the following, this is referred
to as ”power flow” initial condition.

Flat power flow Alternatively, one can simply as-
sign the same flow to all lines. As we have
separate decision variables for flows in both
directions, using such an approach will lead to
a zero net flow. We test both a high and a low
value for the flat flows. We call these ”high flat
flow” and ”low flat flow”.

Flows based on local demand The fourth initial

condition is similar to the flat flows. However,
we use the average demand of the start
and end node of each line as a level for the
initial flow. Again, as we set the flow in both
directions to the same value, the net flow is
zero. We call this condition the ”local flow”
condition.

Of the four alternative initial conditions, only
the power flow condition is a feasible solution. As
all other initial conditions have net zero flow on the
lines, they cannot cover the demand at the begin-
ning. However, we will see that all four initial con-
ditions lead to feasible solutions. We also tested
initial conditions with directed flows (different val-
ues per direction), but thesewere very unstable and
we have excluded them from the report.

Results for the different initial conditions are
shown in Section 2.7.3.

2.6. Solution approaches

In the following we describe three ways of solving
problem (2.1). The first two approaches attempt
to find a local optimum based on a good initial
condition, while the third is a brute force approach
for finding the global optimum.

2.6.1. Approach 1: Approximation with
a Sequential Quadratic Program

Traditionally, solvers for Linear Programs (LPs) and
Quadratic Programs (QPs) were available, while
general nonlinear problems could not directly be
solved. The Sequential Quadratic Programming
(SQP) approach is a typical method to tackle non-
linear problems by approximating them with a QP,
and repeatedly solving until hopefully one con-
verges to a solution. Using SQP allows us to use
any conventional QP-solver.

The SQP approach

The cost function of a nonlinear problem can be
approximated by a quadratic cost function, and
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2. Reformulation and solution approaches

the constraints can be linearised around a starting
condition, yielding a QP. The solution to this QP is
closer to a local minimum than the starting condi-
tion. Repeatedly applying the QP-reformulation will
make the solution converge to a minimum.
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Figure 2.6.: Simplified depiction of the SQPmethod for
a 1-dimensional exponential cost function. Starting at
𝑥0, repeated quadratisation and minimisation leads to
𝑥3 – the minimal cost within the feasible set.

The SQP approach is sketched in Figure 2.6.
The green line is the cost function 𝐽, 𝑥0 the initial
starting condition, and the solution is constrained
by 𝑥 ≥ 0.5. The quadratic approximation of the cost
function at 𝑥0 leads to 𝐽0. By minimising 𝐽0, here
highlighted by the first red line, one arrives at the
minimum of 𝐽0, and with this at 𝑥1. The approach is
now repeated for 𝐽1, 𝐽2 – until one arrives at 𝑥3. Any
further search will be bounded by the constraint.

The general form of a quadratic cost function 𝐽
is

𝐽𝑘 = 𝛥x⊺𝑘Q𝛥x𝑘 + 𝛥x⊺𝑘R , (2.10)

where 𝛥x𝑘 = x𝑘+1 − x𝑘 is the distance from the
current solution. In our case, x are the power flows
̃𝑝 across each line, and the current solution is the

result of the previous iteration,

x𝑘+1 = x𝑘 + 𝛥x . (2.11)

Of course, this leaves the challenge of choosing the
initial starting condition 𝑥0. Also, the user needs
to define a stop condition. Usually this is a fixed
number of iterations and a condition on the change
in the cost between two iterations. If the change
in cost is lower than a small bound 𝜖, the iteration
is stopped even before the maximum number of
iterations is reached.

SQP for the power distance

The matrices 𝑅 ∈ ℝ𝑛 and 𝑄 ∈ ℝ𝑛×𝑛 are the first
and second partial derivatives of the original cost
function (2.2). The linear terms 𝑅𝑖 are computed
for each iteration 𝑘 by

𝑅𝑖,𝑘 =
𝜕
𝜕 ̃𝑝𝑖

(∑
𝑒∈𝐸

e𝑝̃𝑒𝛼+𝐿̃𝑒)
||||𝑝̃𝑖,𝑘

= 𝛼 e𝑝̃𝑖,𝑘𝛼+𝐿̃𝑖 . (2.12)

Note that ̃𝑝𝑖,𝑘 is the result of the previous iteration,
and hence a fixed parameter. Similarly, we can
compute the quadratic cost factors 𝑄

𝑄𝑖𝑗,𝑘 =
𝜕
𝜕 ̃𝑝𝑗

𝑅𝑖,𝑘 = {
0 if 𝑗 ≠ 𝑖 ,
𝛼2 e𝑝̃𝑖,𝑘𝛼+𝐿̃𝑖 if 𝑗 = 𝑖 .

(2.13)

The off-diagonal terms vanish as 𝑅𝑖 is not a func-
tion of ̃𝑝𝑗 with 𝑖 ≠ 𝑗. This can be interpreted as that
there is no impact of the flow on one line on the
cost of another line.

Additionally, the constraints need to be linear-
ised. Again, linearisation uses the partial differen-
tial, evaluated at the current operating point 𝑥𝑘. The
general form is

𝑓(𝑥𝑘 + 𝛥𝑥) ≈ 𝛥𝑥 𝜕
𝜕𝑥𝑓(𝑥)

|||𝑥=𝑥𝑘
+ 𝑓(𝑥𝑘) , (2.14)

where the decision variable 𝑥𝑘+1 enters the con-
straint via 𝛥𝑥 = 𝑥𝑘+1 − 𝑥𝑘. Constraint (2.1b) in its
linearised form is given by

∑
𝑖∈𝐸+

𝑗

(𝛥 ̃𝑝𝑖,𝑘 + 1) e𝑝̃𝑖,𝑘 − ∑
𝑒∈𝐸−

𝑗

(𝛥 ̃𝑝𝑒,𝑘 + 1) e𝑝̃𝑒,𝑘 + 𝑠𝑗

= 𝐷𝑗 − 𝐺𝑗 , (2.15)
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with 𝛥 ̃𝑝𝑖,𝑘 = ̃𝑝𝑖,𝑘+1 − ̃𝑝𝑖,𝑘 consisting of the decision
variable ̃𝑝𝑖,𝑘+1 and the fixed parameter ̃𝑝𝑖,𝑘.

2.6.2. Approach 2: Solving with non-
linear solver

In recent years, solvers that can efficiently and reli-
ably solve non-linear problems directly have been
developed. The reformulated problem (2.1) can
be readily transferred to such a solver. One such
solver is IPOPT [2], which we will use in the follow-
ing.

Similar to the SQP-approach, a starting con-
dition for the non-linear solver needs to be set.
However, as non-linear solvers can directly use the
differentials of functions rather than the linearised
version, the solution should be more robust and
efficient.

2.6.3. Approach 3: brute-force iteration
over reduced networks

Due to the inherent non-convex nature of the prob-
lem, we are faced with the challenge of finding the
global optimum. Approach1 and 2 are methods for
finding a local optimum, and the result depends on
the initial condition.

Finding the global optimum is a np-problem,
meaning that the computation time grows more
than polynomial with the number of variables – in
our case the number of power lines. To illustrate
why this is not simply a question of computation
power, take this example: assume that a problem
with ten lines takes one hour to solve, and the
computation time grows exponentially. Doubling
the number of lines to 20 would increase the com-
putation time to 42 days, adding another ten lines
to 119 years, and solving over 53 lines would lead
to a computation time of roughly one billion years.

Nevertheless, for the small systems studied in
this report, the global optimum can be found. This
provides an indication on which starting conditions
might be useful, or how far the solutions found by
Approach 1 and 2 are from the global optimum in

these specific cases.
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Figure 2.7.: The meshed system with two simple
cycles, marked green and yellow

Approach for finding the global optimum

We use the fact that each optimal solution – local
and global alike – has a tree topology. This means,
that any solutions returns a radial topology without
cycles. If there are several substations, all possible
solutions will consists of one tree per substation,
and these trees are not connected.

We hence test all possible combinations of
removing lines from the topology that fulfil these
criteria:

Each node is connected to exactly one substa-
tion

The substations are no longer connected to
each other. This splits the graph into a number
of components that is equal to the number of
substations

Every component in the graph (one per substa-
tion) is a tree

We can then compute the power distance for each
combination of removing lines, and selecting the
lowest power distance gives us the global op-
timum.

Algorithm Assuming only one substation, we fol-
low steps 1 to 3:

1. Find all lines that are part of a cycle. Lines
that are not part of a cycle are called bridges,
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(a) Iteration 1: removing line 4–5. Still one remaining
cycle (3–8–9–10–11–4–3).
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(b) Iteration 2: removing lines 4–5, 5–6. Node 5 not
connected.
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(c) Iteration 3: removing line 4–5, 4–11. Scaled power
distance: 4.876 (with 𝛼 of 0.9).
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(d) Iteration 4: removing lines 4–5, 3–8. Scaled power
distance: 5.227 (with 𝛼 of 0.9).

Figure 2.8.: Four iterations in the brute force approach

as removing these lines leads to the graph not
being connected

2. Iterate over all combinations of removing lines
that are not bridges from the graph

If the new graph is not connected, ignore
this combination

If the new graph is not radial, continue to
remove lines

If the new graph is radial and connected,
store this combination and compute the
power distance

3. The lowest power distance found is the global
optimum

Example The first step, finding cycles, can be
illustrated with Figure 2.7. Here, all lines that are
part of a cycle are coloured, and all bridges are

black. Removing any of the bridges would lead to
one or more nodes no longer being connected to
the substation. Algorithms for finding cycles exist,
but generally it is difficult to identify cycles. It is
easier to find all bridges. For this, a variation of
Tarjan’s algorithm can be used.4 Tarjan’s algorithm
has complexity 𝒪(𝑉 + 𝐸),5 meaning that the com-
putation time grows only linearly with the number
of nodes 𝑉 and and edges 𝐸.

In the second step, we iterate over any com-
bination of removing lines that are not bridges.
Figure 2.8 shows a number of these iterations. The

4https://en.wikipedia.org/wiki/Bridge_(graph_theory),
https://www.geeksforgeeks.org/bridge-in-a-graph/

5The Big-O notation 𝒪(⋅) is a measure for computational
complexity. It means, that the computation time does
not grow faster than the argument of 𝒪 multiplied by a
constant. E.g., if your data set has 𝑛 elements, and you
run an alogrithm with 𝒪(𝑛2), doubling the number of data
points will lead to a computation time four times longer.
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Figure 2.9.: Ensuring radial topologywithmultiple sub-
stations: Using the additional line 1–12, we can apply
the same algorithms and iteration as for the single-
substation case (while ignoring line 1–12 in the iter-
ation). Removing lines 4–5, 4–11, 8–14, and dropping
the additional line 1–12 leads to two components with
one substation each.

first iteration does not remove all cycles, so we
need to remove an additional line. The second
iteration leads to a disconnected node, and we
discard it. Both checking if the graph is radial
and if it is connected can be done by using Depth-
First Search (DFS) – effectively traversing the graph
and checking if all nodes are reached (then it is
connected), and if any node is reached twice (then
it has a cycle). DFS has complexity 𝒪(𝑉 + 𝐸). The
third and fourth iteration are both connected and
do not have cycles – so we compute the power
distance. As we already have a radial system and
simply need to add the power distances for each
part of the line, we avoid any optimisation for 𝑃𝑑.
The complexity of finding 𝑃𝑑 in a radial system is
also 𝒪(𝑉 + 𝐸). Finally, of these four iterations, the
third has the lowest power distance and we use
this as our optimal solution until a better solution
is found in another iteration.

Extension to multiple substations In the case of
multiple substations, we need to ensure that the
network is split in such a way that each node is
connected to exactly one substation. At first, this
seems complex, as we would need to split the
graph into a number of components equal to the
number of substation, while at the same time en-
suring that exactly one substation remains in each

component. However, we can apply a trick to avoid
the issue: we can connect all substations to the
first substation, but ignore these additional connec-
tions in the iterations. As we ensure the network to
be radial and connected, these additional connec-
tions between the substations automatically lead
to the desired topology, see also Figure 2.9.

Scalability

Most operations described above are on the order
of 𝒪(𝑉 + 𝐸), meaning that the computation time
grows linearly with the number of nodes 𝑉 and
edges 𝐸. This is true for finding all bridges, and for
checking if the graph is connected and radial.

However, iterating over all combinations is a
combinatorial problem. The number of combina-
tions that need to be checked is on the order of
𝒪(𝐸𝐶), with number of edges 𝐸 and number of
cycles 𝐶. As both the complexity of an iteration
grows with 𝒪(𝑉 + 𝐸) and the number of itera-
tion increases with 𝒪(𝐸𝐶), the total computational
complexity grows with 𝒪((𝑉 + 𝐸)𝐸𝐶), or roughly
𝒪(𝐸𝐶+1).

We can further tighten this bound by using that
not all combinations of removed lines lead to a
connected graph. Assuming a problem with two
cycles, only combinations of one line from one
cycle and one line from the other cycle are valid.
Hence we can give an upper bound for the com-
plexity on the order of 𝒪(𝐸1𝐸2), with 𝐸1 the number
of lines in cycle one, and 𝐸2 the number of cycles
in cycle two. Generalised, this can be written as
𝒪(∏𝑖 𝐸𝑖), which is always tighter than 𝒪(𝐸𝐶).

Considering larger problems, the scalability is-
sue lies more with the complexity of the topology
in terms of the number of cycles, than with the
number of total line elements or line elements per
cycle. For larger networks, it is not unreasonable to
expect a large number of cycles.6

6The upper limit for the number of cycles in a graph grows
exponentially with the number of nodes – consider the
case of a network where every node is connected to
every other node. However, such topologies would not be
realistic in power systems.
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2.6.4. Other solution approaches

To circumvent a full solution of the problem but at
the same time increase the chance of finding the
global optimum, some alternative approaches can
be applied. These however have their own draw-
backs, and we have not implemented and tested
them.

Genetic algorithms This class of algorithms at-
tempts to mimic evolution. From any starting
point, a number of similar solutions are gen-
erated, and the best ones are kept for further
searches. Depending on whether there was
an improvement, the step size or mutation rate
may be adjusted. This should enable the al-
gorithm to leave a local optimum if the cost
function is sufficiently well behaved.

On the downside, this kind of algorithm
does neither have a deterministic outcome
nor deterministic computation time, even with
a given starting condition. Also, genetic al-
gorithms do not provide any guarantee on the
optimality of the result. The increased uncer-
tainty related to the solution is making genetic
algorithm less appropriate for regulatory pur-
poses.

Heuristics Knowledge of the problem can be used
to reduce the search space, by excluding in-
efficient solutions from the start or by using
experience to guess good solutions. As the
problem at hand is quite well specified, it may
be possible to find such heuristics.

Splitting the problem into sub-problems As the
time to find the global optimum grows
exponentially, any reduction in problem size
alleviates the issue. We propose some pre-
processing steps in Section 2.2. However,
there is no guarantee that all networks can be
sufficiently reduced to allow for a computation
of the global optimum.

2.7. Results

In this section, we present results from applying
the algorithms described above to the meshed test
case with one substation. We selected results in
order to highlight the challenges we encountered
during the test runs, and have collected the results
in three groups. First, we show an example for
the non-convexity of the problem, then we discuss
Approach 3 for finding the global optimum, and
finally we investigate Approaches 1 and 2 which
yield local optima.

2.7.1. Example for the non-convexity of
the problem

Figure 2.10.: Non-convexity of the problem: by fixing
the flows in the meshed system on lines 3–4 and
4–5, all other flows are determined (the problem has
two cycles and hence two degrees of freedom). The
plot shows the power distance, which is clearly non-
convex as shown by the valleys covering the plane.
The black pins identify local optima, the red pin the
global optimum.

As discussed, the problem stays non-convex even
after the reformulation. We show this using an
example where we fix flows on two lines and report
how the cost changes. As there are two cycles,
the problem has two degrees of freedom and fix-
ing the right two flows fully determines the power
distance. This allows to show the power distance
as a function of these two flows.

Specifically, we adjust the flows on lines 3–4
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(a) Removing lines 3–8 and 7–8. This minimises the
total grid length (optimal solution for small 𝛼).
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(b) Removing lines 7–8 and 9–10, optimal for large 𝛼
and 𝛼 around 0.2.
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(c) Removing lines 5–6 and 9–10- Optimal for 𝛼
between 0.21 and 0.83.
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(d) Global optimum as a function of 𝛼. The background
colour indicates which solution is optimal.

Figure 2.11.: Dependence of the globally optimal solution on 𝛼

and 4–5. Starting from this, all other flows are fixed
by the requirement that the inflows and outflows
equal local demand and generation.

Figure 2.10 shows how the power distance var-
ies with the flwos on lines 3–4 and 4–5. The axes
are normalised and computed as difference to the
globally optimal flow. I.e., the global optimum is at
(0,0). At (1,1), both flows are twice as large as in
the global optimum, etc.

We see a number of valleys crisscrossing the
power distance plane. Where two valleys meet, we
usually find a local minimum. For example, there
are severalminima along the linewhere𝑝4−5 is zero

(that is, where the flow on 4–5 is the same as in the
gloabl optimum). Each of these minima along this
valley represents another flow distribution in the
remaining lines that is locally optimal. This high-
lights how difficult it is to find the global optimum:
even if the optimal flow on 4–5 would be known, a
searching algorithm still might get stuck in a local
optimum.

When adjusting 𝛼 (not shown here), another ob-
servation can be made: the valleys become deeper
and more pronounced for small 𝛼, while for 𝛼 →
1 the surface becomes smoother and finally con-
verges against a linearly constrained plane. This
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visualises our initial statement that the problem is
linear for 𝛼 = 1.

2.7.2. Computing the global optimum

Depending on the parameter 𝛼, different combina-
tions of removing lines lead to the global optimum.
For the meshed case with one substation, we need
to remove two lines in each iteration, and we find
three combinations that are optimal for different
values of 𝛼, see Figure 2.11. Two of the com-
binations ({7–8, 9–10} and {5–6, 9–10}) are very
close to each other, while the third ({7–8, 3–8})
has higher costs in most cases but lower costs
for low 𝛼. The third combination is the one that is
minimising the total line length, while the other two
appear to be more optimal considering the given
demand distribution.

Note: while it appears that the power distance
is smallest for an 𝛼 around 0.5, this is an effect of
the normalisation we described in Section 2.4. The
full power distance is multiplied by ̄𝑝𝛼 , and hence
increases monotonously for increasing 𝛼.

Scaling of the brute force approach

We have defined a theoretical upper bound on
how the complexity of finding the global optimum
scales with additional cycles in the grid. In this
section, we show some results for the meshed
system, and how the computation time increases
as we add additional cycles.

Table 2.1.: Different parameters indicating the scaling
with additional lines in the meshed system.

𝐶 𝐸 𝒪(𝐸𝐶) 𝒪(∏𝑖 𝐸𝑖) 𝑡 [s] 𝐼tot 𝐼𝑃𝑑
2 10 100 48 0.044 42 32
3 14 2744 240 0.166 243 154
4 17 83521 2160 1.087 1265 691
5 21 4084101 12960 4.07 7679 3715

Figure 2.12a shows the grid with the new lines.
We have added them in the order 7–16, 2–13 and
21–22. Figure 2.12b and Table 2.1 gives some
indicators for the complexity – in the figure the
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(a) To test the scaling, lines 7–16, 2–13 and 21–22
have been added (in this order).
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(b) As expected, the problem scales badly with the
number of cycles, however less quickly than predicted.

Figure 2.12.: Scaling of the brute force approach for
the meshed test system, with additional cycles intro-
duced as shown in the top figure.

indicators are normalised to their value at the base
case with two cycles.

The indicatorswe investigate are the number of
cycles 𝐶, number of edges in the cycles 𝐸, the the-
oretical bounds on the complexity given by 𝒪(𝐸𝐶)
and the tighter 𝒪(∏𝑖 𝐸𝑖), the total time needed for
the computation 𝑡 in seconds, the total number of
iterations 𝐼tot, and the number of iterations where
we actually compute the power distance, denoted
by 𝐼𝑃𝑑. The total number of iterations also includes
iterationswhere we identify that the resulting graph
is either disconnected or still has a cycle.
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It turns out, that even the total number of it-
erations that are effectively performed is growing
much slower than the theoretic complexity bound.
This is because if we remove a set of lines leading
to a disconnected graph, we do not need to go
through all other combinations including this set
of lines. Hence, we do not reach all combinations
in the combinatorial space. For example, in the
system with all three new lines, if we remove line
2–3 and line 2–13, the graph is disconnected. We
therefore stop searching all other combinations
that include the removal of 2–3 and 2–13.

The bound based on the product of the number
of line elements per cycle,𝒪(∏𝑖 𝐸𝑖), gives a reason-
able prediction of the computation complexity. The
remaining losseness of the bound can be explained
by the fact that this bound does not consider that
some line elements can be part of several cycles,
hence overestimating the number of possible com-
binations. The best proxy we have for the total
computational time is the number of iterations in
which the power distance is actually computed.
This is reasonable, as this is themost complex task
in the iteration. It also suggests that the highest
potential to improve the efficiency of the algorithm
is in the calculation of the power distance.

2.7.3. Computing local optima

Approach 1, using SQP, and Approach 2, using
the non-linear solver IPOPT, both depend on the
initial condition. In this section, we will discuss
the properties of the different initial conditions pro-
posed, andmore generally the properties of the two
solution approaches.

Figure 2.13 shows the difference between the
global optimum (black lines) and the nonlinear and
SQP approaches for the meshed system. The dif-
ferent initial conditions lead to the different solu-
tions, shown with the coloured lines. We highlight
a number of findings:

Robustness Both approaches do not always find
a solution, even for feasible starting conditions. In
the figures, this can be seen by gaps in the coloured
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(a) Using the non-linear solver IPOPT.
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(b) Using the SQP approach.

Figure 2.13.: Results with different initial conditions

lines. However, the SQP approach seem to be
somewhat more robust, at least for larger 𝛼. The
robustness materialises in two ways. First, there
are few 𝛼 values larger than 0.2 for which the SQP
does not find a solution. Second, changing alpha
usually leads to a smooth change in the power
distance computed by SQP, while for the nonlinear
solver, small changes in 𝛼 can lead to a different
local optimum with a different associated power
distance.

Of course, in a regulatory setting, robustness is
essential to avoid uncertainty and discussions.
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Effect of the initial condition We have tested
four different initial conditions; the power flow, a
high flat flow, a low flat flow, and initial flows based
on local demand.

Of these four initial conditions, the power flow
leads to the most stable solution, however often
not to the best solution found by the two ap-
proaches. Rather, the power flow as initial con-
dition seems to nearly always lead to a specific
solution, in our case removing lines 7–8 and 8–9.

The other conditions are less robust, but often
outperform the power flow as initial condition. SQP
seems to work well with the high flat flow initialisa-
tion (except for one outlier), while IPOPT seems to
prefer the local flow initialisation.
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Figure 2.14.: Difference in percent between the best
solution found with either optimisation approach, and
the global optimum.

Relative difference between the local and global
optima While we do not have a theoretical bound
on the distance between any local optimum and
the global optimum, we can check how far off we
are for our test system.

To this end, we compare the best solution
found with either approach and with any of the
four initial conditions to the global optimum. Fig-
ure 2.14 shows the results. Again, we see that the
SQP approach is more robust, while the nonlinear
optimisation sometimes is better, and sometimes

Table 2.2.: Comparison of computation time and solu-
tion quality between SQP, nonlinear (NL) and brute
force (BF) approaches. 𝛼 is 0.7.

cycles 2 3 4 5
SQP time [s] 0.66 3.03 1.72 1.82

iterations 4 24 13 13
𝑃𝑑 4.538 4.545 4.187 4.122
Delta [%] 1.02 1.18 1.43 1.28

NL time 0.12 0.14 0.17 0.14
𝑃𝑑 4.537 4.561 4.244 4.179
Delta [%] 1.00 1.54 2.81 2.68

BF time [s] 0.044 0.166 1.087 4.07
iterations 42 243 1265 7679
𝑃𝑑 4.492 4.492 4.128 4.07

worse than the SQP approach. While the results
generally look promising with an error less than 1%
for the relevant area of 𝛼, we remind the reader that
it is not clear if the problem behave equally well for
larger systems.

Solution time and scaling To test the scaling of
Approaches 1 and 2, wewould need to test themon
a number of differently sized systems – which we
do not have in the scope of this project. However,
we can highlight the difference between finding
the global optimum and finding local optima, by
comparing how all approaches behave when faced
with networks of different complexity. For this, we
use the meshed system and the same set of added
lines as in Figure 2.12. In addition, we choose the
power flow as initial condition, and set 𝛼 to 0.7.

Table 2.2 shows some metrics to compare the
three approaches. We see some interesting ef-
fects. The computation time for the SQP approach
is generally significantly higher than for the non-
linear approach. This is due to the fact, that the
problem needs to be solved repetitively. The num-
ber of iterations in the SQP approach are given
as well, and computation time scales linearly with
iterations.7 However, the computation time does

7As all code is implemented in Python– a scripting language
– all computation times are only indicative. Keep also in
mind, that for the non-linear solver we only use minimal
own code and mostly pre-compiled libraries, while for the
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not seem to depend much on the complexity of the
grid, certainly not for the nonlinear approach.

We also see that the local optima found gen-
erally are further away from the global optimum as
the system becomes more meshed. This indicates
that for large systems, using the SQP or nonlinear
approach might lead to significantly worse results.

SQP approach most time is spent within non-optimised
scripts.
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3. Power and energy distance as inputs to the
DEA

In this chapter, we will discuss how the power
distance can enter the DEA benchmarking used
for the income regulation of DSOs in Norway. We
describe challenges with aggregating the power
distance into a yearly energy distance, highlight
data requirements and discuss incentives set by
the power distance.

3.1. Energy distance: from
hourly values to a yearly
parameter

The power distance is computed for a specific
hour. However, for the DEA approach, we need
one parameter representing the whole year. In this
section, we will discuss different options on how
to move from hourly ”power distance” to yearly
”energy distance”.

Designing a good measure for the energy dis-
tance is challenging. In fact, it is a similar challenge
as for the power distance: the power distance aims
to take different spatial distributions of demand
into account, while the energy distance should
consider temporal distribution of demand. Effect-
ively, the method in which the energy distance is
computed from the power distance decides how
DSOs with different demand profiles are compared
against each other.

We discuss four approaches to moving from
power distance to energy distance; aggregating
hourly power distances, selecting representative
hours, averaging demand over several hours, and
formulating an optimisation problem directly for
the energy distance. For all discussions we as-
sume that data to compute the power distance in

each hour of the year is available.

3.1.1. Aggregating hourly power
distances

The simplest approach to arrive at an energy dis-
tance would be to use some sort of summation, or
in generalised terms a norm over all hourly values.
Typical norms would be:

1-norm This is the sum over the absolute values.1

2-norm This is the square root of the sum over the
squares.

∞-norm The infinity norm, or largest absolute
value in the set.

These three norms have different interpreta-
tions. The 1-norm considers the total energy, but
is independent of the distribution over time. The
demand profile might be flat or uneven, but the
1-norm would be the same2. As the DSO has to
provide a grid covering all hours, his task is more
complicated if the demand is uneven. Applying
a 1-norm could be interpreted as an incentive or
expectation on the grid operator to promote even
consumption in his supply area.

2-norms are typically used if outliers should
have a higher impact than values closer to zero.
Hence, the 2-norm somewhat addresses the prob-
lem of uneven demand, but does not have an im-
mediate interpretation. In any case, using the 2-
norm, hours with a high power distance value (high

1As all power distances are positive, it is the same as the
sum of hourly power distances. If one divides by the
number of hours, it is the mean.

2Strictly, this holds only for 𝑎𝑙𝑝ℎ𝑎 = 1, however, the core of
the argument also holds when considering 𝛼 < 1.
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demand) are weighted more than those with a low
power distance.

The ∞-norm only looks at the largest power
distance in the year. This ismeaningful in the sense
that this is actually the largest power distance on
which the DSO has to dimension his grid. But at
the same time it would give the DSO an incentive to
promote increasing the peak demand, in order to
have a higher output in the DEA.

When aggregating hourly power distances, we
acknowledge that there is a trade-off between rep-
resenting the task of the DSO as closely as pos-
sible, and giving the DSO an incentive to promote
reducing peak demand.

3.1.2. Selecting representative hours

To simplify any computation, one could aim at us-
ing representative hours rather than all 8760 hours
of the year. For example, one could use the hour
with the highest net demand (not necessarily the
same as the largest power distance), or represent-
ative hours such as winter peak, summer valley or
just the first Wednesday at 15:00 of each month.
Representative hours can make the task of two
DSOs less comparable, as one DSOmight be faced
with high demand in the relevant hours, while the
other by chance might have a low demand in the
representative hours. It would also not be possible
to control whether DSOs take measures to affect
demand and hence power distance in those hours.

Alternatively, one could attempt to identify spe-
cific demand situations and compute one rep-
resentative hour for each situation, potentially
weighted by the number of hours with a certain
situation. Such identification would rely either on
manual identification or on clustering algorithms.

Manual identification Manual identification
draws on the knowledge of the grid owner or some
other expert knowledge. However, in a regulatory
setting, the lack of comparability and determinism
is prohibitive.

Clustering algorithms Algorithmic clustering,
that is using a program to identify similar demand

patterns, has similar drawbacks. Each node would
be one dimension, and the demand distribution in
each hour a data point in this high-dimensional
space. The clustering algorithm would try to
identify demand patterns in which the demand
points are close to each other. Finding an optimal
clustering is tricky. First of all, what is optimal in a
clustering sense would depend on user defined
parameters, such as the number of clusters to
be found. Second, while efficient algorithms
exist, these are heuristic algorithms, which are
challenging in a regulatory environment where
deterministic outcomes are necessary. In the end,
it is not clear if such an approach would deliver
any net benefit to the problem. We have therefore
not attempted to implement it, and recommend
against it.

3.1.3. Averaging demand over several
hours

Instead of computing the power distance for each
hour and then averaging, one can also first average
the demand over a set of hours and then com-
pute the power distance. This has a number of
advantages. As computing the power distance is
challenging for meshed networks, we profit from
computing it less often. It alsomakes the approach
more robust against outliers.

The reduced computational effort makes it
easier to take more or all hours of the year into ac-
count, and hence makes the approach more robust
against the DSO implementing demand or gener-
ation management in representative hours that is
affecting the power or energy distance.

The drawback is that extreme demand peaks
may be reduced by the averaging, and the challenge
aDSO is actually facing froma very uneven demand
distribution would not be recognised appropriately.
This could be helped by averaging groups of hours
that have similar characteristics, for instance all
hours between 06:00 and 09:00 on weekdays for
a given season.
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3.1.4. Combined computation of the
power and energy distance for
a full year

Lets assume that the DSO cannot change its topo-
logy during the year, and that the energy distance
should be computed as the minimal grid that cov-
ers demand at all hours. It is possible to give a
precise formulation of the energy distance as an
optimisation problem.

Energy distance problem formulation

The approach is to compute the power distance for
all hours in parallel. As cost, we do not take the
individual power distances ̃𝑝𝑒 , but the upper bound
on each line needed during the year, ̃𝑒𝑒. In a way,
this is similar to the ∞-norm. However, instead of
only taking the supremum of the individual power
distances, we co-optimise all power distances in
parallel. Hence, it might be that we find a topology
that leads to a lower overall grid requirement, but a
higher grid requirement in individual hours.

The problem can be formulated as follows

𝐸𝑑 = min ∑
𝑒∈𝐸

e𝛼 ̃𝑒𝑒+𝐿̃𝑒 (3.1a)

s.t. ∀𝑘 ∈ 𝑇, ∀𝑒 ∈ 𝐸, ∀𝑗 ∈ 𝑁

̃𝑝𝑒,𝑘 ≤ ̃𝑒𝑒 , (3.1b)

𝐷𝑗,𝑘 − 𝐺𝑗,𝑘 = ∑
𝑖∈𝐸+

𝑗

e𝑝̃𝑖,𝑘 − ∑
ℎ∈𝐸−

𝑗

e𝑝̃ℎ,𝑘 + 𝑠𝑗,𝑘, (3.1c)

𝑆𝑘 ≤ 𝑠𝑗,𝑘 ≤ 𝑆𝑘 . (3.1d)

𝑘 in 𝑇 are all time steps 𝑘 under consideration in
the period 𝑇, usually one year. The cost function
now uses the ”energy flow” on each line segment,
̃𝑒𝑒 , rather than the power flow ̃𝑝𝑒. The new con-

straint (3.1b) is the core of the approach: here the
energy flow – one variable per line segment over
the year – is connected to the power flow, which
may change in each hour. (3.1b) ensures that in all
hours sufficient line capacity is available.

To highlight how this works, consider this toy
example: let the power distance be minimal with

flows on line A in most hours, but in a specific hour
the power distance would be lower when using line
B. The optimisation would have the discretion to
route power over line A even in that specific hour.
As the cost of the line is already accounted for by
the usage in the other hours, doing so would not
increase the energy distance, while adding line B
would. Hence we minimise the energy distance,
even though in one hour we would have a higher
power distance than the optimal power distance for
that hour.

Computational complexity and solution
approaches

Elementary, the same solution approaches as for
the power distance can also be used for the energy
distance problem. That is, we can attempt to solve
the non-linear problem using a non-linear solver or
SQP approach, with the limitation that this gives no
guarantee if we found a local or global optimum.
Alternatively, we can use a method to find the
global optimum, such as the brute force approach
iterating over alternative topologies.

Given the high-dimensional space, the SQP and
non-linear approach are bound to get stuck in local
optima. We therefore see these approaches as
not too promising for this larger and more complex
task.

Interestingly, using the brute force approach
might be feasible. Since we assume that we use
the same topology in every hour of the year, the
number of iterations does not increase compared
to solving the power distance for a single hour.
The execution time of each iteration, however, will
increase linearly by the number of hours under
consideration. In other words, we use the same
combinatorial approach as in the power distance
brute force approach, but instead of computing
the power distance for one hour for each potential
topology, we compute it 8760 times. If we can
apply the brute force algorithm to Problem (2.1), it
should be possible to apply it to Problem (3.1) as
well.

In the end, this will depend on the complexity of
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the real-life grids found in Norway.

Extension to KILE costs

We can further extend the optimisation to include
KILE costs in the optimisation. For this end, we
append to cost function

𝐸𝑑 = min ∑
𝑒∈𝐸

e𝛼 ̃𝑒𝑒+𝐿̃𝑒 + ∑
𝑗∈𝑁

∑
𝑘∈𝑇

𝐾𝑗,𝑘 (3.2)

and constraint (3.1c)

𝐷𝑗,𝑘 − 𝐺𝑗,𝑘−𝐾𝑗,𝑘 =
∑
𝑖∈𝐸+

𝑗

e𝑝̃𝑖,𝑘 − ∑
ℎ∈𝐸−

𝑗

e𝑝̃ℎ,𝑘 + 𝑠𝑗,𝑘 . (3.3)

In case there are a few extreme demand situations
over the year, the optimisation now can decide if it
is cheaper to pay the KILE costs or to upgrade the
grid to cover the demand 100% of the time.

3.2. Data availability and quality
as a precondition

If the power distance and energy distance is to be
calculated based on the problem definition used in
the previous chapters, each system operator will
have to provide a large amount of very detailed
data. Some of this data is expected to be readily
available through ElHub, while other data could
be more challenging to retrieve. In short, the ne-
cessary data for calculating the power and energy
distance is

Hourly demand data at each node/customer

Capacity of all substations

Hourly generation data from distributed gener-
ation

Grid topology, including length of all lines and
preferably coordinates of nodes/customers

Demand and distributed generation

To calculate the power distance, it is necessary
to know the demand of each customer served by
a given system operator. If a customer produces
and feeds in electricity to the grid itself, that has
to be accounted for as well. We expect demand
data to be readily available through ElHub, and that
the format of the data will be similar across all
system operators. The same quality and data of
input is key to implement efficient algorithms for
calculating the power distance.

It is however necessary to define at which level
the data should be aggregated: that is, should
demand be accounted per customer or per node,
and how is a node defined. In other words, the
voltage level that is studied needs to be specified.
Similarly, the regulator needs to specify fromwhich
time frame demand data is used, e.g., demand data
of the last year, the last three years, corrected for
temperature, or an average of the demand over the
last N years.

Capacity of substations and grid topology

Regarding capacity of substations and information
about grid topology (length of lines and coordin-
ates of nodes/customers), there exists no formally
defined platform gathering this data. As a result,
the format and quality could have great variations
across the different system operators. The regu-
lator should expect challenges in achieving a good
and homogeneous data quality for substations and
grid topology, unless a common database similar
to the ElHub or at least a common standard is
mandated by the regulator.

Data quality and missing data

There are two categories of challenges that occurs
in collecting and handling large amounts of data.
Both challenges would need to be addressed if the
goal is to implement an efficient calculation of the
power and energy distance. The first challenge is
the general quality and comparability of data from
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different sources, as discussed for substations and
grid topology. The second challenge is missing or
unavailable data. When working with large amount
of data with hourly resolution, it is bound to ex-
ist missing data points and the solution algorithm
would need a procedure for how to handle missing
data.

3.3. Improved exogeneity but
disincentives to invest

The goal of the power distance measure is to
provide a better variable for measuring the tasks
that each DSO faces, and to exogenise incentives.
It should also provide DSOs with a sufficient in-
centive to invest, while not incentivising overin-
vestments. Finally, the power distance should not
discourage mergers.

We find that the power distance increases exo-
geneity, tends to provide investment disincentives
rather than incentives to overinvest, and might in
some cases slightly penalise mergers.

Exogeneity Making the incentives exogenous
means, that the parameter used as output in the
DEA should to the largest extend possible depend
on parameters exogenous to the DSO, such as the
demand distribution, and not on parameters endo-
genous to the DSO, such as investment decisions
taken by the DSO.

The power distance relies on the existing topo-
logy of the grid. This limits to what extend it can
be considered as fully exogenous. In addition, the
demand distribution may be to an extend under the
control of the DSO. Hence DSOs could attempt to
affect the power distance in two ways, in the short
term by managing demand and in the long term by
investment decisions.

The extend to which DSOs can affect their out-
put by demand side management depends on their
ability to influence demand for capacity and/ or
energy and on the detailed design of the energy
distance as discussed in Section 3.1). Using a
definition of energy distance that addresses this

theoretical risk should be an effective measure to
prevent this from happening.

We discuss the investment incentives of the
power distance in more detail in the next two para-
graphs. Here we compare it to the current regula-
tion: the impact of investments on the own output
is already present in the parameters used today,
namely number of substations and line lengths. As
the power distance considers the actual demand
as an exogenous element, the measure is likely
to provide more accurate incentives for future grid
development than the current output parameters.

Incentive to overinvest The second issue con-
cerns incentives to overinvest, in order to achieve
a higher power distance. In theory, a DSO would
profit from building fewer but longer lines, and from
building substations as far away from large con-
sumers as possible. However, the incentives are
weaker than in today’s outputs and overinvestment
should also be curbed by local planning authorities.
Overinvestment is therefore not a major argument
against the power distance measure, but rather
something that NVE should keep in mind.

Disincentive to invest Third, the power distance
favours radial grids overmeshed grids compared to
the current model. As the power distance solution
always will result in a radial flow, the redundancy
of meshed grids is not reflected. In principle, this
can lead to lower investments and lower security
of supply than the optimal level from an economic
welfare perspective.

It is easy to construct an example where a DSO
has a disincentive to make a sensible investment
improving security of supply. Consider Figure 3.1:
on the left is a grid with a radial structure. Adding
line 4–5 would close a cycle and improve security
of supply, as each node now would be connected
to the substation via two paths. However, the
power distance parameter decreases by around
10%. While this might be an extreme example, it
is not unusual for DSOs to take the decision to add
lines in order to create a more meshed net in order
to improve security of supply.

Incidentally, we have shown the effect already
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Figure 3.1.: Example for a disincentive to invest:
adding a line between nodes 4 and 5 leads to a re-
duction in power distance output of nearly 10%. The
dotted red line is considered superfluous by the power
distance measure.

in the results section in 2.7.2. When we discussed
the scaling of the brute force approach, we tested
the meshed grid and successively added lines.
While adding lines, the power distance decreases,
see the results in Table 2.2.

However, the regulatory model also includes
cost of energy not supplied as a key parameter,
which helps balance the incentives. To the ex-
tent that the general investment incentives are
weakened, this could also be mitigated through
other measures, e.g. the regulatory WACC or the
calibration mechanism for the cost norms. To
alleviate the issue further, one could consider a
bonus for nodes that have two connections to the
next substation, effectively giving an incentive for
meshes – however, such an adjustment would in
turn need to be checked for new loop holes or wind
fall profits.

Impact on mergers Finally, the measure can
have an impact on the incentives for mergers. The
power distance measure is not additive or linear,
in contrast to the number of substations and line
length. If two adjacent nets are merged, the total
power distance will be either the same (if the ”new”
connection is not used in the optimal grid) or lower
(if the ”new” connection is part of the optimal grid),
but cannot become higher than the sum of power

distances of the individual grids.3 This could lead
to a loss in DEA score for an unchanged cost level.

NVE already compensates companies for re-
duced DEA scores due to the general characterist-
ics of the DEA model (the harmony effect). The
power distance measure may necessitate addi-
tional compensation mechanisms in order to pre-
serve the incentives for mergers. A possible area
for further work could therefore be to look at
the merger incentives with specific designs of the
power distance measure and actual network data
when it becomes available.

3This also raises the question how neighbouring, connected
grids by different owners will be handled in the power
distance computation: are they considered disconnected
or connected?
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4. Alternatives to the Power Distance
The Power Distance has some quite specific prop-
erties. For example, it will always prefer radial
networks and therefore ignores the benefits of
meshed topologies for security of supply. The
Power Distance as defined in this report also re-
spects the existing topology, and therefore cannot
highlight more efficient grid configurations. On the
other hand, it provides the regulator with a good
indication of a lower bound for the costs of trans-
ferring energy, and informs whether the existing
grid is excessively oversized or not.

As discussed in the beginning of this report,
the power distance does constitute an improved
measure for the task of each DSO compared with
the existing outputs such as length of high voltage
lines. Nevertheless, it is worth investigating if other
measures might give a better comparison of the
DSOs tasks. For example:

Power Flow Compute power flow either with exist-
ing line parameters or fixed line parameters per
length, but without power constraints . Then
compute cost including the alpha parameter
”ex-post”. This approach will result in the same
flow independent of the value of alpha, but the
actual cost will vary with alpha.

Optimal grids One could also imagine a parameter
computing the optimal grid, independent of the
given topology. However, this would be chal-
lenging for to reasons. First of all, a lot of
information would be needed. Second, a DSO
with a sub-optimal grid configuration will not
realistically be able to improve on the existing
grid. The resulting measure may therefore be
very hard on some DSOs.

In the next section we test how a power
flow based power distance compares with optimal
power distance.

4.1. Power-flow based power
distance versus optimal
power distance

The cost of transporting power for the power flow
based power distance is calculated in the same
manner as the optimal power distance, but it is
simply a sum of parameters rather than a minim-
isation problem.

𝑃d = ∑
𝑒∈𝐸

𝐿𝑒 |𝑃𝑒|𝛼 (4.1)

Figure 4.1a show how the power will flow on
the lines in the meshed test case if we perform a
DC power flow with fixed line parameters per line
length. In contrast to the solutions found when
calculating the power distance, the power flow ap-
proach results in loops in the grid, i.e. node 8 is
receiving power from more than one node; nodes
3, 9 and 7.

The direction of flow given a brute force calcu-
lation of the optimal power distance in the same
grid is illustrated in Figure 4.1b. The main differ-
ences are the lack of loops in the optimal power
distance solution, and the direction of flow on lines
6–7, 7–8, and 8–9. The magnitude of flows on
the different grid elements is otherwise often quite
similar. The exact flows for both cases can be
found in Table 4.1.

The power distance based on a power flow has
some interesting differences to the optimal power
distance. First, the power flow based approach
allows formeshed solutions, that is, the power flow
based approachwill keep all lines.1 Also, the power

1This is related to the power flow being easier to compute
than the optimal power distance.
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(b) ”Flows” in the global optimum for the power dis-
tance problem.

Figure 4.1.: Direction of power flows when computed
directly, and power flows leading to the globally op-
timal power distance. Red arrows highlight difference
in direction between the two lines, dotted lines are not
used. 𝛼 is 0.7.

flow itself is only subject to the physical properties
of the grid, and is independent of the value of 𝛼.

Figure 4.2 is a plot of the power distance for
different values of 𝛼 based on power flows directly,
based on power flow as initial condition for the
SQP approach and the nonlinear solver, as well as
the globally optimal solution found with brute force
calculation. For all values of 𝛼, the power flow
based power distance is the furthest away from
the globally optimal power distance. The solutions
found with the power flow as initial conditions are
always better when a solution is found, but there
are values of 𝛼 at which the solver has not been
able to find a solution at all.

Two of the main benefits of the power flow
based power distance is that the quality of the

Table 4.1.: Power flow and flows in globally optimal
solution.

From To power flow global optimum
1 2 10214 10214
2 3 10214 10214
3 4 4923.8 1965
4 5 2027.5 728
5 6 1299.5 -
7 8 118.5 -1181
8 9 -1017.3 642
9 10 -1659.3 -
10 11 -2134.3 -475
3 8 5014.2 7973
12 13 -250 -250
13 14 -284 -284
6 7 751.5 -548
11 4 -2464.3 -805
14 8 -5563 -5563
14 15 5070 5070
15 16 225 225
16 17 225 225
15 18 0 0
18 19 0 0
7 20 556 556
20 21 331 331
9 22 68 68

solution will be consistent and transparent for all
DSOs, and that there always will exist a solution
to the problem. For the optimal power distance,
unless we are able to guarantee a globally optimal
solution, one DSO could be measured against a
solution very close to the optimal power distance,
while another DSO might be measured against a
power distance far from the optimal solution. As
we have seen in Figure 4.2, a solver might not even
be able to find a local optimum to describe the
DSOs task.

In terms of using power distance as an output
describing the task of the DSOs, it is necessary
to guarantee that the companies are being evalu-
ated on the same basis. The power flow based
power distance does guarantee consistency and
transparency, while accounting for the distribution
of load, but it will not reward better designed grids
in the same manner as the optimal power distance
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Figure 4.2.: Power distance using the power flows
directly, and the global optimum.

can. On the other hand, all though we have shown
that with the power flow as initial condition the
local optima are quite robust for the test cases
studied in this report, it could be hard to guarantee
that companies are being evaluated on the same
basis when using the optimal power distance as a
measure.
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5. Conclusions and next steps

Computing the optimal power distance proved to
be a challenging problem. The main findings, as
well as some suggested next steps, are summar-
ised in the following.

Computational complexity Computing the op-
timal power distance is a non-convex problem,
which cannot be reformulated to a convex prob-
lem. Different approaches for finding solutions
were proposed, two for finding local optima and
one brute force approach for finding the global
optimum. However, the former have no guarantees
either on convergence nor bounds on the optimality
gap, while the computation time of the latter grows
with the power of the number of cycles in the
grid. Whether or not it is possible to determine the
globally optimal power distance will depend on the
complexity of actual Norwegian distribution grids.

Data requirements include demand data and
grid topology Any parameter taking the demand
distribution as an exogenous indicator for the
task of the DSO depends on the availability of
demand data, ideally in good spatial and temporal
resolution. The power distance in addition needs
the grid topology in a form that not only contains
individual line elements, but also how lines are
connected to each other.

Power distance in the DEA The power distance
aims to be an exogenous parameter, and is cer-
tainly an improvement over parameters such as the
line length or number of substations. However,
the DSO can to some extent still take investment
decisions that affect their own output. It would
be very interesting to study both investment and
merger incentives of the power distance in the
DEA, applying specific investment decisions and
mergers to actual network data.

From power distance to energy distance A se-
lection of approaches to computing a yearly para-
meter (energy distance) were discussed, including
direct computation of the energy distance as an
optimisation problem. If one attempts to reduce
the number of hours for which the power distance
is to be computed, it is certainly beneficial to first
average the demand over a number of hours, and
then compute the power distance. One could
define several outputs for the DEA based on the
power and energy distance, with the objective of
representing different characteristics of each grid.

Alternatives to the power distance To avoid the
computational challenges, one could use a power
flow on an unconstrained grid with normalised line
parameters. This would still inform about lines that
are oversized, but not of lines that are superflu-
ous. The advantage is a mire intuitive formulation,
a higher degree of consistency and transparency,
and a significantly faster or more robust solution.
It would however require further studies on a larger
selection of test cases to conclude on a compar-
ison of the power distance based on power flow
with the optimal power distance.

Open questions and further research In this
project, we have only tested and discussed
approaches on smaller test cases that are not
actual examples from Norwegian DSOs. It would
be interesting to see how the solution approaches
perform with real-life grid topologies. If data from
neighbouring grid companies were available, one
could also discuss the influence on mergers on the
benchmarking of the companies. Finally, one could
investigate if there are investments that the DSO
could make or avoid in order to increase their own
output when measured against the optimal power
distance as defined in this report.
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A. Acronyms

DEA Data Envelopment Analysis

DFS Depth-First Search

DSO Distribution System Operator

KILE kvalitetsjusterte inntektsrammer ved ikke
levert energi (cost of energy not supplied)

LP Linear Program

NVE Norges Vassdrags- og Energidirektorat

QP Quadratic Program

SQP Sequential Quadratic Programming
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