Avbøtende tiltak i regulerte vassdrag
Målsettinger og suksesskriterier

Brian Glover, Multiconsult
Åge Brabrand, Universitetet i Oslo
John Brittain, Universitetet i Oslo
Finn Gregersen, Multiconsult
Johannes Holmen, Multiconsult
Svein Jakob Saltveit, Universitetet i Oslo
FoU-programmet Miljøbasert vannføring

Programmet Miljøbasert vannføring skal styrke det faglige grunnlaget for god forvaltning av regulerte vassdrag. Det skal bidra til at miljøhensyn blir ivaretatt på en balansert og åpen måte med spesiell fokus på fastsettelse av minstevannføring og andre avbøtende tiltak.

Miljøkunnskap er aktuelt i forbindelse med nye vassdragskonsesjoner, revisjon av vilkår i gamle konsesjoner, miljøtilsyn og oppfølging av vannressursloven og EUs vanndirektiv. Programmet finansieres av Olje- og energidepartementet, og er forankret i Norges vassdrags- og energidirektorat (NVE).

Avbøtende tiltak
i regulerte vassdrag

Målsettinger og suksesskriterier
Rapport nr. 10 – 2012

Avbøtende tiltak i regulerte vassdrag
Målsettinger og suksesskriterier

Utgitt av: Norges vassdrags- og energidirektorat
Forfattere: Brian Glover, Multiconsult (prosjektleder)
Åge Brabrand, Naturhistorisk museum, Universitetet i Oslo
John Brittain, Naturhistorisk museum, Universitetet i Oslo
Finn Gregersen, Multiconsult
Johannes Holmen, Multiconsult
Svein Jakob Saltveit, Naturhistorisk museum, Universitetet i Oslo

Trykk: NVEs hustrykkeri
ISSN: 1502-234X
Forsidefoto: Syvdeterskel fra Fjærlandselva. Foto: Brian Glover

Sammendrag: Det er gjennomført en rekke avbøtende tiltak for forbedring av miljøet i norske vassdrag i forbindelse med vassdragsreguleringer. Erfaringer med tiltakene viser imidlertid at det ofte er mangel på klare målsettinger eller mangel på metoder for å evaluere måloppnåelsen av tiltakene. Denne rapporten presenterer ulike suksesskriterier for avbøtende tiltak innen vannkraft.

Emneord: Avbøtende tiltak, regulering, fisketrapp, terskler, minstevann, miljøbasert vannføring, utsetting.
Innhold

INNHOLD ... III
FORORD ... V
SAMMENDRAG ... VII

1. SUKSESSKRITERIER FOR AVBØTENDE TILTAK ... 1
 1.1. Overordnet mål .. 1
 1.2. Innledning ... 1
 1.3. Dette oppdraget ... 2
 1.4. Terskelverdier og tålegrenser ... 3
 1.5. Begrensende faktorer ... 4
 1.6. EUs vanndirektiv .. 4

2. AVBØTENDE TILTAK I MAGASINER ... 6
 2.1. Lister over ulike tiltak mot effekten av reguleringer ... 6
 2.2. M1 og E1 Fiskeutsetting/ utfisking ... 6
 2.3. M2 Vannstandstilleggningsstrimer ... 9
 2.4. M3 Kunstige terskelbassenger ... 13
 2.5. M4 og M5 Habitatjusteringer og kalking ... 13

3. AVBØTENDE TILTAK I ELVER ... 15
 3.1. Generelt for elver .. 15
 3.2. E2 Fiskepassasjer ... 15
 3.3. E3 Endret oppstrøms tappestrategi .. 16
 3.3.1. Sesong- og døgnmessig tappevariasjon .. 16
 3.3.2. To eller flere høyder for vannuttak fra et magasin ... 16
 3.3.3. Endret posisjonerings- geometri ved inntaket til kraftverk og flomluker 17
 3.4. E4 Pålagt konstant minstevannføring ... 18
 3.4.1. Definisjon av begrepet minstevannføring ... 18
 3.4.2. Stabil minstevannføring sommerstid .. 21
 3.4.3. Stabil minstevannføring vinterstid .. 22
 3.4.4. Sedimenttransport og slipp av minstevann ... 22
 3.4.5. Suksesskriterier for slipp av konstant minstevann ... 22
 3.5. E5 Variable miljøtilpasset vannslipp .. 23
 3.5.1. Variasjon er en del av det naturlige ... 23
 3.5.2. Miljøbasert variabel vannføring (MBV) ... 24
 3.5.3. E5a Signalslipp og tilsigsstyrte variabelt vannslipp ... 24
 3.5.4. Kritiske grenseverdier .. 25
 3.5.5. E5a Lokke-/ utvandringsflossmer .. 26
 3.5.6. E5c Spyleflossmer/ opprenskning ... 26
 3.6. E6 Terskler .. 28
 3.6.1. Ulike typer og en generell beskrivelse .. 28
 3.6.2. Målsettinger med terskler ... 29
3.6.3. Landskapsmessig virkning... 30
3.6.4. Økologiske målsettinger ... 32
3.7. E7 Habitatjusteringer .. 36

4. DISKUSJON OG KONKLUSJONER ... 38
4.1. Ulike målsettinger med avbøtende tiltak ... 38
4.2. Økologiske målsettinger: Variasjon i vannføring er naturlig 38
4.3. Prøvereglement ... 39
4.4. Suksesskriterier ... 39
 4.4.1. Stabilitet og vedlikehold .. 39
 4.4.2. God økologisk tilstand (potensiale) ... 39
 4.4.3. Alger og makrofytter ... 40
 4.4.4. Landskap og estetiske verdier ... 40
 4.4.5. Andre brukerinteresser ... 41
 4.4.6. Økonomiske suksesskriterier ... 41
 4.4.7. Lokal aksept ... 41
 4.4.8. Framtidens målsettinger ... 42
4.5. Konklusjoner ... 42
 4.5.1. Klargjøring av målsettinger ... 42
 4.5.2. Semikvantitative teknikker for å måle suksess 44
 4.5.3. Særlig viktige hensyn ... 44

5. REFERANSER.. 45
Anneks 1 Case-studier på tiltak ... 49
Anneks 2 Metodikk for samlet vurdering av miljøkonsekvenser 54
Anneks 3 Tabeller som grupperer avbøtende tiltak 56
Anneks 4 Kostnader med slipp av minstevann – eksempel på beregning 61
Anneks 5 Liste over vurderte terskler .. 64

Forkortelser
GØP Godt økologisk potensiale
HRV Høyeste regulerte vannstand
LRV Laveste regulerte vannstand
MBV Miljøbasert vannføring
Forord

Det er gjennomført en rekke avbøtende tiltak for forbedring av miljøet i forbindelse med vassdragsreguleringer. Tiltakene er rettet mot økologiske og landskapsmessige forhold og ulike brukerinteresser.

Prosjektet gir en samlet gjennomgang av ulike typer avbøtende tiltak i regulerte vassdrag basert på nasjonale og internasjonale erfaringer. I rapporten er de ulike tiltak kort beskrevet og det er angitt målsetting, forutsetning for suksess og målekriterier for tiltakene.

Vi håper rapporten bidrar til å bedre kunnskapsgrunnlaget for

- å fastsette kongsjonsvilkår som gir best mulig positiv miljøeffekt
- å sette realistiske og etterprøvbare miljømål i forbindelse med forvaltningsplaner etter vannforvaltningsforskriften.

Prosjektet er gjennomført av Universitetet i Oslo, Naturhistorisk museum/LFI og Multiconsult, med Brian Glover, Multiconsult som prosjektleder.

Steinar Schanche
leder styringsgruppe

Anne Haugum
programleder
Sammendrag

Det er gjennomført en rekke tiltak i norske vassdrag i forbindelse med vassdragsreguleringer. Motivet har vært å redusere de skadevirkningene som reguleringen har medført. Erfaringer med tiltak i regulerte vassdrag viser imidlertid at det ofte er mangel på klare målsettinger, manglende systematiske undersøkelser eller mangel på metoder for å måle effekten av tiltakene. Denne rapporten presenterer ulike suksesskriterier for avbøtende tiltak innen vannkraft.

De fleste avbøtende tiltak er rettet mot miljøforholdene i selve vannstrengen, mens enkelte er rettet mot landskap og andre viktige samfunnsværdier. Målsettingen med slike tiltak er at de skal ha en tilsiktet positiv økologisk effekt og positiv landskapsmessig virkning. Kunnskapen om dette er sterkt varierende. Hittil har det vært mest fokus på fisk, særlig laksefisk, men innføring av vannforskriften har satt større fokus på hele vassdragets økosystem og naturtilstanden. Målsettinger med framtidige tiltak vil derfor etter hvert dreie seg mer i retning av å relatere forholdene til naturtilstanden i vassdraget.

Ved iverksetting av avbøtende tiltak er det avgjørende å ha kunnskap om hvilke faktorer som virker begrensende på de forhold som ønskes ivaretatt eller endret. Det er bare når tiltaket berører de begrensende faktorene at det kan forventes respons til tiltaket. Mangelfull dokumentasjon om begrensende faktorer for det som ønskes ivaretatt (f.eks. fiskeproduksjon og biodiversitet) kan være årsaken til at ulike tiltak ikke fungerer etter hensikten. Felles for de fleste tiltak er at det ikke er foretatt en god nok vurdering av behovet før tiltaket ble iverksatt. Ofte er det mangelfull eller ingen informasjon om elvas eller magasinets "bæreevne" etter regulering.

Ved vage målsettinger vil ofte flere parallelle tiltak iverksettes samtidig. Den store utfordringen ligger i å skaffe til veie gode nok data som kan relatere endringer til de tiltakene som er gjort. Dette krever klare målsettinger og gode data både før og etter at tiltaket er gjennomført. De senere årene har en økt forventning til å bruke økologisk baserte restaureringstiltak framfor rene tekniske løsninger vokst fram.

Stikkord for iverksetting av tiltak vil derfor være:

i) mål - hva skal tiltaket ivareta?

ii) begrensende faktor - hva er begrensende faktor(er) for det som ønskes ivaretatt?

iii) endrer tiltaket begrensende faktor(er) i ønsket retning?

Kriterier for å kunne måle suksess kan være akseptabel "avstand" fra forventet naturtilstand. Forbedringen må derfor være målbar. Tiltaket bør også være mest mulig vedlikeholdsfritt.

De viktigste tiltakene som iverksettes i regulerte vassdrag er: Fiskeutsettinger, fisketrapper, terskler og minstevannføringer. Vurdering av hvert av disse tiltakene bør følge punktene angitt over.

Fiskeutsettinger:

Her vil målet være å sikre rekruttering og derved ivareta produksjonen av Fangbar fisk. Helt avgjørende for at utsetting skal ha tilsiktet virkning er at gyte- og oppvekstområder for fiskeunger
etter regulering er den begrensende faktor for bestanden. Dersom dette er tilfelle vil utsetting virke etter hensikten, i motsatt fall vil utsetting ikke ha effekt og i enkelte tilfeller virke mot sin hensikt. Utsetting er ikke et selvbærende tiltak og vil heller ikke endre på primærårsaken til redusert rekruttering. Det økologisk baserte restaureringstiltaket vil i stedet være å bedre forholdene for naturlig rekruttering. Kriteriet for måloppnåelse vil være at bæreevnen utnyttes for produksjon av fangbar fisk.

Fisketrapp:

Terskler:
Målet med terskler er å sikre større vanndekket areal i elver med lav vannføring, slik at fiskeproduksjon og landskapsmessige verdier ivaretas. Avhengig av formål, finnes det en rekke typer av terskler. For pattedyr, fugl, fisk og bunndyr er begrensende faktorer vanndekket areal og habitat i ulike deler av livssyklusen, mens for landskapsmessige verdier blir det en mer subjektiv beskrivelse av virkningen. Måloppnåelse krever en klart formulert hensikt med tiltaket. Sedimentering og gjengroing i enkelte vassdrag viser at tiltakets måloppnåelse må vurderes i et relativt langt tidsperspektiv (noen tiår).

Minstevannføring:
Målet er å sikre biologiske og landskapsmessige verdier på regulerte elve- og bekkestrekninger. Tiltaket må sees i sammenheng med hvilke verdier som prioriteres ivaretatt og hva som er begrensende faktor. Minstevannføring i laksevassdrag vil måtte ha en annen dynamikk og størrelse enn i mindre elver med stasjonær aure. Minstevannføringen skal sikre vandringer (lokkeflommer), næringsdyr, gyting og oppvekst og utøvelse av fiske. Måloppnåelse på lang sikt vil kreve spyleflommer og fravær av sedimentering av fine løsmasser. Kriterier for måloppnåelse vil være at bæreevnen utnyttes for produksjon av fangbar fisk og at de naturlige prosesser (naturtilstanden eller godt økologisk potensiale) i vassdraget opprettholdes.
1. Suksesskriterier for avbøtende tiltak

1.1. Overordnet mål

Vannforvaltningsforskriften (som implementerer EUs vanndirektiv) fokuserer sterkt på avbøtende tiltak. Grunnlaget for å sette miljømål i sterkt modifiserte vannforekomster vil være kunnskapen om miljøeffektene av tiltakene. Bedre kunnskap om potensialet til avbøtende tiltak vil optimalisere miljø- og ressursutnyttelsen og styrke muligheten for tilsyn og kontroll.

Det overordnede målet med dette prosjektet er å få bedre kunnskaper for:
- å sette konsesjonsvilkår som gir best mulig positiv miljøeffekt
- å sette realistiske og etterprøvbar miljømål i forbindelse med forvaltningsplaner etter vannforvaltningsforskriften.

1.2. Innledning

For å imøtekomme nasjonale og internasjonale overenskomster for bevaring av biodiversitet (naturmangfoldsloven, vanndirektivet, i Norge vannforskriften) bør negative effekter av vassdragsreguleringer bli redusert gjennom ulike fysiske tiltak eller endringer av selve reguleringsregimet. Slike tiltak kan være terskler og steinsetting eller en miljøtilpasset vannføring mer lik den naturlige. Generelt vil målet for et tiltak i en regulert elv være å oppnå tetthet/biomasse og struktur på økosystemene iht. målsettinger gitt av miljøforvaltning og konsesjonsmyndigheter og iht. vanndirektivet. Svært mange eldre norske vannkraftutbygginger er modne for revisjon. Vilkårsrevisjonene vil omfatte miljøvilkår av en helt annen karakter enn i de opprinnelige konsesjonene, mer lik krav som stilles i forbindelse med oppføring av nye kraftverk.

De negative virkningene av vassdragsreguleringer er i all hovedsak forårsaket av endret vannføringsregime. For å bøte på negative konsekvenser kan det gjennomføres avbøtende tiltak. Kunnskapen om effektene av slike tiltak er sterkt varierende, og hittil har det vært mest fokus på tiltakets virkning på fisk. For bunndyr finnes det enkelte indikatorarter som kan vise om tiltaket fungerer etter hensikten eller ikke, men biologiske effekter av vassdragsreguleringer er svært sammensatt. Kompleksiteten gjør det vanskelig å identifisere en klar sammenheng mellom tiltakets fysiske effekter på vannforekomstene og den biologiske virkningen man forsøker å oppnå med tiltaket.

Behovet for tiltak vil variere mellom og i vassdragene. Når tiltak vurderes, er det derfor viktig å vurdere effekter på hele vassdraget og ikke bare områder som er negativt påvirket av kraftutbyggingen.

Virkningene av mange tiltak har fram til nå vært svært variable og ikke alltid etter hensikten. Tiltakene bør være basert på grundige undersøkelser med vekt på å dokumentere begrensende faktorer. I de fleste tilfeller har evaluering og overvåkning vært mangelfull og dominer av skjønnsvurderinger. Avhengig av hvilke hensyn tiltakene er iverksatt for, vil eventuelt tilstedeværelse av slike ikke-quantitative vurderinger kunne variere svært mye. For eksempel vil tiltak som er iverksatt for å ivareta avgjørende parametre for allment interessante arter, f.eks. laks eller
viktige landskapselementer i flittig besøkte områder, være av stor interesse. Utviklingen i en laksebestand følges gjerne nøye gjennom fangststatistikker og er gjenstand for interesse fra et generelt publikum. Mindre øynefallende biologiske organismer, f.eks. bunndyrarter, krever derimot egnet overvåkning for å fange opp utviklingen for å vurdere hvorvidt tiltaket er vellykket eller ikke. Endringer i et bunndyrsamfunn i en berørt elvestrekning vil kun oppdages gjennom prøvetaking over flere år og til flere tider gjennom sesongen. I verste fall vil virkningene av iverksatte avbøtende tiltak ikke være kjent i det hele tatt, og det blir umulig å høste erfaringer til bruk ved senere anledninger.

De senere årene har en økt forventning til å bruke økologisk baserte restaureringstiltak framfor rene tekniske løsninger vokst fram (Palmer mfl. 2005). Det foreslås fem kriterier for å kunne måle suksess; bl.a. må design av et miljøtiltak ha forventet naturtilstand som utgangspunkt, forbedringen av betingelsene må være målbar og systemet må være selvhørende uten behov for store oppfølgende tiltak.

Hensyn til mangfoldet i naturen og kompleksiteten ved fastsettelse av vannføringer har medført bruk av nye former for minstevannføring som er mer fleksible og dynamiske. Man søker å etterlikne naturtilstand for utvalgte arter og grupper, med spesielt fokus på flaskehalser i livssyklen.

Det finnes i dag relativt god dokumentasjon på at slipp av vann i opprinnelig elveløp kan ivareta funksjoner og kvaliteter i elveøkosystemer, og at dette er lettere å få til dersom vannslippet blir en integrert del av vannkraftproduksjonen (Renöfält mfl. 2009).

Måleparametre kan være fisk og bunndyr, som er gode indikatorer på kvaliteten til økosystemet. Endres disse må vi søke i underliggende mekanismer (fysiske og kjemiske faktorer, hydrologi, primærproduksjon osv.). Det viktigste er å identifisere flaskehalser i systemet, og ofte kan disse være knyttet til andre forhold enn minstevannføring, f.eks. vandringshindre, artssammensetning og kjemi.

Det er mye som kan gjøres for å redusere de negative effektene av vassdragsreguleringer, og tiltak vil ikke nødvendigvis være negative for kraftproduksjonen. I en rekke regulerte vassdrag bør det undersøkes om det er mulig å oppnå miljøgevinst ved å tilpasse driften og manøvreringen av kraftverkene til definerte miljøkrav. En generell oversikt over avbøtende tiltak i Norge for SMVF (stерт modifiserte vannforekomster) er gitt av Glover (2006) og gjengitt i Anneks 3.

1.3. Dette oppdraget

Rapporten begrenser seg til omtale av tiltak innen ferskvann og innen overflatevannforekomster (selv om grunnvannets tilknytning til elver fortsatt skal tas i betraktning). Generell naturrestaureringstradisjon opererer gjerne innenfor et spekter av målsettinger. Tilbakeføring til naturtilstand slik den var før inngrep representerer et ytterpunkt, men ofte kan disse være knyttet til andre forhold enn minstevannføring, f.eks. vandringshindre, artssammensetning og kjemi.

De fleste avbøtende tiltak er rettet mot miljøforholdene i selve vannstrengen, mens enkelte er rettet mot landskapsforhold og andre viktige samfunnsverdier. Målsettingen med slike tiltak er at de skal ha en tilsiktet positiv økologisk effekt og positiv landskapsmessig virkning. Kunnskapen om slike tiltak er sterkt varierende, og hittil har det vært mest fokus på fisk, særlig laksefisk,
mennes innføring av vannforskriften i 2004 har satt større fokus på hele vassdragets økosystem og artsmangfold. Målsettinger med framtidsige tiltak vil derfor etter hvert dreie seg mer i retning av å i størst mulig grad oppnå vannforekomstes naturtilstand før menneskelige inngrep.

Denne rapporten presenterer ulike suksesskriterier for avbotnende tiltak innen vannkraft, men før man kan diskutere graden av suksess må man ha et klart definert (og helst kvantifiserbart) sett med målsettinger. Erfaringer med analyser av tidligere tiltak viser at det ofte er mangel på klare målsettinger eller mangel på metoder for å måle suksess som har hindret rapportering av måloppnåelse. Suksess kan ikke måles dersom målsettinger ikke er klart definert eller prioritert.

Det er flere eksempler der de fleste berørte langs et regulert vassdrag i stor grad er enige om tiltakets målsetting, men det mangler skriftlig dokumentasjon som beskriver den primære målsettingen. Over mange år kan ukommet og og eksempler målsettinger gi opphav til ulike oppfatninger om tiltaket har vært en suksess eller ikke.

Vannforskriften setter slike problemstillinger i fokus. Det kommersielt viktige laksefisket kan ha en mer snever målsetting (f.eks. flest mulig fangbær storlaks) enn vannforskriften, og det må først prioriteres mellom ulike målsettinger før tiltakets suksess kan måles. Er laksefiske prioritert, vil suksessen kunne måles ut fra utvikling i fangststatistikken.

Fiskearter som laks og aure er ofte prioritert ved valg av tiltak. Tilstedevarsel av enkelte eller flere av disse artene kan påvirke hele næringskjeden i vannforekomsten og kan dermed være en indikator for utviklingen i hele vannforekomsten.

Forvaltningen etterpå bedre dokumentasjon av årsak-/virkning-korrelasjoner for noen av de mest vanlige tiltak i regulerte vassdrag. Her er spesielt effekten av ulike minstevannføringer sentrale i elver og ulike manøvreringsregimer sentrale i magasiner.

Denne rapporten har basert seg på eksisterende kunnskap om ulike tiltak som er gjennomført for å redusere ulemper ved vassdragsregulering. Virkningen av eldre tiltak, som f. eks. terskler, er ofte godt dokumentert over lang tid og danner grunnlaget for rapporten. Tiltak som nylig er gjennomført er foreløpig ikke like godt dokumentert, selv om de kan ha stor faglig interesse og aktualitet. Derfor har vi inkludert en del generelle betraktninger rundt nye og delvis uprøvde tiltak, i tillegg til de eldre, godt dokumenterte tiltakene.

1.4. Terskelverdier og tålegrenser
Mange arter finnes fortsatt i regulerte vassdrag, selv om det har vært endringer i flere abiotiske faktorer. Det er først når tålegrensen overskrider at det kan forventes omfattende populasjonsendringer eller bortfall av arter. Når det gjelder vassdragsreguleringer er det etablert erfaringsbaserte tålegrenser for en rekke organismergrupper (bunndyr, zooplankton, fisk) i magasiner når det gjelder reguleringshøyder og manøvrering. Tålegrenser for hydromorfologiske endringer i rennende vann (vannføring, vanndyp, grad av substratendringer osv.) er vanskeligere å generalisere, men vannhastighet, bunnsubstrat og totalt vanndekket areal er avgjørende faktorer. Det er derfor mulig å identifisere en del forutsetninger for å oppnå suksess.
1.5. Begrensende faktorer

Ved iverksetting av avbøtende tiltak er det svært viktig å ha kunnskap om hvilke faktorer som virker begrensende, slik at tiltaket vil få best mulig målbar effekt og suksess. Sett fra et avkastningsmessig synspunkt vil det f.eks. sjelden være klokt å foreta fiskeutsettinger i magasiner med stor reguleringshøyde og påfølgende erodert strandsone når innløpsbekkenes gytearealer er relativt intacte. I et slikt magasin er det som oftest næringstilgangen som er begrensende faktor for fiskebestanden, og fiskeutsettinger vil, så fremt settefisken overlever, kun føre til en tettere bestand av småvokst og skrinn fisk.

Mangelfull dokumentasjon av begrensende faktor for det som ønskes ivaretatt (f.eks. fiskeproduksjon, biodiversitet) kan være årsaken til at ulike tiltak ikke fungerer etter hensikten. Felles for de fleste tiltak er at det ikke er foretatt en god nok vurdering av behovet for tiltaket før det iverksettes. Ofte er det mangelfull eller ingen informasjon om elvas eller magasinets "bæreevne" etter regulering. Stikkord for iverksetting av tiltak vil derfor være:

i) mål - hva skal tiltaket ivareta?
ii) begrensende faktor - hva er begrensende faktor(er) for det som ønskes ivaretatt?
iii) endrer tiltaket begrensende faktor(er) i ønsket retning?

Ofte blir det iverksatt tiltak for å redusere de negative virkningene av reguleringer samtidig med reguleringen. Tiltak som utsetting av fisk og bygging av fisketrapper kan medføre endringer i bestandsforholdene som kan være vanskelig å skille fra effekter av selve reguleringen. Hos anadrom fisk vil miljøendringer og overlevelse i havet også påvirke bestandsstruktur og sammensetning uavhengig av hendelser i elva. Det er derfor viktig med lange tidsserier, fordi effekter først kan vise seg etter mange år og må kunne skilles fra naturlige endringer (klimatiske) (Saltveit mfl. 2006). Effekten av gjennomførte tiltak må kunne dokumenteres. Dette vil dokumentere tiltakets suksess og også gjøre det lettere å foreta nødvendige justeringer.

1.6. EUs vanndirektiv

EUs rammedirektiv for vann angir et rammeverk for beskyttelse av alle vannforekomster innen EU og i land som omfattes av EØS-avtalen. Den norske innføringen av rammedirektivet gjennom vannforskriften setter krav til økologisk tilstand for norske vannforekomster, basert på fem kvalitetsselementer, med fokus på de biologiske (fiskefauna, bunnslevende, virvelløse dyr og vannplanter). Rammedirektivet har som målsetting at alle norske vannforekomster skal oppnå god eller svært god økologisk status innen 2015. Hva som gjør at en vannforekomst oppfyller visse klassifiseringskrav er et faglig utviklingsarbeid som nå pågår innenfor EU-/EØS-området.

Miljømålene for vannforekomstene bestemmes i en omfattende planprosess i vannforvaltningsplaner for vannregionene. Det er sektormyndighetene som gjennom sine vedtak etter sektorlovgivningen, bl.a. vannressursloven, vassdragsreguleringssloven og vilkårsbestemmelser i konsesjonene, lakse- og innlandsfiskeloven, forurensningsloven og plan- og bygningsloven mfl.,
som til slutt bestemmer hva som blir gjennomført av tiltak. Miljømålene i vannforvaltningsplanene vil være sentrale for vurderingene som gjøres i saksbehandlingen.

For enkelte vannforekomster som er regulert til kraftformål, vil bestemmelser rundt magasinenes manøvrering og minstevannføring på fraførte strekninger være ønskelige tiltak som kan kreves iverksatt for å oppnå miljømålet. Krav om dette behandles av NVE og OED i vilkårsrevisjoner etter vassdragsreguleringsloven.
2. Avbøtende tiltak i magasiner

2.1. Lister over ulike tiltak mot effekten av reguleringer

For å kunne komme fram til et velegnet program for avbøtende tiltak krever vanndirektivet at man vurderer alle kjente tiltak og alle ulike metoder for å forsøke å gjenopprette naturtilstanden. Denne oppgaven er svært omfattende. For å hjelpe saksbehandleren har forvaltningen laget sjekk- lister som kan anvendes i vurdering i hvert regulert vassdrag ("generic lists of measures"). I Norge ble dette arbeidet påbegynt med et tabellarisk oppsett over alle kjente tiltak som har blitt utprøvd i regulerte vassdrag (Glover, 2006, gjengitt her som Anneks 3).

Tiltakene er delt inn i en tabell for magasiner (M1- M5) og en tabell for elver og bekker (E1- E8). Den siste har også en underinddeling som viser om tiltaket utføres i den aktuelle forekomsten eller utenfor (f.eks. oppstrøms eller nedstrøms). Deretter er de ulike tiltakene gruppert i tiltaks- grupper som hører naturlig sammen (utsettinger, terskler, vannstandsrestriksjoner osv.). I de etterfølgende kapitlene vil vi diskutere hver av de tiltaksgruppene som har særlig relevans og aktualitet i dag. Enkelte mindre aktuelle eller svært lite utbredte grupper av tiltak blir ikke diskutert. Nummersystemet er opprettholdt for å kunne henvise til de opprinnelige tabellene i Anneks 3.

I den etterfølgende diskusjonen om hvert tiltak har vi forsøkt å generalisere hvordan tiltakene virker i en videre sammenheng, og også hvor egnet de er. Hovedhensikten er å kunne gi en generell oppsummering av dagens kunnskap og å gi råd om hvordan de ulike tiltakene skal vekt- legges i en tiltaksanalyse for regulerte vassdrag.

2.2. M1 og E1 Fiskeutsetting/utfisking

Forvaltning av fiskebestander i reguleringsmagasiner har i stor grad vært orientert om å sikre antall fisk, dvs. rekrutteringen, og i mindre grad vært opptatt av selve fiskeproduksjonen, dvs. næringsgrunnlaget. Utsetting av aure har derfor vært det dominerende tiltaket, selv om det ofte ikke er dokumentert at regulering har ført til redusert rekruttering.

Begrunnelsen for å sette ut fisk er å styrke rekrutteringen der den naturlige rekrutteringen av en eller annen grunn ikke anses som tilstrekkelig. I forbindelse med regulering av innsjøer vil en dam i utløpet forhindre gyting i utløpselv og potensielt redusere rekrutteringen. Samtidig vil vannspeilet innenfor dammen få endret areal og endret produksjon av næringsdyr, avhengig av type regulering og bassengform. Samtidig skal den genetiske strukturen oppretholdes og det skal verken innføres patogene organismer eller nye fiskearter til vassdragene i forbindelse med fiskeutsettinger. Sykdomskontroll, bruk av stedegen fisk og soner for utsetting er forvaltnings- bestemmelser som skal ivareta dette.

Drift av fiskebestander i reguleringsmagasiner har som hovedutfordring å ha en bestand som er tilpasset magasinets produksjon av næringsdyr. På den ene siden må det være et rimelig antall fisk tilstede slik at næringsdyrene kan utnyttes, mens det på den andre siden ikke må være for tett bestand i forhold til næringsgrunnlaget for at fiskens kvalitet skal ivaretas. Det er ikke gitt at rekrutteringen etter regulering er en begrensende faktor selv om gyting ikke lenger kan skje i utløpselv.
For å ivareta god utnyttelse av næringsdyr og ikke minst fiskens kvalitet, er det helt avgjørende å ha en totalrekruttering som er i balanse med magasinets produksjon av næringsdyr og tilgjengelig habitat. I utgangspunktet bør det fokuseres på muligheten for å opprettholde eller øke den naturlige reproduksjonen, og det bør bare unntaksvis foretas utsetting av fisk i magasiner. Fokus bør rettes mot magasinets produksjonskapasitet når det gjelder næringsdyr. Hvor mange rekrutter magasinet "trenger" avhenger av målet og hvordan bestandene driftes. Vanndirektivet fokuserer på god økologisk tilstand med naturtilstanden som hovedmål, og i SMVF-vassdrag skal det være godt økologisk potensiale. Dette kan komme i konflikt med ensidig ønske om maksimal produksjon av aure, idet naturtilstanden i prinsippet skal ivareta alle fiskearter. Et overdrevent fokus på tiltak rettet mot én bestemt art kan forstyrre den naturlige balansen mellom alle naturlige arter i de biologiske kvalitetsområdene som vanndirektivet krever overvåket. Uansett vil det være vanndirektivet som vil være bestemmende for hvordan økologisk tilstand i bred forstand måles.

Utsetting av fisk har lange tradisjoner i norsk fiskeforvaltning (Kultiveringsutvalget 1991). Utsettinger har vært benyttet i mange sammenhenger og til ulike formål og ikke bare som avbøtende tiltak i regulerte vassdrag. Når dette benyttes som tiltak i forbindelse med vassdragsreguleringer, så gjøres det for å oppnå bedre avkastning av fisk, enten det er i magasiner eller i elv. I sammenheng med vanndirektivet sees dette i sammenheng med å oppnå god økologisk tilstand eller i SMVF-vassdrag for å oppnå godt økologisk potensiale.

Målsettinger er:

- øke avkastningen av fangbar fisk
- øke produksjonen av fisk
- kompensere for skader knyttet til inngrep i vassdrag
- reetablere en bestand som har vært borte som følge av antropogen påvirkning

Utsetting av fisk gjøres for laks og aure og det benyttes røgn (rognplanting), plommesekkyngel, startforet yngel, årsunger, settefisk og smolt. Utsettingene gjøres for å styrke den naturlige rekrutteringen, der utsatt fisk skal inngå i produksjonen av fangbar fisk på lik linje med den fisken som er naturlig rekruttert i vassdraget.

Generelt finnes det lite kunnskap om effekter og nytte av utsettinger av laks og aure i regulerte vassdrag, spesielt gjelder det utsettinger av énsomrige settefisk i elv (Saltveit 1998, 2003, 2006, Fjellheim og Johnsen 2001). Mye av årsaken til dette er at livssyklus hos laks omfatter flere år på elv og i sjøen. Langsiktige studier er derfor nødvendig, men få slike er gjennomført. Mer kunnskap finnes om effekten av smoltutsetting av laks (Hansen og Jonsson 1989 a, b). Som nevnt må tiltak iwerksettes og konsentreres om de forhold som virker begrensende på fiskeproduksjonen. Dersom naturlig reproduksjon ikke er den begrensende faktør for produksjon av fisk, er heller ikke utsetting av fisk påkrevet. Bare redusert produksjon av yngel som skyldes...
forhold som påvirker gyting, eggutvikling og klekking kan det kompenseres for gjennom utsetting i selve elva.

Forutsetning for suksess: Uttaket av fangbar fisk begrenses av naturlig reproduksjon.

<table>
<thead>
<tr>
<th>Tiltak</th>
<th>Målsetting</th>
<th>Forutsetning for suksess</th>
<th>Målekriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utsetting av fisk</td>
<td>Øke utbytte av fangbar fisk</td>
<td>Naturlig rekruttering må være begrensende faktor</td>
<td>Fiskens vekst</td>
</tr>
<tr>
<td>- Fiskeunger</td>
<td>Opprettholde genetisk struktur</td>
<td>Ikke nærings- og habitatbegrensning</td>
<td>Fiskens kvalitet</td>
</tr>
<tr>
<td>- Eldre årsklasser</td>
<td>Ikke tilføre patogene organismer</td>
<td>Stedegen stamfisk</td>
<td>Aldersstruktur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Opprettholde den naturlige rekrutteringen</td>
<td>Fangstutbytte</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sykdomskontroll</td>
<td></td>
</tr>
</tbody>
</table>

Utsetting kan øke rekrutteringen av laks og gi økt avkastning, men bare så sant stamfisk tas fra en overtallig gytebestand og fisken settes ut på strekninger uten naturlig rekruttering eller som smolt. Hvis gytebestanden er begrenset, vil uttak av stamfisk i seg selv redusere naturlig reproduksjon, og utsetting vil da ikke ha positiv effekt selv om fisk ble satt ut på en ikke anadrom strekning.

Felles for flere utsettinger der målsettingen ikke er nådd, som i Lærdalselva, Aurlandselva, Teigdalselva og Suldalslågen, er at det før utsetting ikke var foretatt en tilstrekkelig vurdering av behovet. Det var heller ingen informasjon om disse elvenes "bæreevne".

Hovedhensikten med utsettinger i f.eks. Suldalslågen var i utgangspunktet å øke avkastningen av voksen laks, men tiltaket har ikke svart til forventningene. I de undersøkelsene som fulgte etter at utsettingene var igangsatt, er det angitt at reproduksjonen ikke var begrensende faktor for fiskebestandens størrelse. Dette understøttes også av at utsatt fettfinnekliptet laks bidrar de fleste år til mindre enn 10% av fangstene (antall) i Suldalslågen. Enkelte år har fangstene av utsatt fisk bare utgjort 3% av villaksfangsten. Vurderes utsettingene i forhold til den mengde fisk som er satt ut hvert år, må også resultatet betegnes som dårlig ut fra målsettingen om å øke avkastningen av voksen laks.
2.3. M2 Vannstandsrestriksjoner

Mange store reguleringsmagasiner kommer i konflikt med interesser knyttet til landskap, friluftsliv, reiseliv og bruk av båter, fiske osv. på grunn av de store vannstandsvariasjonene som reguleringen nødvendigvis innebærer. Nedtapping om vinteren er mindre problematisk enn om sommeren, men likevel en ulempe for fisk og for trekk for villrein og andre aktiviteter på isen. Et forslag som ofte reises er å innføre restriksjoner på nedtapping av magasiner i enkelte perioder av året eller prioritere oppfylling av magasinet til en bestemt vannstand innen en avtalt sommerdato. Magasinene skal opprettholde de ytterste grensene satt i konsesjonen, LRV og HRV, men regulanten kan bli pålagt restriksjoner i fri bruk av hele magasinet fullt ut i visse årstider.

Slike tiltak sorterer under begrepet vannstandsrestriksjoner og kan ta mange ulike former og benyttes til ulike årstider. Målsettingen er normalt å:

- ivareta landskapsestetetiske hensyn
- imøtekomme ønsker for andre brukere (hytte- og båteiere, turistnæringen)
- ivareta biologisk produksjon

Regulering av magasiner innebærer påvirkning av invertebrater og fisk på fire nivåer:

- erosjon og substratendringer i strandsonen
- virkning av reguleringshøyde
- virkning av fyllingsmønster
- eventuelt redusert siktedyp

Disse nivåene går delvis over i hverandre, og de kan være vanskelig å skille. Det er imidlertid enkelte undersøkelser som viser de isolerte effektene av siktedyp, reguleringshøyde og fyllingsmønster. Vi skal i denne sammenheng konsentrere oss om selve fyllingsmønsteret, der også siktedyp ofte inngår som faktor.

Den planktoniske næringskjeden blir spesielt påvirket av redusert siktedyp. Dersom det skjer sommersenking eller sen oppfylling, er erfaringen at det kan skje ras og vindeksponering, noe som sjeldnere skjer under isen ved tapping vinterstid. Et eventuelt redusert siktedyp vinterstid vil heller ikke ha samme negative effekt på produksjon av zooplankton og næringskjeden.
<table>
<thead>
<tr>
<th>Tiltak</th>
<th>Målsetting</th>
<th>Forutsetning for suksess</th>
<th>Målekriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyllingskrav, prioritert bruk av smeltevann</td>
<td>Ivareta fiske-produksjon i reguleringssonen</td>
<td>Balanse mellom næringsdyr i strandsonen og fisketetthet</td>
<td>Fiskens vekst</td>
</tr>
<tr>
<td>Dato for vårfylling til definert kotehøyde</td>
<td>Ivareta biologisk produksjon i reguleringssonen og de frie vannmasser</td>
<td>Regularitet i fyllingsmonster</td>
<td>Fiskens kvalitet</td>
</tr>
<tr>
<td>Krav til min. vannstand i biologisk produksjonssesong ("sommer LRV")</td>
<td>Ivareta fjellandskap og estetiske hensyn</td>
<td>Vårfylling relates til foregående høstvannstand (skjoldkreps)</td>
<td>Forekomst av indikatororganismer for fylling uavhengig av reguleringshøyde</td>
</tr>
<tr>
<td>Redusere magasin-fylling for flomkontroll</td>
<td>Opprettholde magasins totale produktive areal og volum</td>
<td>Jevn vannstand gjennom biologisk produksjonssesong</td>
<td>Skjoldkreps</td>
</tr>
<tr>
<td></td>
<td>Hindre redusert siktedyp</td>
<td>Ikke redusert siktedyp</td>
<td>Linsekreps</td>
</tr>
<tr>
<td></td>
<td>Redusere skade-flommer</td>
<td></td>
<td>Indikatororganismer for godt siktedyp (Bythotrephes longimanus, Daphnia spp.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Produksjonstap fra simuleringer med/ uten krav</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Simulering av skade-flommer nedstrøms</td>
</tr>
</tbody>
</table>

Figur 1 Redusert siktedyp ved lav sommervannstand/ sen fylling
Tabell 3 Mulige abiotiske faktorer, forventet biologisk respons og biotiske prosesser forårsaket av sommersenkning som forekommer sjelden

<table>
<thead>
<tr>
<th>Abiotisk effekt</th>
<th>Prosess og forventning</th>
</tr>
</thead>
</table>
 Forventning: Mekanisk endring av reguleringssonen, deponering under LRV. Løs-rivelse av makrofytter. Redusert overlevelse for bunndyr. |
 Forventning: Kan redusere overlevelse hos fisk og bunndyr. Reduserer næringsopptak hos filternde organismer og svevekapasitet hos zooplankton. |
| Allokton partikkel-transport| Relatert til ekstern tilførsel av næringspartikler, vesentlig terrestrisk plantemateriale.
 Forventning: Øker arealet av områder i tidlige suksjonstrinn. |
| Oppløste salter | Knyttet til erosjon, allokton partikkeltransport og bunntype. Økt primærproduksjon.
 Forventning: Økt primærproduksjon for fytoplankton. |
 Forventning: Redusert produksjon av fytoplankton og strandvegetasjon. Økt forekomst av lysomfintlig arter og av flytebladvegetasjon. |
| Totalt vanndekket areal, | Senking av magasiner gir redusert vannmengde areal. Avhengig av innsjøomfometri og hypografisk kurve. Reduserer mengden av (mikro-)habitat, delvis med funksjon som refugier. Mindre vannmengde areal gir økt relativ tetthet av organismer.
 Forventning: Redusert vannmengde areal reduserer det produktive arealet/volumet og øker effekten av tetthetsavhengige parametre. Fravær av refugier gir økt dødelighet. |
| totalt vanndyp* | |

*Antatt spesielt viktig med tanke på lav sommervannstand

Skjoldkreps regnes sammen med marflo og linsekreps som svært viktige næringsdyr for fisk i høyfjellet. De er store og, spesielt skjoldkreps, kan være viktige i magasiner med stor reguleringshøyde. Klekkesuksess hos skjoldkreps blir berørt i magasiner der sommervannstanden er lavere enn høstvannstanden foregående høst, eller der vannstanden fylles sent opp på forsommenen, se Figur 2.

Figur 2 Magasinets vannstand innvirker på klekking av skjoldkreps

![Diagram](image)

Det kritiske for skjoldkreps er selvsagt at vannet må nå opp til det nivået der eggene ligger, som altså er definert av høstvannstanden da eggene ble lagt. Dette må skje så tidlig at skjoldkreps rekker å gjennomføre livssyklus i løpet av sommer og høst.

Undersøkelser tyder på at skjoldkreps trenger 2-3 år for å bygge opp bestanden til et nivå der den på ny kan inngå som næring for aure (Brabrand 2010). Det betyr at dersom det skjer ugunstig fylling "for" ofte, dvs. hvert 3-5 år, vil skjoldkreps ikke rekke å bygge opp bestanden mellom ugunstige år. I slike magasiner vil skjoldkreps ikke kunne medregnes som næringsdyr for aure. Dette er forventet fordi skjoldkreps har én generasjon i året, legger forholdsvis få egg og i tillegg er utsatt for nedbeiting fra fisk også før egglegging.

2.4. M3 Kunstige terskelbassenger

Det finnes så langt bare et par eksempler på terskelbassenger bygget i magasiner i Norge. Derimot har det blitt utført mye planlegging, undersøkelser og debatt rundt forslaget om å bygge et slikt basseng i den øvre enden av Pålsbumagasinet i Numedalen. Hovedhensikten har vært å sørge for en lavere belastning (mindre vannstandssendringer) på littoralsonen i deler av magasinet. Det finnes to hovedtyper av slike bassenger; bassenger som er helt avsnørt fra hovedbassenget, og bassenger som er i kontakt med hovedbassenget.

Tabell 4 Målsetting, suksesskriterier og målekriterier for terskelbassenger som tiltak i magasiner

<table>
<thead>
<tr>
<th>Tiltak</th>
<th>Målsetting</th>
<th>Forutsetting for suksess</th>
<th>Målekriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3 kunstige terskelbassenger</td>
<td>Opprettholde en "naturlig" littoralsone i deler av magasinet</td>
<td>Hovedmagasinet fylles og overtopper terskelen regelmessig for å opprettholde biologisk kontakt for fisk</td>
<td>Parametrene fisk, bunndyr, makrofytter</td>
</tr>
<tr>
<td>I kontakt med hovedbasseng via oversvømmelse av terskelen</td>
<td>Opprettholde biologisk mangfold, sikre produksjon av fisk, bunndyr og flora</td>
<td></td>
<td>Allmenn aksept</td>
</tr>
<tr>
<td></td>
<td>Mer naturlig våtmarkspreg i landskapet</td>
<td></td>
<td>Allmennhetens opplevelse</td>
</tr>
</tbody>
</table>

2.5. M4 og M5 Habitatjusteringer og kalking

Habitatjusteringer i magasiner (M4) er sjeldne og oftest stedspesifikke og kan ikke generaliseres. Tiltak som rettes mot å endre på vannets naturlige, kjemiske sammensetning og variasjon (M5) har kun indirekte relevans for vassdrag som er regulert til vanndriftsmål. Det er ikke dammer
eller vannkraftstasjoner i seg selv som endrer vannkjemien, men overføring av vann fra ett vassdrag til et annet, endring i den biologiske omsetningen i innsjøer som omdannes til reguleringsmagasiner, endringer i bunnsedimenter osv.

Slike eksempler er så spesielle at det ikke kan lages generelle målsettinger eller avbøtende tiltak. Hvert tilfelle må analyseres for seg og avbøtende tiltak må være skreddersydd de lokale forholdene. Suksesskriterier kan dermed defineres avhengig av den vannkjemiske endringen man sikter mot, og oppfølging er ofte enklere når bestemte målsettinger kan kvantifiseres (f.eks. pH-verdi eller Raddum-indekser i forsurte vassdrag).
3. Avbøtende tiltak i elver

3.1. Generelt for elver

I motsetning til magasiner kan det i elver inngåres tiltak som er langt fra de vannforekomstene som er direkte påvirket av reguleringer. Dette gjelder både oppstrøms og nedstrøms, f.eks. kan høyfjellsmagasiner brukes for å regulere elvene nedstrøms. Vandringshindre nedstrøms kan også påvirke fiskebestander oppover i vassdraget.

Den første gruppen, E1 utsetting av fisk, skiller seg lite fra liknende utsettingstiltak i magasiner og er dermed dekket av forutgående diskusjon under 2.1. De neste tiltaksgruppene tas opp hver for seg nedenfor.

3.2. E2 Fiskepassasjer

Den vanligste formen for fiskepassasje i Norge er fisketrapper designet for vandring forbi et vandringshinder. I tillegg til egen vandring skjer det flytting av voksen fisk forbi vandringshinderet. De fleste trappene er konstruert for å gi sikker oppvandring i forbindelse med gyting hos laks og aure. I innlandsvassdrag vil næringsvandring komme i tillegg til gytevandringer, og her gjelder både opp- og nedvandring hos aure, harr og andre arter. Nedvandring gjennom vandringshinder er problematisk for flere arter og forbundet med stor dødelighet. Det er bl.a. en utfordring å sikre nedvandring av stor ål på vei til havet (Thorstad mfl. 2010, se pkt. 3.3.2 og 4.5.5).

Trappene kan endre bestandene, f.eks. ved å favorisere smålaks i et storlaksvassdrag. Av oppvandrende laks i fisketrappe i Sjurhaugsfoss i Lærdal, var så mange som 90 % 1-sjøvinter laks mindre enn 3 kg. I Lærdalselva er de fleste 1-sjøvinter laks hannfisk (80 %). Effekten av trappen for å øke den naturlige reproduksjonen var derfor begrenset grunnet mangel på hunnfisk (Saltveit 1993). Trapper kan også øke sannsynligheten for å spre sykdom (eks. Gyrodactylus salaris) og rømt oppdrettslaks.

<table>
<thead>
<tr>
<th>Tiltak</th>
<th>Målsetting</th>
<th>Forutsetning for</th>
<th>Målekriterier</th>
</tr>
</thead>
</table>

Tabell 5 Målsetting, suksesskriterier og målekriterier for fisketrapper som tiltak
3.3. E3 Endret oppstrøms tappestrategi

3.3.1. Sesong- og døgnmessig tappevariasjon

Felles for denne gruppen er at tiltakene innføres oppstrøms, ofte fjernt fra der man ønsker å oppnå en biologisk effekt. Tiltakene vil påvirke økologien gjennom endringer i tidspunkt for og sted hvor vannet tappes fra magasiner oppstrøms, eller gjennom utforming eller plassering av inntakene som drar vannet ut for å forsyne kraftverk og elvene nedstrøms. I enkelte tilfeller er det snakk om nye betingelser knyttet til selve manøvreringsreglementet i konsesjonen, eller i hvert fall en endring av tappemønsteret. Slike endringer kan bare innføres som resultat av en vilkårsrevisjon, noe som allerede er igangsatt for flere regulerte vassdrag i Norge.

Fordelingen av vannet over året kan endres, dvs. at man manipulerer vannføringsproffen. For eksempel kan vannet ”forskyves” til sommeren til fordel for lakseoppgangen, slik som i Numedalslågen.

<table>
<thead>
<tr>
<th>Tiltak</th>
<th>Målsetting</th>
<th>Forutsetning for suksess</th>
<th>Målekriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3 Endret tapestrategi</td>
<td>Simulere en naturlig variasjon i hydrologiske forhold nedstrøms og dermed sørge for vandring opp- og nedover, gode vekstforhold</td>
<td>Tilstrekkelig stort våtareal for stedegne fiskestammer til enhver tid</td>
<td>Drivtellinger av fisk</td>
</tr>
</tbody>
</table>

3.3.2. To eller flere høyder for vannuttak fra et magasin

Av tekniske grunner ligger vanninntaket i de fleste reguleringsmagasiner noen meter under LRV. Dette er nødvendig for å kunne tape tilstrekkelig vann uten innblanding av luft når magasinet
ligger ved eller rett i overkant av LRV. Om vinteren vil temperatursjiktningen i et slikt magasin føre til at elvevannet nedenfor kraftverket har høyere vann temperatur om vinteren enn før reguleringen. Under perioder med temperatursjiktning om sommeren kan det samme fenomenet føre til at temperaturen i elva nedstrøm vil være lavere enn normalt om sommeren, med de konsekvenser det medfører. Problemet med å trekke vann ut av de ulike vannlag under et sjiæt magasin er godt kjent fra drikkevannmagasiner i utlandet. Flere av disse har derfor flere inntak plassert i ulike nivåer, for alltid å kunne trekke ut vann fra et lag noen få meter under overflaten.

I Norge er det få magasiner med to inntak bygget på ulike høyder. Et av unntakene er Alta dammen som kan tappe Virdnejávri-magasinet fra ulike nivåer, alt etter behov for vann av en viss temperatur. Slike magasiner åper opp for bruk av de ulike inntakene alt etter hvordan man ønsker å styre temperaturen i tappevannet i elva nedenfor. Ettersom denne muligheten bare finnes i svært få magasiner i Norge, blir dette forholdet ikke diskutert nærmere her.

3.3.3. Endret posisjonering/ geometri ved inntaket til kraftverk og flomluker

Mange fiskearters livssyklus omfatter vandrende stadier, og vandring har flere formål. I norske elver er det laks, aure, harr, roye og ål som i særlig grad vandrer langs elvestrenger og påvirkes av utformingen av inntak og utløp i forbindelse med vannkraftanlegg. Oppstrøms migrasjon hindres av dammer. For smolt vil inntaket til kraftstasjonen være en hindring. Avhengig av utformning av vannveiene og turbinene, er dødeligheten ofte svært høy for fisk som ledes gjennom kraftverket ved nedvandring. Spørsmål knyttet til fiskevandringer i tilknytning til vannkraft har lenge fokusert på oppvandring, og det er kun i de senere år man har åpnet øynene for viktigheten av tiltak for å øke nedvandringssuksessen hos vandrende fisk i regulerte vassdrag. Spesielt gjelder dette for å, der det er påvist svært stor dødelighet i forbindelse med utvandring til havet (Thorstad mfl. 2010).

Mye kan gjøres ved å ta hensyn til smolttuvandring under planlegging av inntaket og flom lukene, men på eksisterende anlegg er det begrenset hvor omfattende fysiske endringer man kan gjøre. Endringer i inntaksutforming må vurderes spesifikt for hvert sted. Derimot kan en fornuftig tappeprosedyre under smolttuvandringssesongen være en effektiv metode for å redusere smoldtødelenheten. Tiltak ved eksisterende anlegg som har blitt utprøvd, er å skremme fisken bort fra kraftverksinntaket, enten med hjelp av gitter mot større fisk, luftgardiner eller strobelys.
3.4. E4 Pålagt konstant minstevannføring

3.4.1. Definisjon av begrepet minstevannføring

"Minstevannføring" er et begrep som ofte brukes for å beskrive et pålagt slipp av en konstant minimumsvannføring for å opprettholde et vannspeil eller ivareta økologiske verdier i en elvestrekning som er fratatt vann. Begrepet benyttes oftest for å beskrive et konkret vilkår i konsesjonen, som f.eks. at man alltid skal opprettholde en bestemt minimumsverdi for vannføringen nedenfor dammen. Det foreligger nå bedre kunnskap om økologisk respons ved konstant lav vannføring. Bruken av denne kunnskapen bør derfor benyttes ved pålegg om lav vannføring.

Vassdragsteknisk kan man definere elvestrekninger med pålagt minimumsvannføring i to hovedtyper:

- **Type A**: Elvestrekninger som er fratatt vann for utnyttelse til kraftproduksjon. Det gjelder bare strekninger nedenfor en dam/ et inntak som fratas betydelige vannmengder fra vassdraget nedenfor. Strekningen opphører der vannet føres tilbake til elva fra en kraftstasjon. For takrenneprosjekter er hele vassdraget berørt nedenfor inntaket og helt ut til havet.

- **Type B**: Elvestrekninger der fallet ikke utnyttes til kraftproduksjon, men som er påvirket av oppstrøms reguleringer eller effektkjøring av kraftverk ovenfor. Typisk finner man slike strekninger nedenfor store reguleringsmagasiner, som reduserer nedstrøms vannføring under oppfyllingsperioder. I slike strekninger blir minstevannføring pålagt for å opprettholde konstant minimumsvannføring, mens magasinet eller døgnpendlingsbassenget fylles opp.

Det er vesentlige forskjeller i de økonomiske rammebetingelsene for type A og B. Type A krever nøye avveining av vannføringspålegget, fordi et høyere pålegg vil medføre betydelig tap i vannkraftproduksjonen. Type B kan derimot ha større rom for høyere pålegg, fordi produksjonsapotet vil bli betydelig lavere. Det er bare fleksibiliteten i reguleringen som har blitt begrenset av et høyere pålegg om minimumsvannføring. Vi diskuterer dette videre under Kapittel 4 (økonomi). Sett fra et økologisk standpunkt vil begge typer kunne diskuteres videre under ett.

Nydere kunnskap om regulerte vassdrag indikerer at konstant vannføring på et lavt nivå ikke er optimalt for opprettholdelse av en rik akvatisk økologi. Dermed kan ikke den formelle oppfyllelsen av et slikt pålegg indikere suksess i å oppnå økologiske målsettinger. Slike pålegg er som regel imøtesatt fullt ut av regulanten, mens økologiske målsettinger sjeldent er oppnådd uten
at flere tiltak er gjennomført i samme elvestrekning (minstevann kombinert med terskelbygging, habitatforbedring osv.).

Minstevannføringens virkning på fisk er imidlertid også nært knyttet til temperaturen i elvevannet. For å få en sikrere naturlig rekruttering av laks i sommerkalde, regulerte elver er det i Aurlandselva gjennomført kontrollerte forsøk med redusert sommervannføring for å sikre høyere temperatur for klekking av laks (Hellen mfl. 2004). Dette har gitt økt tetthet av presmolt og sikrere rekruttering av laksunger i elva.

Klargjøring av målsettinger
I nyere tid har hensikten med fastsetting av en bestemt minstevannføring ofte vært å sikre fiskeressursene, men i de fleste tilfeller har man ikke undersøkt hva som gir den optimale løsning gitt de økonomiske begrensninger som stiller en begrenset mengde vann til disposisjon (Type A) og uten merkbare innskrenkninger på driftsfleksibilitet (Type B). Tradisjonelt har interesser for anadrome fiskestammer vært førende, men nå stiller vannforskriften helt andre krav med egne regler og systematiske metoder for måling av økologisk tilstand.

For å kunne måle suksess med et bestemt tiltak må man først stille spørsmålet: "Hvilke økologiske verdier eller arter skal man sikre?" Vannforskriftens krav om mest mulig naturlig tilstand er ikke den samme som størst mulig fangst av villaks, og disse to krav kan ofte vise seg å være i strid med hverandre. De optimale vannføringene for ett formål vil kunne være annerledes enn for et annet formål, eller vil kunne tilpasse forholdene for én art på bekostning av en annen (se Dokkas reguleringsvilkår).

Det er veldokumentert at det er visse sammenhenger mellom bestandsstørrelser og vanndekket areal i elv (forutsatt en naturlig sesongmessig variasjon). Det må dermed forventes reduserte bestander ved en kraftig reduksjon i vannføringen. Men mengde fisk er ikke en primær målsetting under den nye vannforskriften, selv om størst mengde fangst av laks tidligere har vært målsettingen ved gjennomførte tiltak. Økologisk status måles ut fra ulike biologiske elementer der fisk bare er ett av elementene. Målsettinger for vannforskriften kan være artsdiversitet, naturlig variasjon i årsklasser, fiskens vekst og kondisjon, naturlig reproduksjon osv. En mer helhetlig fiskeforvaltning vil basere seg på identifisering og fjerning av menneskeskapte flaskehals for enkelarts livsvilkår (eksempelvis for få gyteplasser, for lav vinteroverlevelse, vandringshindre og høy smoltdødelighet) i forhold til naturtilstanden.

Historikk og ferskvannsbiologiske erfaringer
Tradisjonelt har konsesjonsvilkårenes blitt utformet ved hjelp av enkle definisjoner, som oftest en pålagt konstant minstevannføring målt på et bestemt punkt langs vassdraget som er lett å kontrollere til enhver tid. Pålegget defineres innen datofestete tidsperioder, som oftest med forskjellige sommer- og vintervannføring. Lavere vannføring fører ofte til en økning i biomassen av perifyton, noe som gjør miljøet mer produktivt, men samtidig mer artsfattig. Høyere vannføring kan på den andre siden føre til ugestmilde og harde forhold for mange arter og livsstader. Det er altså moderat vannføring som kanskje gir den største produksjonen.

Figur 3 viser hvordan ulike arter bunndyr responderer forskjellig under ulike vannføring i samme elv på New Zealand (Biggs, 2006).
Pålagt minstevannføring har vært bestemt av en avveining mellom kraftinntekter og miljøhensyn, der minstevannføringen oftest ble satt meget lav, lik en historisk normal lavvann (Q95). Da det faktisk fantes lokale fiskebestander i elva som hadde overlevd denne lavvannføringen, ble det resonneret at dette var nok til å oppretholde de samme fiskebestandene. Nyere forskning har vist at lange perioder med flere måneder av konstant lav vannføring fører til større problemer enn de kortere periodene med samme vannføring før vassdraget ble bygd ut (forklares senere).

Pålagt minstevannføring av Type A i utbygde elver er ofte lav av økonomiske grunner, noe som gjør det viktig å utnytte vannet på en optimal måte. Det er store responsforskjeller på slike inngrep for stasjonære bestander og bestander som etter ungfiskstadiet vandrer ut i større ferskvanns- eller saltvannssystemer.

Det er meget stor forskjell i responsen for en fiskebestand som er eksklusivt bekke- eller elvelevende og en som har muligheten til å vokse i systemet, dvs. vandre ut i en større elv, en innsjø eller havet. Derfor er det utfordrende å beholde et fiskesamfunn tilpasset store elver når man setter en minstevannføring på noen få prosent av den opprinnelige vannføringen. Der fisken bare vokser opp og gyter på strekning underlagt minstevannføring, har et lavt vannføringspålegg fungert slik at man har oppretholdt rekrutteringen. Vanskeligere er det om vi har med bekke- og elvelevende stammer å gjøre, der leveforholdene gjennom hele livszyklusen blir påvirket.

I nyere tid har man gått over fra den tradisjonelt stabile minstevannføringen til å simulere det naturlige eller ønskelige. For å finne kostnadseffektive tiltak må vi bl.a. måle suksess, og dette forutsetter at vi ”kjenner” systemet vi studerer på en kvantifiserbar, vitenskapelig måte. Et like viktig moment er realistiske målsettinger for tiltaket.

For å evaluere suksessen til et tiltak er det viktig å liste opp en modell med målsettinger, målbare parametre, effekter osv., som vi kan evaluere underveis.

- Typiske målsettinger ved minstevannføring:
 1) Oppretholde fiskebestanden og da spesielt gyteforholdene og rekrutteringen
 2) Folks opplevelse: Landskapsestetikk, friluft
 3) Hensyn til annet dyre- og planteliv, fugl, dyr etc.
 4) Oppretholde tilstrekkelig næringsgrunnlag for fisk

Figur 3 Responsen fra ulike artsgrupper av bunndyr (fra Biggs mfl., 2006)
Måleparametre: Elektro- og prøvefiskedata, bunndyr, begroingsalger, vanndirektiv-parametre, folks opplevelse, fugleindeks, spørreundersøkelser, fangst per innsats

Effekter: Vannføring med variasjon har stor effekt på kvalitet og kvantitet av fiskebestander og næringsgrunnlag. Det er som oftest umulig å opprettholde det naturlige fiskesamfunnet

Suksesskriterier: Når har dette fungert?

3.4.2. Stabil minstevannføring sommerstid

Flere studier indikerer at grad av vanndekket areal i forhold til uregulert vanndekket areal ofte utgjør et suksesskriterium av større økologisk betydning enn vannføringsvolumet. I bratte vassdrag vil tilførsel av dobbelt vannvolum sjelden medføre dobling av produktivt vått areal. Det kan tenkes at en vannføring som så vidt dekker alt bunnssubstrat gjennom en elvestrekning med bratte elvebredder, har oppnådd en terskelverdi i form av en høy prosent vanndekket areal i forhold til det uregulerte. Tilførsel av større vannføring vil få vannstanden til å stige litt, men arealort er fortsatt begrenset av elvebreddene. For å dekke hele bunnssubstratet i en bestemt elvestrekning må man normalt ha en vannføring som er betydelig høyere enn 95 % persentil (Q95) eller alminnelig lavvannføring, og hensyn til prosjektøkonomi taler som oftest i mot at så høye minstevannføringer blir pålagt. Det må derfor vurderes fra vassdrag til vassdrag hvor mye av bunnssubstratet som bør dekkes med vann for å bringe mest mulig tilbake mot naturlig tilstand.

Eksempel: Et typisk reguleringsmagasin. Hvis målsettingen har vært å opprettholde produksjonen av ungfisk på bekk eller innløpselv i tilknytning til et reguleringsmagasin, har dette ofte vært imøklædt. Tiltaket har fungert ift. fiskeproduksjon, men dette har ikke stått ift. næringsgrunnlaget i magasinet som har en sterkt erodert strandsone. Målsettingen bør være at fiskeproduksjonen på elv/bekk må samsvar med næringsgrunnlaget i magasinet. Suksesskriteriet i de tilfeller der man har fått til en balansert fiskeproduksjon ift. næringsgrunnlaget, er gode undersøkelser, evaluering av fiskeutsitningar og samarbeid (Hesthagen & Vøllestad 2001, Hesthagen, Johnsen & Gran 2010).

Etter hvert har det blitt fastsatt differensiert vannføring med ulike krav til vannføring Sommer og vinter, og i viktige fiskeelver har kravene i større grad blitt tilpasset for å ivareta faser i fiskens livssyklus (gyting, utvandring, oppvekst), utførelsen av selve fisket (lokkfølmer, se nedenfor) eller fiskens næringsgrunnlag. I forbindelse med EUs vanndirektiv og dets virkemiddelapparat (vaannforskrift, 2007) er det nå påkrevt å vurdere minstevannføring som tiltak for å oppnå god økologisk status. Fastsettelse av minstevannføringer med hensyn til økosystemet, inkludert alle ferskvannsorganismer, åpner for ny tenkning rundt former for minstevannføring som er mer fleksible og dynamiske og som likner mer på en naturlig tilstand.

Effekten av ulike vannføringer på bunndyrsamfunn er lite utforsket i Norge, men forskningsarbeid utført av National Institute of Water and Atmospheric Research i New Zealand (NIWA - Biggs mfl., 2008) gir oss noe innsikt i hvordan enkelte bunndyrgруппre reagerer under varierende vannføringsforhold for elver som likner de norske. Figur 3 indikerer at det er ikke behov for mer enn ca. 20-40 % av middelvannføring for opprettholdelse av tilstrekkelig habitat som egner seg for de vanligste gruppende.
3.4.3. Stabil minstevannføring vinterstid
Målsettinger er ofte lettere å definere når det gjelder slipp av minstevann i vintersesongen. Under kuldeperioder kan naturlig avrenning avta til svært lave nivåer, og fare for innfrysing av rogn i gytegroper kan oppstå. Ved å fastsette et krav til minstevannføring for slike viktige strekninger, vil man kunne sikre overlevelse av rogn også under harde vinterperioder. Det er lite aktuelt å variere minstevannføringen som er påkrevd vinterstid, fordi slike variasjoner vil ha ubetydelige innvirkninger på de økologiske prosesser. Samtidig er den stabile vannføringen en faktor som bidrar til bedre islegging i stilleflytende partier, mindre dannelse av is og sarr og mindre varmetap fra vannet. Det er ikke funnet forskningsresultater som tilsier noe annet enn at optimal bruk av vann vinterstid er i form av et konstant vannslipp - jo høyere, jo bedre.

3.4.4. Sedimenttransport og slipp av minstevann
De fleste sterkt regulerte elver opplever en tilslamming av bunnssubstrat dersom vannføringsregimet endres til en konstant pålagt minstevannføring. Dette gjelder i høy grad elver med bresmeltevann og elver uten innsjøer langs vannstrengen, der man har en kontinuerlig tilførsel av finstof i suspasjon. Det er redusert hyppighet eller nær totalt fravær av store flommer som tillater at finstoffet deponeres i bakevjer og partier med svært lave vannhastigheter. Den tidligere uregulerte vannføringen har medført en periodevis deponering og utstyling av finstof, sand og små steiner under storflommer, og som regel har bunnssubstrat forment et armert stein- og gruslag tilpasset det naturlige vannføringsregimet. Når flommene reduseres i omfang og varighet eller uteblir i perioder gjennom mange år, er tilslamming og deretter begroing den mest vanlige konsekvens av en stor regulering oppstrøms. Også denne erfaringen taler i mot at man fortsetter å slippe minstevann som en konstant verdi gjennom hele sommer- og høstsesongen.

3.4.5. Suksesskriterier for slipp av konstant minstevann

Dessuten er slipp av minstevann (elver av Type A) så kostbart i form av tapt kraftproduksjon, at valg av minstevann som avbotende tiltak alltid vil komme som et resultat av et kompromiss mellom økologi og økonomi. Sjelden eller aldri vil valgt pålegg representere det som er optimalt økologisk sett.

Det vil i hovedsak være de samme suksesskriteriene for minstevannføring enten den er konstant eller variabel. Kriteriene er summert i Tabell 7.
Tabell 7 Målsetting, suksesskriterier og målekriterier for minstevann som tiltak i regulerte vassdrag

<table>
<thead>
<tr>
<th>Tiltak</th>
<th>Målsetting</th>
<th>Forutsetning for suksess</th>
<th>Målekriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>E4a Konstant minimum Q pålagt for sommersesongen</td>
<td>Ivareta intakte vandringsystemer for viktige bestander</td>
<td>Tilstrekkelig store slipp sommer og høst som gir et godt vanndekket areal</td>
<td>Bestandsstørrelser av gytefisk, dets kondisjon/ reproduktive trekk og arealbruk</td>
</tr>
<tr>
<td></td>
<td>Ungå nevneverdig tap av vannkraftproduksjon samtidig som økologisk tilstand forbedres ("nevneverdig" må defineres politisk)</td>
<td>A God økologisk status</td>
<td>Parametrene fisk, bunndyr og begroing fra vannforskriften</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B Ingen andre flaskehulser</td>
<td>Folks aksept</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C Kunnskap om økosystemet</td>
<td>Folks opplevelse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D Forankring og samarbeid mellom folk, grunneier, NGO, forvaltning, konsulent og forskning</td>
<td>Gytevandring opp/ned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E Kunnskap om systemet</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bestandsstørrelser av gytefisk, dets kondisjon/ reproduktive trekk og arealbruk</td>
<td>Parametrene fisk, bunndyr og begroing fra vannforskriften</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folks aksept</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folks opplevelse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gytevandring opp/ned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E4b Konstant minimum Q pålagt for vintersesongen</td>
<td>Hindrer innfrysing av rogn og noen bunndyr</td>
<td>Tilstrekkelig vanndyp og gjennomstrømningshastighet i gyteområder</td>
<td>Vellykket % klekking og overlevelse som plommesekkyngel</td>
</tr>
<tr>
<td>E4c Vannmengder fastsatt over året, men Qslipp varierer for å tilpasse mer naturlige variasjoner over tid</td>
<td>Gjenspeiler naturlig sesongvariasjon for å ivareta ulike behov under ulike stadier i livssyklusen til laksefisk (bistå vandring, gyting, overvintring, smoltutv.) Ivareta habitat, hindre sedimentering, begroing som følge av lav eller mer konstant vannføring</td>
<td>God kunnskap om stedlige fiskearters livssyklus</td>
<td>Fiskeartens livssyklus ivaretatt, naturlig rekruutering bevart</td>
</tr>
<tr>
<td></td>
<td></td>
<td>God kunnskap om stedlige fiskearters livssyklus</td>
<td></td>
</tr>
</tbody>
</table>

3.5. E5 Variable miljøtilpassede vannslipp

3.5.1. Variasjon er en del av det naturlige vannføringsregimet

Det er konsensus innen forskningsmiljøet om at arter som lever i eller nær ved vassdrag trenger en viss vannføring for å opprettholde levedyktige populasjoner (Saltveit mfl. 2008). Av nyere dato er imidlertid erkjennelsen av at vannføringsvariasjon og ekstreme hendelser kan være vel så viktig både i tid og rom (Halleraker & Harby 2006 ”Flood pulse concept” og ”Discontinuity concept”, se foregående kapittel). Det sier seg selv at en stor fisk på vandring trenger mer vann enn en liten, passiv og stasjonær fisk. Forskjellig minstevannføring til ulike årstider ligger inne i
konsesjonen for mange regulerte vassdrag, noe som bedre gjenspeiler vassdragets naturlige vannføring. Allikevel anerkjenner det at et vassdrags artsmangfold i mange tilfeller er avhengig av mer voldsomme forandringer i vannføring enn det som tradisjonelt har blitt sluppet. Større flommer initierer i mange tilfeller fiskevandringer hos flere arter både oppover og nedover elva (Jonsson 1991, Kraabøl etc.). Flommer kan også i mange tilfeller føre til opprensning av planter og moser som ellers kan danne tette bestander med resulterende lavt artsmangfold. Mangel av flommer kan også føre til økt sedimentering, noe som videre kan gi grunnlag for en annen flora og bunndyrfauna, og også til redusert vanngjennomstrømning i sedimentene med mindre oksygentilførsel til fiskeegg som ligger i grusen.

3.5.2. Miljøbasert variabel vannføring (MBV)

Variasjon i vannføringen er kanskje like viktig som gjennomsnittlig vannføring. Antakelig har moderate variable systemer et mer diverst økosystem enn et homogent. Ustabile systemer med store, uregelmessige amplituder i miljøforhold har et annet økosystem enn et stabilt system. Innen de samme artene finner vi svært ofte forskjeller i livshistoriestrategier langs denne gradienten i kontrasterende miljøer som store og små, varme og kalde, lite vann og mye vann, høy og lav vannføring (Gregersen mfl. 2006, 2009).

I dag vet man at det er en sterk korrelasjon mellom vannføring/-volum og dets variasjon og karakteristika ved et ferskvannsystem, og man bør definere systemets tålegrenser, terskelverdier, knekkpunkter og bærekraft. Det er viktig å kartlegge hvordan diversitet, enkeltarter, grupper, antall/mengder av en art responderer på endringer i miljøforhold.

Forsøk er gjort i Numedalslågen for å endre mønsteret for slipp av minstevann med hensikt å gjenspeile den naturlige variasjonen ettersom nedbørse episoder og smeltesesonger slår til. Det er utpekt et uregulert vassdrag i nærheten, hvis hydrologisk variasjon er brukt for å simulere slipp langs Numedalslågen. Denne metoden vil alltid være kompleks å drifte og vil lide under variasjoner i skala og dermed hydrologisk responstid mellom indikatorvassdrag og det store, regulerte vassdraget.

Et liknende prinsipp er anvendt bl.a. i Italia, der vanninntak er tegnet for ”å ta” en fast andel av en bred elv, uansett vannstand. En lang overløpsterskel bygges og en fast andel av bredden er utformet til minstevannføringen, mens resten føres inn i et kanalinnntak under terskelen (Tyroler type med rist over). På denne måten vil vannføringen nedstrøms alltid være en funksjon av vannstand bak terskelen, og vil dermed vise en mer naturlig, sesongmessig variasjon.

3.5.3. E5a Signalslipp og tilsigsstyrt variabelt vannslipp

Styring av vannslipp kan automatiseres ved at den kobles dynamisk til måleserier som allerede samles inn, f.eks. ved å koble tappingen direkte til datasystemer som logger vannføring og nedbørstatistikk. Det kan kompenseres for lavt tilsig ved å øke vannføringen, og det motsatte ved høyt tilsig.

Forvaltningen ønsker å ta vare på det "naturlige" og "økosystemet" ved å etterlikne miljøet som skapte dette. Begrepet minstevannføring er ansett ikke å være helt dekkende for de vannmengdene som en konsesjonær er blitt pålagt ikke å underskride. Et mer nyansert begrep som "miljøbasert vannføring" benyttes derfor gjerne der det er ønskelig å ta miljøhensyn som følge av inngrep i vassdrag. Miljøbasert vannføring defineres da som "en vannføring som tar mest mulig..."
hensyn til økosystemets helhet og integritet, ulike brukerinteresser og det framtidige ressurs- grunnlaget i vassdraget" (Brittain 2007). Her forsøkes det å simulere det naturlige og kan f.eks. da bruke nærliggende vassdrags vannføringskurver som et grunnlag for å styre minstevann- føringen i et regulert vassdrag. Miljøbasert vannføring er en mer vitenskapelig tilnærming til problemet, der vi forsøker å finne terskelverdier, knekkpunkter osv. og andre funksjonelle sammenhenger mellom abiotiske og biotiske faktorer. Dette forsøker vi så å bruke i praktisk vassdragsforvaltning, der vi vil simulere det naturlige eller kanskje i framtiden skape det optimale vannføringsregime.

Det finnes i dag et utall vitenskapelige metoder som etablerer en kvantitativ, vitenskapelig sammenheng mellom vannføring og miljø/biologi, og som kan brukes for å anbefale miljøbaserte vannføring og for å optimalisere forholdene for ulike miljøinteresser (Halleraker og Harby 2006). "Rapporten gir en oppsummering av rådende metoder internasjonalt som grunnlag for fastsetting av miljøbasert vannføring. Dagens norske forvaltningspraksis i vassdragssaker er beskrevet."

Det vil være en avveining mellom avanserte matematiske modeller med mange modellparametere og enklere modeller med få parametre. Det er trukket fram noen klare suksesskriterier for at miljøbaserte vannføringsmetoder kunne bli vellykkede (fra Halleraker & Harby 2006):

- være etterprøvbare
- være anerkjent og publisert
- være omforente og ha klare miljømål
- være gjennomsiktige og lette å forstå
- kunne sannsynliggjøre sammenhenger mellom vannmengde og miljøvirkning på en god måte
- ha klare forutsetninger og begrensninger
- ha klare retningslinjer og helst bruk av et sett av metoder
- involvere mange brukerinteresser i prosessen

3.5.4. Kritiske grenseverdier

Dersom forskningen klarer å avdekke klare nok sammenhenger til å tallfeste slike grenseverdier, kan de legges til grunn i form av enkle tommelfingerregler. Et eksempel er betydelig redusert fare for strandning av fisk dersom vannstanden ikke faller raskere enn 13 cm pr. time (se under). I forbindelse med økt bruk av vannkraft for døgnregulering og økt differensialer mellom timepriser for energileveranser, vil det måtte innføres begrensninger i hvor stor variasjon i vannstand og vannføring som kan tillates innenfor korte tidsrom av noen få timer ("vannstandspendling").

Basert på forsøk utført i et regulert vassdrag, fant man fram til at fisk klarer å rømme fra kulper som ville blitt innestengt dersom vannstanden synker med ca. 13 cm pr. time eller saktere. Forsøket viste at hurtigere nedtapping enn denne verdien medførte betydelig strandning av fisk, og sannsynlig etterfølgende fiskedød hvis den lave vannstanden vedvarte. Dette er et eksempel på en terskelverdi som forsøkes tilpasset for generell bruk i andre vassdrag.
Det har ikke vært utført liknende forsøk i et tilstrekkelig stort antall vassdrag for å kunne bekrefte at denne verdien er representativ for alle regulerte vassdrag. Dessuten er verdien et uttrykk for hvilken grenseverdi man begynte å oppleve skader fra strandning av fisk og ikke noe annet. Det kan f.eks. være en helt annen grenseverdi som blir utløsende for ustabilitet i elvebredden ved en nedtapping av vannstanden. Typisk kan dette oppstå der poretrykk i løsmassene ikke klarer å reduseres fort nok og dermed blir en utløsende faktor for ustabiliteter i elvebredden.

Lærdommen fra dette eksempelet er at det kan være misvisende å bruke tommelfingerregler ukritisk hvis man ikke kan analysere de spesifikk forholdene som gjelder i selve vassdraget hvor tiltak skal innføres. Grenseverdier kan være en indikasjon, men må evalueres nærmere før de iverksettes.

3.5.5. E5a Lokke-/utvandringsflommer

3.5.6. E5c Spyleflommer/opprenskning

Suksesskriterium i dette tilfelle vil være lett å måle med sedimentprøvetaking og substratanalyser i faste prøvefelt langs vassdraget. Årlige målinger av slamavsetning i prøvefelt og registrering av egnete gytearealer kan være gode parametere for å måle suksess ved kunstige spyleflommer.

Spyleflommer har blitt forsøkt for fjerning av krypsiv, men uten stor suksess. Mekanisk fjerning i viktige deler av elvestrekningen regnes som mindre kostbart og mer forutsigbart. I Mandalselva
har innfrysing av sivet og en "skureflom", som benytter isgangen etterfølgende vår til å fjerne krypsiv frosset inn i isblokkene, blitt forsøkt.

Noen negative virkninger av endret vannføring kan reduseres gjennom fysiske endringer av habitat. Dette gjelder f.eks. mekanisk fjerning av uønsket vegetasjon ved fravær av store spyleflommer. Langtidseffekten og suksess av et slik tiltak er imidlertid i de fleste tilfeller kortvarig (Hilderbrand mfl. 2005). Det er vist at utstylingen vil øke ved mekanisk å grave i elvebunnen der det er mose, sand og grus. Dette har gitt mindre mose, mer hulrom i substratet og økt tetthet, spesielt av eldre laksunger (Heggenes og Saltveit 2002). Det er imidlertid vist at slike områder får en rask reetablering av mose, spesielt i områder som hele tiden er dekket med vann. Tiltak av denne type hadde derfor begrenset verdihet (Johansen 1997). I mange tilfeller vil dette kanske være det eneste mulige gjennomførbare tiltaket, enten fordi det finnes restriksjoner for bruk av vann eller fordi tilbakeføring gjennom naturlige prosesser er for langsom (Renöfält mfl. 2009).

Vurdering av suksess av spesielle vannslipp er oppsummert i Tabell 8. Mer spesifike målsettinger og suksesskriterier må defineres i hvert vassdrag.
3.6. E6 Terskler

3.6.1. Ulike typer og en generell beskrivelse

Reduksjon av vannhastigheten i terskelbassenget kan føre til at balansen mellom fiskearter forskyves. Terskelbasseng kan gi bedre forhold for arter som ørekyt, abbor og gjedde, der disse er tilstede.
3.6.2. Målsettinger med terskler

Etter hvert ble man klar over at slike terskler skapte nye vandringshindre for fisk. I situasjoner der minstevannføring og andre tiltak rettet mot fiskestammen betød at fiskeforvaltning av det sterkt berørte elvestrekket fortsatt var aktuelt, ble det bygget fisketrapper for å tillate en viss oppstrøms vandring forbi de høye tersklene. Som oftest gjaldt dette anadrome strekninger og spesielt der laksestammen fortsatt var intakt. Eksempler av denne typen terskel vises på etterfølgende bilder.

Figur 4 Terskel ved Korgen, Nedre Røssåga
3.6.3. Landskapsmessig virkning

Med tiden ble landskaphensyn kombinert med hensyn til en mer naturlig vassdragsform. Terskene fikk mindre høyde og rundere former, og bruk av mer naturlige steinkonstruksjoner ble vanlig. Syvdeterskler ble introdusert, og bruk av nye materialer, som geotekstiler, gjorde det lettere og billigere å bygge terskler med lokalt forekommende steinblokker tettet med duk eller fundamentert på løsmasser med filterduk som fundament.

Den maksimale høyden på terskene har blitt vesentlig redusert med årene, mens terskelplasseringen er blitt tettere slik at flere mindre vannspeil erstatter de store stilleflytende partier som lå bak en flere meter høy betongterskel i gamle dager. Dette har blitt gjort av flere hensyn, men landskapsmessig gjenspeiler det hvordan det moderne samfunnet setter pris på et mer naturlig og variert utsendende for vassdragene, også de som er regulert. Dette eksemplifiseres ved å sammenlikne Figur 8 tatt fra samme sted som Figur 7, men da etter at betongterskelen ble
fjernet i 2009. I ettertid har man sett at lokalsamfunnet setter mer pris på det naturlige utseendet til vassdraget, selv om det er åpenbart at vannføringen er mindre enn før regulering.

Figur 6 Syvdeterskel fra Fjærlandselva

Figur 7 Terskel ved Refnes, Arendalsvassdraget (Foto: Svein Haugland, Agder Energi)
3.6.4. Økologiske målsettinger

Som for mange andre typer tiltak bør det først defineres hvilke økologiske målsettinger som skal oppnås ved bruk av terskler i regulerte vassdrag. Tradisjonelt har målsettinger vært knyttet til forvaltning av laks eller aure, men en mer helhetlig økologisk tilnærming ble introdusert med vannforskriften i 2007. Høyest mulig økologisk tilstand er et begrep som karakteriserer målsettinger i regulerte vannforekomster. Dersom vassdraget blir klassifisert som en sterkt modifisert vannforekomst (SMVF), blir målsettingen automatisk definert til ”godt økologisk potensiale” (GØP). Noen forekomster kan imidlertid fortsatt oppnå tilnærmet samme tilstand som naturlige forekomster av samme vanntype, og dette defineres som ”god økologisk tilstand” (GØT) med hjelp av de biologiske kvalitetselementene fisk, bunndyr, påvekstalger og vannplanter. Det er viktig å merke seg at regulerte elver godt kan ha vannforekomster som er vesentlig redusert i areal-utstrekning (mindre bredde av vanndekket areal i forhold til den naturlige elva), uten at dette nødvendigvis betraktes som en dårligere tilstand. Dersom det reduserte elvearealet fortsatt inneholder de samme artene, biologisk diversitet, struktur og variasjon som for en tilsvarende uregulert elv, vil GØT-tilstanden likevel kunne oppnås, men med reduserte mengder av de relevante artene tilstede. Målsettingen som vannforskriften forsoeker å oppnå er mest mulig naturlig struktur mellom naturlig forekommende arter og ikke den totale mengden av bestemte arter. Også ovenfor anadrome strekninger kan målsettingen oftest bli knyttet opp mot tilstanden til aurebestanden, eller i noen tilfeller andre arter som røy og harr.

Figur 8 Samme sted som figur 7 etter fjerning av terskel ved Refsnes, Arendalsvassdraget (Foto: Svein Haugland, Agder Energi)

Figur 9 Celleterskler bygget i 2005 i Numedalslågen

Figur 10 Celleterskler fra nyere tid i Samnanger-vassdraget
Dagens målsettinger med terskelbygging - typiske biologiske målsettinger:

- øke primærproduksjon
- skape nye og bedre kvaliteten til oppvekstområder
- skape variert mikrohabitat og nye gyteområder
- hindre innfrysing av rogn og bunndyr

Fordeler

- forbedret landskapsbilde
- økt vanndekket areal, økt primærproduksjon
- skaper variert vanndyp, bunnstrata og bunndyrsamfunn
- skaper nye oppvekstområder, mer skjul med litt dypere vann
- skaper nye fiskeplasser, badekulper med økt vanntemperatur
- forhindrer bunnfrysing i terskelbassenger

Ulemper

- avleiring og mulig begroing i terskelbassenger. Kan ødelegge gyteområder
- favoriserer ørekyt og andre mindre svømmestere arter
- kan skape nye vandringshinder for småfisk
- kan gi inntrykk av manipulert vassdragslandskap
- kostnader og omfattende vedlikehold i flomutsatte vassdrag

Forutsetninger for suksess

- tilstrekkelig minstevann
- stabil konstruksjon under flom
- mulighet for passering oppover (jf. vannforskriften om vandringshinder)

Terskler krever tverrfaglig tilnærming – først oppnå enighet om prioriterte målsettinger innen:

- vassdragstekniske endringer (påvirket hydromorfologi)
- landskap og friluftsliv (fiske, bading, turgåere)
- biologi (økologisk tilstand eller artsspesifikk?)
- tilfredsstille vanndirektivets krav

Tabell 9 Målsetting, suksesskriterier og målekriterier for terskler som tiltak i regulerte vassdrag

<table>
<thead>
<tr>
<th>Målsettinger</th>
<th>Forutsetning for sukess</th>
<th>Målekriterier</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbedringer i landskapsbildet</td>
<td>Tilstrekkelig vann-dekket areal om sommeren</td>
<td>Grad av lokalaksept</td>
<td>Dokumenteres med bilder og med økt vannflateareal</td>
</tr>
<tr>
<td></td>
<td>Elven synlig og viktig element i landskapet</td>
<td>Færre fremmed-elementer</td>
<td>Sak til sak variasjon med elvas karakter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inntrykk av naturlig variert elv</td>
<td></td>
</tr>
<tr>
<td>Variert habitat</td>
<td>Strykpartier må beholdes</td>
<td>Variert bunndyr-samfunn</td>
<td>Ivareret artenes livssyklus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Artsmangfold fisk</td>
<td></td>
</tr>
<tr>
<td>Stabilisere grunnvann</td>
<td>Tilstrekkelig vannspeil</td>
<td>Normal grunnvannstand</td>
<td>Positiv effekt på kantvegetasjon</td>
</tr>
<tr>
<td>Skape større oppvekstområde</td>
<td>Oppvekstområde var begrensende før terskel</td>
<td>Fiskens størrelse og aldersfordeling</td>
<td>Konkurranseforhold for aure kan forverres (ørekyte)</td>
</tr>
<tr>
<td>Hindre bunnfrysing</td>
<td>Tilstrekkelig vannspeil</td>
<td>Større overlevelse for rogn, bunndyr og fisk</td>
<td></td>
</tr>
</tbody>
</table>

Figur 11 illustrerer under hvilke forhold terskelbygging skal kunne vurderes nærmere som et egnet tiltak i forbindelse med andre tiltak, som slipp av minstevann, lokkeflommer, habitatforbedring, utlegging av gytegrus osv. Figuren viser fallforhold i elva (X-aksen) plottet mot et forenklet mål for hvor mye ekstra vann-dekket areal som skapes gjennom bygging av en terskel på ett sted (Y-aksen). Hvis man antar en konstant bredde for elvestrekningen, finnes det en direkte relasjon mellom oppdemningshøyde og lengde på vannspeilet terskelen skaper, vist med de 3 kurvene for ulike terskelhøyder; 0,5, 1,0 og 1,5 m. Denne høyden defineres som den totale heving av vannspeilet med terskelbygging, selv om celle terskler skaper hevingen gjennom flere små skritt. Med 1 m oppdemning eller mer, er det lite aktuelt med andre typer terskler enn celle terskler, ellers vil terskelen skape et hinder for oppvandring av små aure. Røde områder markerer dermed områder som er uegnet for terskelbygging på grunn av følgende faktorer:

![Figur 11 Stilisert framstilling av nødvendige forutsetninger for å oppnå målsettinger ved terskelbygging.](image-url)
Elvas helning er for stor. Bygging av terskler vil ikke skape tilstrekkelig vanndekket areal med tanke på nødvendig oppdemningshøyde, stabilitet under flom og kostnad. En kjapp gjennomgang av terskler bygget i Norge har ikke avdekket prosjekter hvor vellykket terskelbygging har skjedd der elvas lokale gradient har oversteget ca. 2 m/km.

Økning i vanndekket areal per terskel er for lite. Dersom en terskel ikke kan skape et vannspeil mer enn ca. 30 m oppstrøms, er enten selve terskelen for liten eller elva er for bratt. Hver terskel representerer et menneskelig inngrep i elva og i terrenget rundt (bevok for adkomst, rydding av kantvegetasjon osv.). Erfaringsmessig har man ikke funnet det hensiktsmessig å bygge terskler i Norge som danner et vannspeil seinere mindre enn ca. 30 m oppstrøms.

Nødvendig terskelhøyde er for stor. Jo høyere terskelen blir, desto mer erosjon kan man regne med nedenfor og større blir kostnadene med å bygge terskelen stabilt med bruk av lokale blokker og stein. De celletersklene som hittil er bygd i Norge, har ikke oversteget 1,0 m i oppdemningshøyde, men foreløpig er erfaringen for liten til å utelukke celleterskler opp til ca. 1,5 m høyde (med bruk av flere celler). Mellom de fargede områdene finnes et hvitt område der terskelbygging bør vurderes. Da begynner ulike lokale forhold å komme inn i vurderingen. Hvis man har et sted som er trangere enn resten av elva, kan terskelbygging vise seg å være gunstigere enn figuren har indikert i utgangspunkt. Dessuten vil ferskvannsøkologien lokalt være avgjørende for om det skal bygges terskler, hvor mange og av hvilken type. Stabilitet under flom, sedimenteringsfaren og substrathforhold må også komme tungt inn i vurderingen.

Figur 11 gir en pekepinn på om terskler er teknisk og økonomisk fornuftig å vurdere som tiltak, men andre kriterier må tas i bruk for å måle om terskelbygging oppfattes som en suksess. Disse beskrives i Tabell 9 og diskuteres nærmere senere.

3.7. E7 Habitatjusteringer

Habitatjusteringer eller habitatforbedringer gjøres både i magasiner og regulerte elver. De fleste er gjort i elver og er knyttet til endring av substrat, strøm og dybde. I innsjøer er det utført enkelte forsøk på å restaurere strandvegetasjon, men dette har svært begrenset omfang (Tabell 10).

I elver som har vært kanaliseret eller forbygget er substratet ofte ensartet, noe som skaper lite variasjon i strømningsbilde og dybdeforhold. Ulike tiltak som steinsetting, graving av kulper og bygging av strømbrytere eller terskler, kan øke habitatvariasjonen (Brittain mfl., 1993 a, b; Eie mfl., 1995). Dette vil igjen øke det biologiske mangfoldet ved å skape egnet habitat for flere fisk og bunndyrarter. Slike tiltak kan imidlertid ikke gjennomføres i vassdrag med stor materialtransport, da det fort blir tilslamming og tetting av hulrom i substratet slik at tiltaket ikke vil fungere etter en del år. Dette problemet kan minkses ved å legge tiltakene til strømsterke partier. Spyleflommer kan også være aktuelle for å "rense" utlagt substrat. I tillegg til å skape variasjon, kan kulper gi gode overvintringshabitater for større fisk.

En spesiell form for substratforbedring er utlegging av gytegrus både i magasiner og i regulerte elver (Barlaup mfl. 2005, 2006). Dette tiltaket er best egnet i vassdrag hvor gyteplassene er ødelagt eller er utilgjengelige for fisken, og hvor dette vil bidra til å komme nærmere naturaltilstanden i et regulert vassdrag. For å oppnå suksess er det viktig at hulrom ikke tettes som følge av stor materialtransport.
Revegetering i strandsonen i magasiner har vært prøvd, men det er flere forutsetninger for at tiltaket skal være vellykket. Selv med gjødsling viser de fleste plantearter lite vekst og dårlig overlevelse (Rørslett & Johnsen, 1996; Eie mfl., 1995). Problemet er at få planter klarer seg med store vannstandsendringer og løst substrat, selv ved utlegging av matter for å stabilisere substratet. En frøbank må være tilgjengelig, og substratet må ha et visst innhold av organisk materiale. I magasiner med små vannstandsvariasjoner eller langs vassdrag med stabil vannføring kan imidlertid revegetering være vellykket hvis forutsetningene er tilstede. Uønsket vegetasjon finnes i flere regulerte elver og elvemagasiner, og de aktuelle tiltakene er ofte fysisk rensing med maskiner (eksempelvis krypsiv).

Tabell 10 Målsettinger, forutsetninger og målekriterier for habitatforbedringer

<table>
<thead>
<tr>
<th>Tiltak</th>
<th>Målsetting</th>
<th>Forutsetning for suksess</th>
<th>Målekriterier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steinsetting</td>
<td>Skjul Habitatvariasjon</td>
<td>Økt habitatbruk</td>
<td>Biologisk mangfold</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Økt biologisk mangfold</td>
<td>Tettleth av enkelte arter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Begrenset materialtransport</td>
<td>Gjennomføring av livssyklus</td>
</tr>
<tr>
<td>Gytegrus</td>
<td>Økt rekruttering</td>
<td>Rekruttering begrenset av gytehabitat</td>
<td>Rognoverlevelse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Området må være vanndekket.</td>
<td>Stabilitet</td>
</tr>
<tr>
<td>Kulp – stryk</td>
<td>Habitat og biologisk mangfold; Oppholdssteder for fisk Refugier ved lave vannføringer</td>
<td>Vanndekket areal Stabile bunnsforhold Begrenset materialtransport</td>
<td>Økt totalbestand av fisk og bunndyr</td>
</tr>
<tr>
<td>Revegetering</td>
<td>Stabilisere substrat Økt habitat/skjul for bunndyr og fisk</td>
<td>Begrenset og forutsigbare vannstandsendringer. Gode næringsforhold for vegetasjonen Frøbank og noe organisk innhold i substratet</td>
<td>Substrat stabilitet Plantevekst Biologisk mangfold</td>
</tr>
</tbody>
</table>
4. Diskusjon og konklusjoner

4.1. Ulike målsettinger med avbøtende tiltak

For å bøte på de negative virkningene av vassdragsreguleringer og bygging av vannkraftverk har forvaltningen allerede gjennomført ulike avbøtende tiltak over mange tiår. Målsettinger med disse tiltakene har variert mye og har ofte blitt definert noe vakt eller lite spesifisert i konsesjons- vilkårene. Andre relevante dokumenter kan inneholde bedre definisjoner, men har vært lite tilgjengelig for allmennheten, slik at målsettingen ikke alltid har blitt entydig forstått blant alle interessenter lokalt. Målsettinger varierer fra vassdrag til vassdrag, og et tiltak kan ofte være rettet inn mot å oppnå flere målsettinger samtidig. Med få unntak kan målsettinger med avbøtende tiltak deles inn i 4 grupper:

1. Økologiske målsettinger (som vannforskriften beskriver)
2. Landskapsmessige og estetiske målsettinger
3. Brukermål - målsettinger innrettet mot grunneiere og andre brukerinteresser (fiske, båtferdsel osv.)
4. Økonomiske målsettinger, innbefattet inntekter fra kraftproduksjon

Gruppe 1 og 2 er hovedtema for denne rapporten og diskuteres nærmere. Den tredje gruppen bærer preg av vassdragsspesifikke målsettinger og kan dermed ikke generaliseres i samme grad som de første to. Derfor vil gruppe 3 ikke diskuteres i dybden her, men kommer inn i diskusjonen relatert til Gruppe 1 (eksempelvis laksefiskernes interesser). Gruppe 4 griper inn i alle forslag til tiltak og må tas hensyn til i alle forvaltningsmessige diskusjoner og beslutninger, men er ikke et hovedtema for denne rapporten. Innen vassdragsforvaltning må myndighetene alltid balansere mellom de ulike gruppende og finne det beste kompromisset for å forsøke å oppfylle alle målsettinger samtidig.

4.2. Økologiske målsettinger: Variasjon i vannføring er naturlig

Det er konsensus innen forskningsmiljøet om at arter som lever i eller nær ved vassdrag trenger en viss vannføring for å opprettholde levedyktige populasjoner. Av nyere dato er imidlertid erkjennelsen om at vannføringsvariasjon og ekstreme hendelser kan være vel så viktig både i tid og rom (Halleraker & Harby 2006). Det sier seg selv at en stor fisk på vandring trenger mer vann enn en liten passiv og stasjonær fisk. Forskjellig minstevannføring til ulike årstider ligger inne i konsesjonen for mange regulerte vassdrag, noe som bedre gjenpeiler vassdrags naturlige vannføring. Allikevel anerkjenner det at et vassdrags naturlige flora og fauna (økologi) i mange tilfeller er avhengig av større forandringer i vannføring enn det som tradisjonelt har blitt sluppet. Større flommer initierer i mange tilfeller fiskevandringser hos flere arter både oppover og nedover elva (Jonsson 1991, Kraabøl etc.). Flommer kan også i mange tilfeller føre til opprenskning av planter og moser som ellers kan danne tette bestander med resulterende lavt artsmangfold. Mangel av flommer kan også føre til økt sedimentering, noe som videre kan gi grunnlag for en annen flora og bunndyrfauna og også til redusert vannsgjennomstrømning i sedimentene med
mindre oksygentilførsel til fiskerogn som ligger i grusen.

4.3. Prøvereglement

4.4. Suksesskriterier

4.4.1. Stabilitet og vedlikehold

4.4.2. God økologisk tilstand (potensiale)
Gjennom vannforskriften har man etter hvert fått etablert standarder for hvordan økologisk tilstand kan måles i forhold til naturlig uforstyrret tilstand. Det brukes ulike miljøindikatorer (biologiske kvalitetselementer) som er definert til å være sensitive for påvirkninger og typiske for den aktuelle vanntypen (i Norge ofte kalkfattige vanntyper). Hvis man har samlet inn tilstrekkelig data for å kunne fastsette økologisk tistand, bør man også kunne gjenta disse målingene og overvåke eventuelle endringer fra ett nivå til et annet, slik vannforskriften legger opp til.
Det som fortsatt viser seg vanskelig med de få prøveprosjektene som har slike data, er å kunne identifisere de endringene som er forårsaket av et avbøtende tiltak (f.eks. endret reguleringsmønster). Er det endringen i reguleringsmønster eller er det andre faktorer som har vært spilt en større rolle (f.eks. naturlig redusert forsoning) og som har bidratt mest til reetablering av en bestemt fiskebestand? Selv etter at målemetoder for økologisk tilstand har blitt godt definert, har man fortsatt problemer med å identifisere direkte årsaks- og virkningssammenhenger. Det nærmeste man kommer dette er at man gjennom omfattende studier av viktige fiskebestander med rimelig sikkerhet kan identifisere om et tiltak har bidratt til å løse en tidligere begrensede faktor i fiskens livssyklus/næringstilgang.

I norsk vassdragsforvaltning legges stor vekt på tilstanden for fiskebestandene, i særdeleshet laks, sjøaure, storaure og røye. Dels er dette forårsaket av sterke interesser blant sportsfiskere, reiselivsnæringen, grunneiere og andre lokale virksomheter. Samtidig er fisk den best egnete indikatoren for enkelte påvirkninger, bl.a. for vandringsshindre.
4.4.3. Alger og makrofytter

Forvaltningen og regulanter har ofte hatt problemer med introduksjon, spredning og oppblomstring av en bestemt art, f.eks. krypsiv eller vasspest. Årsakene til slike oppblomstringer er ofte komplekse og sammensatte. I mange tilfelle er selve reguleringen bare én av mange faktorer, og vellykkede tiltak for å gjenopprette en mer naturlig artssammensetning må adressere flere faktorer samtidig. Både vanntemperaturen og vannkvalitet er ofte sterk inn i bildet.

Hvordan kan man etablere et suksesskriterium for slike tiltak? Igjen må man ha gode data i utgangspunktet; for utvikling i vannkvalitet og vanntemperatur, isforhold, sedimentering osv., slik at alle fysiske og kjemiske effekter er godt kartlagt og forutsigbare. Selv når disse faktorene er kjent, kan de biologiske effekter av tiltaket fortsatt vise seg uforutsigbare. Bekjempelse av krypsiv med flere ulike metoder har ofte vist seg vanskelig, selv om fysiske og til dels kjemiske effekter av tiltakspakken (eksempelvis kalking) er godt kjent.

En av teknikkene som kan tas i bruk for å overvåke vassdrags karakter og artssammensetning er "River Habitat Survey" (RHS), en systematisk metode utviklet i Storbritannia som baserer seg på faste transekter som settes opp langs vassdraget, og hvor artene kartlegges og registreres i detalj. Ved senere å komme tilbake til samme transektt og bruke samme kartleggingsteknikk, kan endringer over tid bli godt dokumentert. Denne teknikken vil egne seg godt for dokumentasjon av effekter (og eventuell grad av suksess) fra de ulike tiltakene som innrettes mot endringer i tettheter av makrofyter og påvekstalger. Liknende teknikker har blitt utviklet videre i Finland under begrepet "Lake Habitat Surveys".

4.4.4. Landskap og estetiske verdier

Virkninger på landskap vil alltid avhenge av det landskapsrommet elva eller innsjøen befinner seg i. Vi har valgt å bruke tre situasjoner der landskapsmessig virkning spiller en viktig rolle for totalopplevelsen og for befolkningens bruk av terrenget for friluftsaktiviteter, reiseliv, naturopplevelser osv.

Dernest har man større elver som renner gjennom skogs- og kulturlandskap etter en sterk reduksjon i vannføringen. Dette kan gi store eksponerte flater med Stein og elvegrus, med etterfølgende etablering av kratt som ikke lenger spyles vekk av flommer eller holdes i sjakk av normale vannedekke arealer. I slike situasjoner er vannedekket areal en av parametrene som kan brukes for å måle suksess. Helt fra man innførte terskelbygging, har den landskapsmessige målsettingen vært å opprettholde et like stort vannspeil bak en terskel som elva tidligere dekket med sin naturlige, større vannføring. Ser vi på serier med terskler (Figur 8 Samnanger celle- terskler) kan den uerfarne observatøren vanskelig se forskjellen mellom naturlig elv og den avbildete elva med redusert vannføring og mange celle-terskler. Dette støtter opp under påstanden
om at vanndekket areal er det mest relevante måleparameter som kan brukes for å måle den landskapsmessige virkningen. Økologiske virkninger er helt annenledes og diskuteres adskilt fra det landskapsmessige.

Den tredje situasjonen er regulerte innsjøer i høyfjellet som er synlige fra lange avstander, og reguleringssonen stikker seg fram som et belte over vannflaten som er fri for all form for vegetasjon. Et vanlig mottiltak er å kreve at vannstanden holdes nært opp til HRV hele sommeren, slik at magasinet framstår mer som en naturlig innsjø. Her kan man også måle tiltakets virkning ved å måle hvor lenge og hvor mye av reguleringssonen som er eksponert i de sommermånedene som er is- og snøfrie. Tiltakets suksesskriterium vil derfor være grad av oppnåelse av denne målsettingen.

4.4.5. Andre brukerinteresser

I norsk vassdragsforvaltning legges det stor vekt på tilstanden for fiskebestandene, og i særdeleshet laksebestander, sjøaure og storaure. Dels er dette forårsaket av sterke interesser blant sportsfiskere, reiselivsnæring, grunneiere og andre lokale virksomheter. Så lenge disse hensynene ikke kommer i konflikt med biologisk mangfold og hensyn til andre naturlig forekommende arter, er dette kompatibelt med vannforskriften og dens overordnete økologiske målsetting. Men det vil dukke opp flere tilfeller der myndighetene må prioritere mellom ulike målsettinger, både de som gjelder brukerinteresser, landskapsmessige målsettinger og bedre økologisk tilstand generelt. I slike situasjoner kan man ikke lage generelle regler, og denne rapporten kan bare i begrenset grad gi råd for prioriteringen som må gjøres mellom de ulike interessene.

4.4.6. Økonomiske suksesskriterier

Det er lett å glemme at økonomisk suksess også må måles og avveies mot suksess i oppnåelse av økologiske forbedringer. Kostnader med tiltak, og eventuelt tap av kraftproduksjon, er lett å beregne i vårt markedsbaserte kraftsystem. Ved å bruke etablerte regneteknikker og historiske eller framtidige markedspriser for energi og andre kraftsystemtjenester, kan man få fram pålitelige tall for hva et bestemt tiltak vil kunne koste både samfunnet og regulanten. Dette er ikke et prioritert tema for denne rapporten, og diskusjon om økonomiske kontra økologiske verdier hører ikke hjemme her.

Som et eksempel på hvordan kostnader med tapt produksjon kan regnes, vises til Anneks 4.

4.4.7. Lokal aksept

Vannforskriften tar godt vare på målsettingen om mest mulig naturlig forekommende arter (god tilstand), noe som samsvarende her i målsettinger i biomangfoldsloven. Derimot er den lokale befolkningen ikke alltid så opptatt av biodiversitet eller økologisk tilstand, men av andre verdier. Her kommer det gjerne inn estetiske verdier (landskapsbildet) og kommersielle interesser (reiselivsnæringen). Det nytter ikke å vise til god økologisk tilstand for å forklare tiltakets suksess, dersom en høy grad av lokalaksept ikke er tilstede. Derfor anbefales det at grad av lokal aksept inkluderes som et suksesskriterium.

Med så mange divergerende interesser fra lokalbefolkningen langs et vassdrag er det vanskelig å oppnå konsensus for et foreslått tiltak. Mange konsesjonssaker har vist at det går an å finne fram
til avbøtende tiltak som oppnår en høy grad av lokalaksept, og disse kan derfor bli vurdert som en suksess. Suksesshistorier mister ofte oppmerksomhet fordi konfliktivået blir lite, og faglig oppfølging og overvåking av tiltaket ofte ikke finner sted. Man har derfor lite data fra suksesshistorier, i hvert fall etter de første par driftsår.

Hvordan myndighetene utfører revisjonsprosesser, inkludert innrapportering til EU, og gjennomfører vedtatte avbøtende tiltak er viktig for framtidens vassdragsforvaltning. Forutsatt en fortsatt stor grad av lokal innflytelse i alle prosesser fram til reviderte konsesjonsvilkar, kan man forvente at fiskebestandens tilstand, naturlig reproduksjon og biologisk mangfold vil være sentrale elementer i alle målsettinger som framtidige tiltak rettes inn mot.

4.4.8. Framtidens målsettinger

Man kan dermed forsøke å oppsummere hvordan man kan definere suksesskriterier gitt disse overordnete målsettinger.

1. Økt vekt på biologisk mangfold og naturtilstanden. Redusert vekt på fiske og mengder fangbare fisk til fordel for større artsvariasjon

2. Økt vekt på frie vandringsveier, forbedrete fiskepassasjer og større vannforekomster i regulerte elver

3. Forbedrete, tekniske løsninger innrettet mot mindre dødelighet ved nedvandring (laksesmolt og ål mot havet). Her gjelder f eks. installasjon av luker for tapping langs gamle tømmerløp, fiskesperrer av ulike slag foran kraftinntak (strobelys, ultralyd, bølleanlegg osv.)

4. Økt bruk av prøvereglement eller prøvekjøring med tanke på landskap og vanndekket areal

4.5. Konklusjoner

4.5.1. Klargjøring av målsettinger

Vår gjennomgang av avbøtende tiltak utført i Norge i den senere tid har avdekket noen felles trekk. Ett av de mest gjennomgående er savnet etter veldokumenterte målsettinger for tiltakene. I de tilfeller der man har kommet så langt som å dokumentere målsettinger basert på forskeranhenvendelse eller liknende, blir disse ofte ikke bekreftet vedtatt av tiltakshaveren, myndigheter eller andre. Selve konsesjonsbetingelsene spesifiserer målsettinger med altfor liten detaljeringsgrad, eller ikke i det hele tatt.

Uten oppnådd enighet om målsettinger og god dokumentasjon av disse kan det være vanskelig å evaluere om målsettinger har blitt oppfylt eller ikke. Dette bør kunne rettes på ved hjelp av de skrivivse prosessene som kreves av vannforskriften. På et overordnet nivå sier vannforskriften at det skal settes etterprøvbare miljømål for alle vannforekomster. Videre skal det unngås forverring og oppnås godt økologisk potensiale (GØP) i sterkte modifiserte vassdrag. Eller dersom det er realistisk med tiltak, skal det oppnås naturlig økologisk tilstand uten sterk reduksjon samfunns-
nytte fra vannkraftproduksjon eller flomvern. Noen regulerte vassdrag kan således også regnes som naturlige, der minst god økologisk tilstand er mulig å oppnå med tiltak. For de andre vil målet GØP forutsette at alle rimelige tiltak skal iverksettes, bortsett fra de som medfører vesentlig endring av bruken, påvirket det generelle miljøet negativt eller påfører tiltakshaver uforholdsmessige kostnader (f.eks. vesentlige vannføringskrav eller magasinrestriksjoner).

GØP vil være forskjellig i de ulike vassdragene, og vil kunne endres dersom vilkårsrevisjoner gjennomføres. Revisjonene medfører lokal debatt, avveining og til slutt oppnådd enighet om lokalt prioriterte økologiske målsettinger. Slike prioriterede målsettinger bør defineres som økologiske funksjonsmål og helst på artsnivå. Tiltaksplaner med målsettinger av typen "flest mulig bunndyr og fiskearter" er ikke tilstrekkelig spesifikke. En tiltaksplan må rettes inn mot målbare indikatorarter for økologiske forhold i henhold til den aktuelle vanntypen som allerede er interkalibret og tatt i bruk i Norge. I henhold til vannforskriftsprosessene legges det opp til en mer systematisk forvaltning enn tidligere, som bl.a. innebærer at miljøtilstand og effekt av tiltak skal evaluieres hvert 6. år framover.

Den store variasjonen i naturforhold, så vel som miljø- og brukermål, gjør det svært komplicerert å spesifisere retningslinjer eller andre verktoy for å fastsette optimale avbøtende tiltak. Lokale prioriteringer må først komme til uttrykk gjennom lokale prosesser og høringer, noe det legges opp til gjenom systemet for vilkårsrevisjoner. Konkrete eksempler kan bidra i denne prosessen. Manglende enighet om målsettinger har ofte ført til at tiltakene blir iverksatt uten klargjøring av målsettingene. Dette har tradisjonelt blitt betegnende for konflikter om vilkår som slipp av bestemte konstante minstevannføringer. Pålagte vannføringer har blitt bestemt ut fra hydrologiske kriterier som 95 % oversteget vannføring (Q95) i fravær av klare økologiske eller landskapsmessige målsettinger.

Det finnes tegn til at praksisen rundt fastsetting av mål er i ferd med å bli endret i positiv retning. Når det gjelder landskapsmessig virkning, har krav til billeddokumentasjon blitt vesentlig skjerpet de siste årene. I dag er visuell opplevelse av fossefall i større grad retningsgivende for fastsetting av minstevann.

Figur 12 (Biggs mfl. 2006) indikerer hvordan beslutningsprosessen burde utarte seg for prioritering og definisjon av avbøtende tiltak.
4.5.2. Semikvantitative teknikker for å måle suksess

Under behandling av konsesjonssøknader for nye kraftverk og reguleringer har det blitt utarbeidet en standard teknikk for dokumentasjon av konsekvenser. Teknikken er utviklet for veibyggings-prosjekter i Norge og er senere også tatt i bruk i behandling av vassdragssaker (se Anneks 2).

Fordelen med en skjønnsmessig vurdering dokumentert i en bestemt skala, er at man tvinger fagmiljøene til å jobbe på en konsekvent måte og rapportere i et sammenliknbart format.

Vi ser ingen grunn til at den samme teknikken ikke kan tas i bruk for å kartlegge endringer over tid i samme prosjekt. Hvis fagekspertene er bedt om å gjenta sine vurderinger av faktiske konsekvenser av prosjekter etter f.eks. 3 års drift, vil man få en god sammenlikning mellom konsekvensutredningen og den faktiske utviklingen. Samtidig vil man få registrert om avbøtende tiltak som ble gjennomført i prosjektperioden har hatt den tilsvirkende virkningen, altså et mål på suksess.

4.5.3. Særlig viktige hensyn

Norge har underskrevet avtaler som forplikter Norge til å ivareta særlig viktige hensyn, og disse vil kunne veie tyngre enn lokale ønsker i prioritering og oppfølging av tiltak. For eksempel er Norges ansvar for nordatlantiske laksestammer prioritert når det gjelder tiltak for å avbøte virkninger av reguleringer. Av andre nasjonale forpliktelser kan nevnes verdens kultur- og naturarv (urort fjordlandskap) og villreinstammer. Naturmangfoldsloven vil trolig bidra til større oppmerksomhet rundt slike verdier og høyere prioritering av biologisk mangfold som en overordnet målsetting med tiltaksplaner. En rangering av ulike miljohensyn er bl.a. gjengitt i OEDs retningslinjer for fylkesvis småkraftplaner og i kriterier for områder der vannslipp er særlig aktuelt i utkast til retningslinjer for vikårsrevisjoner.
5. Referanser

Anneks 1 Case-studier av tiltak

Gruppe M1 - M5 Tiltak i magasiner
Gruppe M3 Terskelbassenger

CASE: Limingen
I innsjøen Limingen i Nord-Trøndelag, med reguleringshøyde på 6 m, er Gjersvika helt avsnørt fra resten av innsjøen med en fisketrapp mellom bassengene. NVE er i ferd med å lage en erfaringsoppsumming, men generelle erfaringer viser at Gjersvika etter terskelen kan betraktes som en separat innsjø med ulik økologi fra resten av Limingen. Den har god aurebestand, men lite røy (J.H. L'Abée-Lund, J.A. Eie, pers. medd.).

CASE: Innerdalen

Grupper E1 - E7 Tiltak i elver
Gruppe E3 Endret tappestrategi

CASE: Dokka
Sik og storaure i Randsfjorden har ulike krav til optimal vannføring i tilførselvann Dokka gjennom året, spesielt knyttet til gytevandring og gyting, og siken trenger vann i elva på et annet tidspunkt enn auren. Auren vandrer opp i elva mye tidligere og har vesentlig lengre oppholdstid på elva enn siken. I tillegg gyter auren lenger opp i vassdraget. Siken har tradisjonelt betydd mye for bygdene rundt Randsfjorden og det ble utbetalt store erstatninger for denne ved konsesjonsoppgjørene, mens auren ble glemt. Siken ble favorisert framfor auren når det gjaldt etablering av vannføringsregnem ne i elva i gytetiden for høsten. Siken gyter tidligere enn auren og lenger nede i Dokka elv, slik at mer vann til siken i gytetiden innebar mindre vann i aurens gyte-tid. Samtidig er ikke siken, i motsetning til auren, avhengig av miljøforholdene på oppvekstområder i elva i gytetiden. Siken gyter tidligere enn auren og lenger nede i Dokka elv, slik at mer vann til siken i gytetiden innebar mindre vann i aurens gyte-tid for den første åren av livet. Betydningen av storauren har økt betydelig for sportsfiskere og turisme, og siken har falt dramatisk i verdi. Derfor ser man nå på muligheter for endringer av manøvreringen for å optimalisere forholdene for auren.

CASE: Numedalslågen
Ny konsesjon med nytt manøvreringsreglement ble innført i 2001. Minstevannføring over lakseførende strekning nederst i Numedalen er nå av høyeste prioritet. For at dette kravet skal bli oppfylt må vann fra Pålsbu- og Tunhovdmaskinene tappes ned om sommeren. Dette kommer laksen til gode, men er til ulempe for interesser rundt maskinene. Dette er et godt eksempel på at tiltak rettet inn mot en målsetting kan ha negative virkninger på andre målsettinger andre steder i samme vassdrag.
CASE: Hunderaure
Hunderaurens utvandring av smolt og utgytt fisk er døgnstyrt og foregår i grålysning og skumring (Gregersen mfl. 2006, Kraabøl mfl. 2009 osv.).

Gruppe E4 Minstevannføring

CASE: Hunderfossen, oppvandring

CASE: Hunderfossen, nedvandring

Kraabøl mfl. (2009) har kommet med følgende tilrådinger: For å sikre returvandring av utgytt Hunderaure, bør det slippes overflatevann over isluka i perioden 05.10–05.11. Vannslippet bør ikke underskride 4 m³/s og ikke overskride 15 m³/s. Vannslippet bør være tilnærmet konstant av hensyn til gyteforholdene på minstevannføringsstreken. Minst 10 m³/s av forbittapping av overskuddsvann i mai, juni og juli bør i størst mulig grad gjøres som overflatevann gjennom isluka for å sikre nedvandring av vinterstøing og smolt. Dersom isluka ikke kan benyttes enkelte år, bør tilsvarende vannslipp skje over tømmerluka. Det samme gjelder for utvandrende smolt.
CASE: Hølsauget

Hunderauren har problemer med å finne MVS ved lavere vannføring en 50 m³/s (Kraabøl mfl. 1992, 2007). Ved samløpet mellom regulert elveleie og driftsvannstunnel i Hølsauget opphørte forbivandring av Hunderaure når minstevannføringen i det regulerte elveleiet var 15 m³/s eller lavere. Ved minstevannføringer på 20 m³/s eller mer foregikk forbivandringen tilsvarende uten problemer. Videre oppvandring på minstevannføringsstrekningen fra Hølsauget og opp til Hunderfossen foregikk uten problemer ved vannføringer ned til 5 m³/s. Resultatene fra til sammen tre lokkeflommer viste at mellom 50 og 70 % av Hunderaure som ble forhindret videre oppvandring ved minstevannføringer under 15 m³/s, passerte Hølsauget i løpet av lokkeflommer på 60 m³/s i et døgn. Kun et fåtal av de radiomerkede aurene nådde fram til Hunderfossen under lokkeflommen, men de fortsatte oppvandringen ved 10 og 5 m³/s i etterkant av lokkeflommen. Fisketrappen i Hunderfossen gir vandringsproblemer for Hunderaure ved at om lag en tredjedel av de radiomerkede aurene som ble fanget i trappa og gjenutsatt i Mjøsa, lyktes i å returnere til fisketrappen etter 12–84 døgn med søking. To tredjedeler viste søkeatferd inntil trappemunningen, men lykkes ikke å passere fisketrappen. Disse ble tvunget til å gyte nedenfor Hunderfossen. Fordelingen av radiomerkede aurer på gyteplassene avdekket 6 gytelokaliteter nedenfor Hunderfossen. Resultatene indikerte at en betydelig andel av gytefisk ble tvunget til å gyte på disse lokalitetene som følge av vandringsproblemer forårsaket av reguleringsinngrepene fra Hunderfossen kraftverk. Ovenfor Hunderfossen ble det registrert 9 gyte-lokaliteter fordelt på strekningen Granrudmoen i Øyer og opp til Harpefoss i Sør-Fron.

Det konkluderes med at gytevandrende Hunderaure møter vannføringsavhengige vandringsproblemer ved samløpet mellom regulert elveleie og driftsvannstunnelen i Hølsauget, og at fisketrappen både forsinket og forhindret gytevandringen i betydelig grad. Opphopning av gytefisk nedenfor Hølsauget og Hunderfossen tolkes som en effekt av reguleringsinngrepene og kan i betydelig grad utbedres ved å optimalisere minstevannføringsregimet, slippe lokkeflommen dersom sommeren og høsten er nedbørfattige, og å manøvrere lukene optimalt slik at gytevandrende aure ledes så nært inntil fisketrappen som mulig. Disse tiltakene vil kunne øke den naturlige rekrutteringen av Hunderaure.

CASE: Aura

Når det gjelder måling av suksess kan fastsetting av ny minstevannføring i Aura være et godt eksempel. Denne kraftutbyggingen i grenseområdene mellom Oppland og Møre og Romsdal er en av landets største og har produsert strøm i 40 år. Konsesjonen ble gitt uten tilstrekkelige hensyn til miljøet nedstrøms Aursjøen og har derfor også skapt betydelige miljøproblemer. Konsesjonen stiller ikke krav om minstevannføring i elvene som er berørt av utbyggingen. Konsekvensen er svært alvorlig for villaksen og har i tillegg skapt problemer for sjøaure og andre arter som er avhengige av nok vann i elvene. Fra en situasjon der ferskvannsbiologisk mangfold nærmest er ikkeeksisterende, er det mye å hente bare ved å slippe litt minstevann, og at det dermed gjenkales et nytt system. Skal man imidlertid få tilbake anadrom laksefisk, må man tenke laksefisktilpasset vannføring, skissert i planene til NINA/DN. Vann er det garanterte suksesskriteriet, mens ytterligere suksess er sikret ved å tilpasse vannføringsregimet til laksefiskenes miljøkrav i ulike livshistoriefaser. Samarbeid mellom konsesjonøren, forsknings- og forvaltningsmiljøer, lokale grunneiere og interessenter er en forutsetning for å komme fram til gode kompromisser mellom økologi og kraftproduksjon og er dermed en forutsetning for suksess.
CASE: Vinstra
I Vinstravassdraget har det heller ikke vært pålagt minstevannføring. Ved nylig revisjon ble det avsatt minstevannføring på deler av strekningen på 1–3 m³/s. Konsesjonene for regulering av de ulike vannkraftmagasinene i Vinstravassdraget er relativt gamle. Vilkårene i konsesjonene ga begren sede muligheter til å ivareta naturmiljøet i vassdraget, sammenliknet med hva som er tilfelle i nyere konsesjoner. De nye vilkårene inneholder dagens standardvilkår innen natur forvaltning, noe som gir mer fleksible muligheter for hvilke avbøtende tiltak regulanten kan pålegges å gjennomføre. Regulanten må også stille større beløp enn tidligere til disposisjon for tiltak til fremme av vilt, fiske og friluftsliv i de berørte kommunene. Den viktigste endringen av vilkårene er et krav om slipp av minstevann i Vinstra elv fra Øyvassoset, noe som er positivt for fiskens næringsgrunnlag og potensielt for rekruttering. Våtmarksområdene Hersjøene og Vinsterlonene i Nord-Fron kommune nyter også godt av minstevannføringen. Denne strekningen er godt synlig i landskapet, og minstevannslipp medfører dermed positive effekter både for biologisk mangfold og landskapestetikk.

Gruppe E5 spesielle vannslipp

E5a Lokkeflommer

CASE: Suldalslågen

CASE: Mandalselva
Tidligere har det vært en lav minstevannføring i Mandalselva, mens det i de senere år har vært gjennomført forsøk for å fastslå betydningen av lokkeflommer for å få laksen til å vandre gjennom minstevannforingsløpet forbi Laudal kraftstasjon og opp til Mannflåvatn. Forsøkene viste at de fleste lakene vandret i forbindelse med ekstra slipp av vann. Lokkeflommens tilfredsstilte derved målsettingen om å få fisken videre forbi Laudal kraftstasjon (Lura 2007).

CASE: Hunderfossen

Undersøkelser viser at minstevannføringen ned mot 2 m³/s i gytesesongen sterkt begrenser gytearealet og kvaliteten ved jernbanebrua (et mye brukt gyteområde), og det er ellers marginal gyting på de gamle gyteområdene. I gytetiden i oktober ble den gjennomsnittlige vannføringen over gytefeltet reduseret med 89,1 %. I inkubasjonstiden for rogn i perioden november til april ble
vannføringen redusert med rundt 95 %. Den trinnvis reduksjonen av minstevannføringen fra 20 til 2 m³/s i løpet av september tørrlegger store areaal egnet gytesubstrat. Det gjeldende minstevannføringsreglementet fra 1976 er presist synkronisert til gytetiden for storaure, men det foreslås tiltak som ytterligere optimaliserer samvirkning mellom minstevann og gytesuksess (Kraabol 2006).

CASE: Måna, Rjukan
Etter utbygging rant kun restfeltet gjennom Månavassdraget fra Møsvatn i Telemark. Denne vannføringen er ikke tilstrekkelig for å avrenne kloakken som siger ut fra kloakksystemet i Rjukan. Vassdragssimulatoren er brukt i Måna for å beregne nivået på kloakkforurensning ved ulike vannføring (Harby 2000). I dag er det innført minstevannføring både for å redde storauren i elva og for å få bukt med kloakken.

CASE: Otra

CASE: Suldalslågen
I f.eks. Suldalslågen er utjevnet vannføring etter regulering trolig årsaken til den sterke begroingen av mose, som igjen gir ytterligere økt sedimentering av finmateriale som følge av redusert transportkapasitet (Rørslett mfl. 1989, Bogen 1997). Binding av sand i mosedekket er en viktig faktor for økning av finsedimenter i elva. Spesielt gir de kortvokste levermosene eller teppemose liten variasjon i habitat og overflate.

Anneks 2 Metodikk for samlet vurdering av miljøkonsekvenser

Trinn 1

Vurderingene består av å beskrive områdets karaktertrekk og verdier innenfor hvert enkelt fagområde. Fastsettelsen av verdi er så langt som mulig basert på etablerte verdi- og vernekriterier. Verdien blir fastsatt langs en skala som spenner fra liten verdi til stor verdi (se under).

<table>
<thead>
<tr>
<th>Verdivurdering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liten</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Trinn 2

<table>
<thead>
<tr>
<th>Omfang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Trinn 3

Figur 13 Konsekvenskategorier
Anneks 3 Tabeller som grupperer avbøtende tiltak

Etterfølgende tabeller kommer fra Glover mfl. "Oversikt over avbøtende tiltak i Norge for SMVF (juni 2006)"

Tabell 1 MAGASINER

<table>
<thead>
<tr>
<th>Hovedgruppe</th>
<th>Undergruppe</th>
<th>Tilsiktet hoved-virkning</th>
<th>Spesifikk virkning eller målgruppe</th>
<th>Økologisk effekt (ifølge WFD)</th>
<th>Effekt på vannbruk Kostnadseffekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1 Fiskeutsettinger, utfisking</td>
<td>M1a Utsetting av aure</td>
<td>Bedre fiske</td>
<td>Rekruttering aure</td>
<td>Kan gi mye småfisk og redusert mangfold</td>
<td>Nøytral for produksjon</td>
</tr>
<tr>
<td></td>
<td>M1b Utsetting av laks og/ eller sjøaure</td>
<td>Bedre fiske</td>
<td>Rekruttering laks/sjøaure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1c Reetablering av fiskearter</td>
<td>Økt mangfold</td>
<td>Marflo (næring for fisk)</td>
<td>Spredning av en uønskede art</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1d Utfisking av uønskede arter</td>
<td>Redusere uønska arter</td>
<td>Bedre konkurranseevne for Bedret aurebestand</td>
<td>Hvis arten er innført - Positiv effekt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1e Justering av årsklasser</td>
<td>Bedre sports- og matfiske</td>
<td>Hg akkumulering i gammel gjedde</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **M2** Vannstands-begrensninger | M2a Reguleringshøyder; inkludert variabelt manøvreringsreglement i ulike tider av året | Flombegrensninger Brukerinteresser i magasinet/landskap | Fiske, isfiske, båtliv Bevare littoralsone Bedre forhold for fisk Reduksjon av alger | Svært negativt for produksjon og forsynings sikkerhet vinterstid | |
| | M2b Begrenset senkningshastighet | Begrense stranderosjon | Hindre blakking av vann Verne kantvegetasjon og bygning/kulturminner | Negativt for verdien av produksjonen (hindrer bruk for systemregulering) | |

<p>| M3 Terskelbassenger | M3a Helt avsnørt fra hovedmagasinet | Naturtilstand i deler av magasinet | Kun den avsnørte delen får bedre forhold Skaper bedre littoralsone - fiskeforbedrings tiltak | Estetikk; mindre eksponert bunn og littoralsonen | Positivt for rekreasjon, frilufts liv og landskap Litt negativt for produksjon |
| | M3b Avsnørt del i kontakt med hovedmagasin | Naturtilstand i deler av mag. og bedre fiskebestand i hovedmag. | Redusere stranderosjon | | |</p>
<table>
<thead>
<tr>
<th>Hovedgruppe</th>
<th>Undergruppe</th>
<th>Tilsiktet hoved-virkning</th>
<th>Spesifikk virkning eller målgruppe</th>
<th>Økologisk effekt (ifølge WFD)</th>
<th>Effekt på vannbruk Kostnadseffekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4 Habitatjusteringer i magasiner og tilførselsbekker</td>
<td>M4a Kokosmatter og vegetasjonsetablering i littoralsonen</td>
<td>Bedre forhold for fisk</td>
<td>Mer naturlig littoralsonen</td>
<td>Nøytal for produksjon Dyrt for hele strandsonen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4b Gytegrusutlegging</td>
<td>Bedre forhold for fisk som gyter i magasin</td>
<td>Økt naturlig gyting i magasin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M4c Etablere djupål, rydde vegetasjon</td>
<td>Bedre forhold for aure</td>
<td>Økt naturlig gyting i tilførselsbekker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M5 Kalking og tilført næringsstoffer</td>
<td>M5a Kalking (Ca) og gjødsling (N og P)</td>
<td>Bedre fiskebestand</td>
<td>Redusere forsuring Bedre næringstilgang</td>
<td>Kan ha negative effekter nedstrøms. Negativt dersom uønsket begroing</td>
<td></td>
</tr>
</tbody>
</table>

Fargekode 1

Økologisk effekt av tiltaket
- Generelt positive erfaringer med få bi-effekter.
- Blandet erfaring eller enkelte negative bi-effekter. Stedsspesifikk avveining nødvendig.
- Nytt eller ikke tilstrekkelig utprøvd tiltak, behov for ytterligere undersøkelser før generell effekt kan fastsettes.
- Enkelte negative erfaringer, eller negative bi-effekter. Kun benyttet ved spesielle forhold.

Fargekode 2

Foreløpig gradering av tiltalets kostnadseffektivitet
- Generelt kostnadseffektivt tiltak for å oppnå forbedret status.
- Ofte kostnadseffektivt, men som regel behov for stedsspesifikk vurdering.
- Nytt eller ikke tilstrekkelig utprøvd tiltak, behov for ytterligere undersøkelser før generell kostnadseffekt kan fastsettes.
- Generelt ikke ansett som kostnadseffektivt med tanke på å bedre status, unntatt i særskilte tilfeller.
<table>
<thead>
<tr>
<th>Hovedgruppe</th>
<th>Undergruppe</th>
<th>Tilsiktet hovedvirkning</th>
<th>Spesifikk virkning eller målgruppe</th>
<th>Økologisk effekt</th>
<th>Effekt på vann-bruk. Kostnads-effektivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1 Fiskeutsettinger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1a</td>
<td>Rogn</td>
<td>Bedre fiskebestand</td>
<td>Støtter naturlig rekruttering</td>
<td>Kan gi mye småfisk</td>
</tr>
<tr>
<td></td>
<td>E1b</td>
<td>Plommesekkyngel</td>
<td>Bedre fiskebestand</td>
<td>Valgt aldersgruppe som settes ut er steds-spesifikk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1c</td>
<td>Startforet yngel</td>
<td>Bedre fiskebestand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1d</td>
<td>Sommergammel yngel</td>
<td>Bedre fiskebestand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1e</td>
<td>Smolt</td>
<td>Bedre fiskebestand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E1f</td>
<td>Voksen fisk</td>
<td>Bedre fiskebestand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2 Fisketrapper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2a</td>
<td>Kulpetrapp</td>
<td>Tillater oppstrømsvandring</td>
<td>Bedre adgang til nye gyteområder</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2b</td>
<td>Motstrømstrapp</td>
<td>Tillater oppstrømsvandring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2c</td>
<td>Renner</td>
<td>Tillater oppstrømsvandring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2d</td>
<td>Gjennomløpskasser</td>
<td>Tillater oppstrømsvandring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2e</td>
<td>Trykksluetstrapper</td>
<td>Tillater oppstrømsvandring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2f</td>
<td>Fiskeheis</td>
<td>Tillater oppstrømsvandring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E2g</td>
<td>Skremming fra utløp</td>
<td>Hjelper oppstrømsvandring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3 Endret oppstrøms tappenivå/strategi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E3a</td>
<td>To inntak i magasinet</td>
<td>Endret vanntemperatur i utløp</td>
<td>Fisk, islegging og frostøyk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E3b</td>
<td>Sesongmessig tappevariasjon</td>
<td>Etterlikner naturlige sesongvariasjoner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E3c</td>
<td>Geometri endres, bekkeinntak</td>
<td>Minske luftinnblanding</td>
<td>Reduserer nitrogenmetning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E3d</td>
<td>Geometri endres, utløp</td>
<td>Lufting, dykking osv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hovedgruppe</td>
<td>Undergruppe</td>
<td>Tilsiktet hovedvirkning</td>
<td>Spesifikk virkning eller målgruppe</td>
<td>Økologisk effekt</td>
<td>Effekt på vannbruk. Kostnads-effektivitet</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>E4</td>
<td>Minstevannføring</td>
<td>E4a Stabil gjennom sesongen</td>
<td>Opprettholde elvehabitat, biologisk mangfold, produksjon av fisk, bunndyr og flora. Bedre resipientforhold for utslipp</td>
<td>Økologisk kontinuitet</td>
<td>Negativt for produksjon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E4b Variabel miljøtilpasset vannføring</td>
<td>Bedre habitat for fiskeunger, bedre oppvandringsmuligheter, bedre fiskemuligheter</td>
<td>Bedre vannkvalitet</td>
<td>Negativt for produksjon</td>
</tr>
<tr>
<td>Q_{min} uten styring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>Spesielle vannslipp</td>
<td>E5a Lokkeflommer</td>
<td>Bedre og tidsriktig oppvandr. laks</td>
<td>Oppvandring av anadrom fisk</td>
<td>Ofte ineffektiv for laks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E5b Signalslipp og Tilsigsstyrt variabel Vannslipp, se E11b</td>
<td>Bedre og tidsriktig vandring</td>
<td>Tidsriktig smoltutvandring Etterlikne naturlige variasjon i småskala Unngå at smolt går i turbiner</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tilsigsstyrt variabel</td>
<td>E5c Spyleflommer Spyling av begroing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E5b Signalslipp og</td>
<td>E5d Spyleflommer med innfrysing Fjerne begroing av krypsiv og flotgras</td>
</tr>
</tbody>
</table>
Tabell 2B ELVER Fysiske ingrep i elva uten at vannbruken er påvirket (nøytral for vannkraftproduksjon)

<table>
<thead>
<tr>
<th>Hovedgruppe</th>
<th>Undergruppe</th>
<th>Tilsikttet hovedvirkning</th>
<th>Spesifikk virkning eller målgruppe</th>
<th>Økologisk effekt</th>
<th>Effekt på vannbruks- kostnadseffektivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>E6</td>
<td>Terskler med minstevann

Inngrep i selve elva

Kan være effektiv som alternativ til større minstevann (E4)</td>
<td>E6a Bassengterskler
(forskjellige geometri ut fra behov for erosjonssikring)</td>
<td>Større vanndekket areal
Bedre landskapsmessig
Utseende med større vannflate</td>
<td>Oppholdsplasser
for større fisk</td>
<td>Bedre for bunndyr, men favoriserer arter som liker stillere vann
Ofte estetiske tiltak
Billig og kostnads-effektive alternativer til større minstevann</td>
</tr>
</tbody>
</table>
| | | E6b Syvdeterskel | Tillater oppvandring
(ellers som over) | Habitatvariasjon
Vandrende fisk | |
Vandring av laks og aure mulig
(ellers som over) |
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Anneks 4 Kostnader med slipp av minstevann – eksempel på beregning

Følgende 6-trinns fremgangsmåte kan brukes for å estimere kostnader med slipp av minstevannføring lik Q_{min} (i m³/sek pålagt ved en bestemt elvestrekning i en bestemt sesongperiode)

<table>
<thead>
<tr>
<th>Trinn</th>
<th>Formål</th>
<th>Nødvendig inngangsdata</th>
<th>Beregningsmetoden</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Målsætningen er å oppnå GØP med hjelp av minstevannspålegg</td>
<td>Bestem Q_{min}, elvestrekningen og varigheten hvor minstevann blir påkrevd, - T_{min} sommer (og eventuelt T_{min} vinter)</td>
<td>Del året i minst to sesonger tilsvarende forskjellige økologiske krav til minstevann</td>
<td>Minstevann ofte påkrevd bare om sommeren (mai - oktober) eller har lavere verdier om vinteren (november - april)</td>
</tr>
<tr>
<td>2.</td>
<td>Sesongmessig beregning av maks. potensiale for tapt produksjon i GWh</td>
<td>H_{netto} = netto fall for kraftverket</td>
<td>Tapt MWh = $Q_{\text{min}} \cdot T_{\text{min}} \cdot 0,009 \cdot H_{\text{netto}}$</td>
<td>Dette antar at alt minstevann ville ellers blitt brukt til produksjon med best virkningsgrad og utgjør derfor maks. potensiale for tap, ikke faktiske tap</td>
</tr>
<tr>
<td>3.</td>
<td>Tar hensyn til at minstevannføringskrav under flomperioder med spill betyr ingen tapt produksjon</td>
<td>Q_{t} = Stasjonens slukeevne, T_{flom} = midlet antall timer i hver sesong med vannføring større enn ($Q_{\text{t}} + Q_{\text{min}}$) dvs. med overløp</td>
<td>$T_{\text{min}} - (T_{\text{flom}} + 50) \cdot T_{\text{min}}$</td>
<td>50 timer er antatt som estimat av antall timer, mens vannføring stiger og faller mellom verdiene Q_{t} og ($Q_{\text{t}} + Q_{\text{min}}$) for og etter hver flom. I Vest-Norge bør dette tallet øke noe pga flere flommer per år</td>
</tr>
<tr>
<td>4.</td>
<td>Estimer Q_{95} i lokaltilgang mellom dammen og elvestrekningen hvor Q_{min} er fastsett som krav</td>
<td>Foreta en nedjustering dersom lokaltilsg bidrar til å redusere nødvendig slipp fra dammen</td>
<td>Nedskaler Tapt MWh med faktoren: Q_{95} fra mellomliggende felt Q_{min} for samme perioden</td>
<td>Hvis $Q_{\text{95}} > Q_{\text{min}}$, medfører det ingen slipp fra dammen og Tapt GWh antas lik null. Dette trinnet kan utelates hvis kravet for Q_{min} gjelder rett nedenfor dammen</td>
</tr>
<tr>
<td>5.</td>
<td>Konverter Tapt MWh til tapt årsinntekter i millioner kr</td>
<td>Engrospris fra NordPool midlet for 2008-2011 ("Futures Markedet")</td>
<td>Ta ca. 10 % oppjustering av prisen for vintersesongen og en 10 % nedjustering for sommersesongen før tallene ganges med Tapt MWh</td>
<td>Per juli 2006 ligger prisen på ca. 360 kr/MWh. Bruk derfor 400 kr/MWh for tapt vinterproduksjon, og 320 kr/MWh for tapt sommerproduksjon</td>
</tr>
<tr>
<td>6.</td>
<td>Beregn årskostnader</td>
<td>Ingen</td>
<td>Årkostnader er summen av Tapt MWh for alle sesonger ganget med relevante priser for kraftkontrakter for levering i 2008-2011</td>
<td>Dette beregner tapte inntekter for kraftproducenten som pålegges minstevann, men ikke nødvendigvis samfunnskostnader. Disse er som regel noe lavere, men av samme størrelsesorden</td>
</tr>
</tbody>
</table>
Definisjoner:
Q_{min} = Den minste vannføringen i m^3/sek som kreves kontinuerlig opprettholdt på den aktuelle strekningen
T_{min} = Varighet i antall timer per år for et bestemt pålegg om Q_{min} (f.eks. 6 sommermåneder utgjør 4416 timer)
Tamp MWh = antall MWh som ikke kan produseres som resultat av kravet til slipp av minstevann
H_{netto} = netto fall for kraftverket i meter (= brutto fælhlæde fratrukket ca. 3 % for tap dersom ingen netto tall er oppgitt)
Q_t = Stasjonens slukeevne i m^3/sek, dvs. maks. vannføring som kan brukes i alle turbiner på full ytelse
T_{nom} = midlet antall timer i hver sesong med vannføring større enn (Q_t + Q_{min}) =240
Q_{95} i lokaltilsig mellom dammen og elvestrekningen om sommeren. Dette er et mål for en typisk lav vannføring, dvs. samlet vannføring fra lokale bekker og sidevassdrag som er oversteget minst 95 % av året

Eksempel med slipp av minstevannføring lik Q_{min} (= 5 m^3/sek pålagt ved en bestemt elvestrekning i 6 måneder sommersesong og
= 1 m^3/sek pålagt ved samme elvestrekning i 6 måneder vintersesong)

Følgende data gjelder for stasjonen og elva hvor minstevann blir påkrevd
H_{netto} = netto fall for kraftverket = 200 m
Q_t = Stasjonens slukeevne = 100 m^3/sek
T_{nom} = midlet antall timer i hver sesong med vannføring større enn (Q_t + Q_{min}) = 240
Q_{95} i lokaltilsig mellom dammen og elvestrekningen = 1 m^3/sek om sommeren og null om vinteren
<table>
<thead>
<tr>
<th>Trinn</th>
<th>Formål</th>
<th>Nødvendig inngangsdata</th>
<th>Beregningsmetoden</th>
<th>Kommentar</th>
</tr>
</thead>
</table>
| 1. | Målsettingen er å oppnå GOP med hjelp av minstevannspålegg | \(Q_{\text{min}} = 5 \text{ m}^3/\text{sek} \) sommeren, og \(1 \text{ m}^3/\text{sek} \) om vinteren
\(T_{\text{min}} \) sommer = 4380 timer
\(T_{\text{min}} \) vinter = 4380 timer | To sesonger antatt med hvert halvår med forskjellige krav til minstevann | GOP definert ut fra forventet tilstand med minst 5 \(\text{m}^3/\text{sek} \) i vekstsesongen og et minimum av vanndekket gytegrus under isen om vinteren |
| 2 | Sesongmessig beregning av maks. potensiale for tapt produksjon i GWh | \(H_{\text{netto}} = 200 \text{m} \) | Tapt MWh sommer =
\[Q_{\text{min}} \cdot T_{\text{min}} \cdot 0,009 \cdot H_{\text{netto}} = 5 \cdot 4416 \cdot 0,009 \cdot 200 = 39744 \text{ sommer} \]
\[1 \cdot 4344 \cdot 0,009 \cdot 200 = 7819 \text{ vinter} \] | 0,009 kommer av virkningsgrad på 0,92,
g= 9,8 og deling med 1000 for å få tallet i MWh |
| 3 | Tar hensyn til at minste-vannføringskrav under flomperioder med spill betyr ingen tapt produksjon | \(Q_t = 100 \text{ m}^3/\text{sek} \)
\(T_{\text{flom}} = 240 \text{ timer} \) bare om sommeren | Reduser Tapt MWh med faktoren:
\[4416 -(240+50) = 0,934 \]
\[4416 \] | 50 timer er antatt som estimat av antall timer mens vannføring stiger og faller mellom verdiene \(Q_t \) og \((Q_t + Q_{\text{min}})\) før og etter hver flom |
| 4 | Foreta en nedjustering dersom lokaltilsig bidrar til å reducere nødvendig slipp fra dammen | \(Q_{\text{sl}} \) i lokaltilsig mellom dammen og elvestrekningen hvor \(Q_{\text{min}} \) er fastsett = \(1 \text{ m}^3/\text{sek} \)
\(Q_{\text{sl}} \) i lokaltilsig felt nedenfor \(= 0,2 \) \(Q_{\text{min}} \) for samme perioden
Sommer Tapt GWh reduseres ytterligere med 20 % | Lokaltilsig medfører at bare 80 % av minstevannmengden må slippes fra dammen om sommeren. Full \(1 \text{ m}^3/\text{sek} \) må slippes forbi om vinteren |
| 5 og 6 | Konverter Tapt GWh til tapt årsinntekter i millioner kr. Beregn årkostnader | Engrospris fra NordPool midlet for 2008-2011 400 kr/MWh for vinter
320 kr/MWh for sommer | Tapt kr. totalt =
\[\text{Sommer} = 39744 \cdot 0,934 \cdot 0,8 \cdot 320 \]
\[+ \text{Vinter} = 7900 \cdot 400 \]
\[= 12,6 \text{ millioner kr per år totalt} \] | Dette beregner tapte inntekter for kraftprodusenten som pålegges minstevann, men ikke nødvendigvis samfunnskostnader. |
Anneks 5 Liste over vurderte terskler

<table>
<thead>
<tr>
<th>Vassdrag</th>
<th>Strekning, type</th>
<th>Antall</th>
<th>Byggeår/Regulant</th>
<th>Hensikt</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nea</td>
<td>Nedenfor Hegsetfoss</td>
<td>19</td>
<td>1990-92</td>
<td>Forhold for fisk</td>
<td></td>
</tr>
<tr>
<td>Nea</td>
<td>Ovenfor Hegsetfoss</td>
<td>18</td>
<td>1978-79</td>
<td>Forhold for fisk</td>
<td></td>
</tr>
<tr>
<td>Litledalselva</td>
<td>Fra Øygarden til fjord</td>
<td>7</td>
<td>1997 Stat</td>
<td>Anadrom: For bedre gyting</td>
<td></td>
</tr>
<tr>
<td>Modalen</td>
<td>Ved Neset ca. 0,6 m heving</td>
<td>2</td>
<td>1999 BKK</td>
<td>Forhold for fisk (vassdrags-</td>
<td>Forhold for fisk (vassdrags-simulator) + landskap</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>simulator) + landskap</td>
<td></td>
</tr>
<tr>
<td>Teigdalselva</td>
<td></td>
<td>4</td>
<td>1995 BKK</td>
<td>Økt aurebestand, men mange små</td>
<td></td>
</tr>
<tr>
<td>Ekso</td>
<td>Løsmasse nr. 26 studert</td>
<td>30</td>
<td>1972</td>
<td>Forhold for fisk</td>
<td>Økt aurebestand, men mange små</td>
</tr>
<tr>
<td>Kåfjordelva</td>
<td></td>
<td>3</td>
<td></td>
<td>En for å hindre vandring oppover</td>
<td></td>
</tr>
<tr>
<td>Østerdalselva (Bardu)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leirelva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tevla/Dalåa</td>
<td></td>
<td>31</td>
<td>1996-97</td>
<td>Forhold for fisk</td>
<td>Bedre aurebestand</td>
</tr>
<tr>
<td>Skjoma</td>
<td></td>
<td>2</td>
<td>Omb.2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tverråga</td>
<td>Nedenfor Ildgruben kraftverk</td>
<td>2 + 6</td>
<td>6 oppstrøms for landskap, 2 for anadrom fisk</td>
<td>6 oppstrøms for landskap, 2 for anadrom fisk</td>
<td></td>
</tr>
<tr>
<td>Ranaelva</td>
<td>Ovenfor Raufjellfors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemsila</td>
<td>10 km under dammen</td>
<td>2009-11</td>
<td>Landskap og fisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Røssåga</td>
<td>Pilotprosjekt buner/støvviser</td>
<td>Buner</td>
<td>2010</td>
<td>Styling av sedimenter, heving vannstand?</td>
<td></td>
</tr>
<tr>
<td>Bjerka</td>
<td>Svartbergsfoss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandalselva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Denne serien utgis av Norges vassdrags- og energidirektorat (NVE)

Utgitt i rapportserien Miljøbasert vannføring, fase II

Nr. 1-09 Evaluering av ordningen med prøveregelement. Brian Glover, John Brittain, Svein Jakob Saltveit (49 s.)

Nr. 2-09 Pilotstudie tilsigsstyrt minstevassføring. Knut Alfredsen, Tommi Linnansaari, Atle Harby, Ola Ugedal (41 s.)

Nr. 3-09 Miljøvirkninger av vannkraft - forslag til undersøkelsesmetodikk. Lars Størset (51 s.)

Nr. 4-09 Hvor viktig er vatn og vassføring for friluftsliv? Brukerstudier om aktiviteter, opplevelser, holdninger, kraftutbygging og konsesjonsvilkår. Odd Inge Vistad, Joar Vittersø, Oddgeir Andersen, Hogne Øian, Tore Bjerke (84 s.)

Nr. 5-09 Modeller for simulering av miljøkonsekvenser av vannkraft. Atle Harby (red.) (51 s.)

Nr. 1-10 Ål og konsekvenser av vannkraftutbygging - en kunnskapsoppsummering. Eva B. Thorstad (red.) (135 s.)

Nr. 2-10 Etterundersøkelser ved små kraftverk. Sumvirkninger på landskap. Botaniske verdier og småkraft, Bunndyr og småkraft, Konsesjonsfrie mikro- og minikraftverk. Gunn E. Frilund (red.) (113 s.)

Nr. 3-10 Temperaturforhold i elver og innsjør. Tiltak for regulering av temperatur. Simuleringsmodeller. Kjetil Vaskinn (89 s.)

Nr. 1-11 Vassdrag, vannføring og landskap. Trond Simensen, Priska Helene Hiller, Kjetil Vaskinn (55 s.)

Nr. 2-11 Blodsugende knott og vassdragsreguleringer: Kan masseforekomst predikeres? Åge Brabrand, Trond Bremnes, Henning Pavels (34 s.)

Nr. 3-11 Fossekall og småkraftverk: Bjørn Walseng, Kurt Jerstad (35 s.)

Nr. 1-12 Miljøkonsekvenser av raske vannstandsendringer. Atle Harby, Jim Bogen (82 s.)

Nr. 2-12 Kriterier for bruk av omløpsventil i små kraftverk. Lars Størset (red.) (57 s.)

Nr. 3-12 Er det mulig å bli kvitt krypsivprobleme på Sørlandet? Torbjørn Danielsen, Edgar Vegge, Per Øyvind Grimsby (33 s.)

Nr. 4-12 Suksesjoner i et terskelbasseng. Langtidsstrender i utvikling av bunndyrsamfunn. Arne Fjellheim, Godtfred A. Halvorsen (37 s.)

Nr. 5-12 Konsekvenser og avbøtende tiltak for ørret i forbindelse med utbygging av små kraftverk. Svein Jakob Saltveit, Ragnhild Wendelbo (40 s.)

Nr. 6-12 Evaluering av cellerskler som avbøtende tiltak. Jo Vegar Arneklev (red.) (74 s.)

Nr. 7-12 Vanntemperatur i kraftverksmagasiner, Ånund Kvambekk, Norges vassdrags- og energidirektorat (31 s.)

Nr. 8-12 Elvemusling og konsekvenser av vassdragsreguleringer - en kunnskapsoppsummering Bjørn Mejdell Larsen, Norsk institutt for naturforskning

Nr. 9-12 Virkninger av små vannkraftverk på lav- og mosefloraen - en forundersøkelse Per G. Ihlen, Rådgivende Biologer AS

Nr. 10-12 Avbøtende tiltak i regulerte vassdrag. Målsettinger og suksesskriterier. Brian Glover, Multiconsult