Samtidighetsbetrakninger for flom i Drammenselva og sidebekkene i Mjøndalen

Per Alve Glad, Eirik Traae, Martin Jepsersen
Rapport nr 68-2017
Samtidighetsbetrakninger for flom i Drammenselva og sidebekkene i Mjøndalen

Utgitt av: Norges vassdrags- og energidirektorat
Redaktør: Per Alve Glad, Eirik Traae, Martin Jespersen

Trykk: NVEs hustrykkeri
Opplag: 123
Forsidefoto: NVE
ISSN 1501-2832

Sammendrag: I tilknytning til flomsikringsprosjektet i Mjøndalen er det sett på det hydrologiske grunnlaget og de planlagte sikringstiltak. Gjennomgang av historiske data viser at det er en viss samtidighet mellom flom i Drammenselva og sidebekkene.

Emneord: Hydrologi, Flomsikring, Mjøndalen, Drammenselva, Samtidighet av flom i hovedvassdrag og sidebekker, Tidevannspåvirkning

Norges vassdrags- og energidirektorat
Middelthunsgate 29
Postboks 5091 Majorstua
0301 OSLO

Telefon: 22 95 95 95
Telefaks: 22 95 90 00
Internett: www.nve.no

August 2017
Sammendrag: I tilknytning til flomsikringsprosjektet i Mjøndalen er det sett på det hydrologiske grunnlaget og de planlagte sikringstiltak. Gjennomgang av historiske data viser at det er en viss samtidighet mellom flom i Drammenselva og sidebekkene.

Emneord: Hydrologi, Flomsikring, Mjøndalen, Drammenselva, Samtidighet av flom i hovedvassdrag og sidebekker, Tidevannspåvirkning
Innhold

Forord .. 4
Sammendrag ... 6
1 Bakgrunn .. 7
2 Hydrologiske grunnlagsdata .. 9
 2.1 Beskrivelse .. 9
 2.2 Historiske flommer .. 9
 2.2.1 Flommen i 1927 .. 9
 2.2.2 Flommen i juni 1926 ...13
 2.2.3 Flommen i juli 2007 ...14
 2.2.4 Flommen i august 2012 «Frida»15
 2.2.5 Flommen «Synne» i desember 2015 på Sør-Vestlandet16
 2.3 Flomberegning for to av sidebekkene i Mjøndalen16
 2.3.1 Evja ...16
 2.3.2 Hagatjernbekken ...18
 2.4 Flomberegning Drammenselva ...19
 2.5 Samtidighet ..21
 2.6 Tidevannshensyn ..24
 2.7 Oppsummering ...24
3 Følsomhetsanalyse for Evja .. 25
4 Vedlegg .. 28
5 Referanser ... 29
Forord

I 2012 var det en kraftig lokal nedbørsepisode. Ekstremværet fikk navnet FRIDA og for sidevassdragene var dette i størrelsesorden en 200 års flom. Dette satte nå mer fokus på utfordringene med ekstremflom i sidebekkene. I 2015 kom en ny konseptplan fra Dr. Blasy-Dr. Øverland som også tok med seg sikring av sidebekkene mot en 200 års flom.

Gjennom det videre arbeidet med sikringstiltakene har det blitt jobbet en del med utfordringene med samtidighet for flommer i sidebekkene og hovedvassdraget.

Oslo, august 2017

[Signature]
Saksonadmin
Sverre Husabye

[Signature]
Regionsjef
Anne Cathrine Sverdrup
Sammendrag

200 års flom i sidebekkene uten flom i Drammenselva

Flommen Frida i august 2012 er vurdert av NVE til å være en 200 års flom i sidebekkene. Dette tilsvarer en spesifikk avrenning på 1,7 – 2,2 m³/s/km² for Evja og Krokstadbekken.

Flom i Drammenselva og sidebekkene – kombinert 200 års hendelse.

Formålet med denne rapporten er å se nærmere på samtidigheten mellom flom i Drammenselva og flom i sidevassdragene i Mjøndalen. Betraktningene skal gi en anbefaling om hvilket hydrologisk grunnlag som bør legges til grunn for dimensjonering av flomsikringstiltak i Mjøndalen.

For å ha best mulig statistisk grunnlag for den endelige dimensjoneringen av pumpestasjoner som en del av flomsikringstiltakene i Mjøndalen, er det i forbindelse med denne rapporten gjennomført ytterligere analyser av samtidighet og flomstørrelser i sidevassdrag og Drammenselva ut over de som ligger til grunn for forprosjektet av 20.04.2015 fra konsulentenskapet Dr. Blasy-Øverland. Disse analysene er basert på en til dels større datamengde, fra hhv flere målestasjoner og lengre måleserier.

Tar en utgangspunkt i flomhendelsen i 1927 har den en vannstand i Drammenselva som er i størrelsesorden en 100 års flom og i sidebekkene var den i størrelsesorden en 10 års flom. Vi mener dette kan være et eksempel på en 200 års hendelse.

For dimensjoneringen av sikringstiltakene i Mjøndalen anbefaler vi at en antar at sidebekkene vil nå flomvannføringer med gjentaksintervall rundt 10 år under en hendelse hvor Drammenselva når 100-200 års-flommen. Dette vil si rundt 15 m³/s for Evja og 9 m³/s for Hagatjernbekken ved innløpet til Miletjern

Det er gjennomført en følsomhetsanalyse på ulike vannføringer i Evja mot ulike vannstander i Drammenselva i kap. 3.
1 Bakgrunn

Kort historikk

I 2012 var det en kraftig lokal nedbørseepisode. Ekstremværet fikk navnet FRIDA og for sidevassdragene var dette i størrelsesorden en 200 års flom. Dette satt nå mer fokus på utfordringene med ekstremflom i sidebekkene. Dr. Blasy-Dr. Øverland kom med en ny konseptplan datert 20.04.2015 som også tok med seg sikring av sidebekkene mot en 200 års flom.

Som en del av arbeidet med den samlede konseptplanen, datert 20.04.2015 for flomsikring av Mjøndalen har konsulentselskapet Dr. Blasy – Dr. Øverland utført en rekke analyser på vannstander og vannføring i hhv. sidevassdrag og Drammenselva.

Formålet

Formålet med denne rapporten er å se nærmere på samtidigheten mellom flom i Drammenselva og flom i sidevassdragene i Mjøndalen. Betraktningene skal gi en anbefaling om hvilket hydrologisk grunnlag som bør legges til grunn for dimensjonering av flomsikringstiltak i Mjøndalen.

For å ha best mulig statistisk grunnlag for dimensjonering av mulige pumpestasjoner som en del av flomsikringstiltakene i Mjøndalen, er det i forbindelse med denne rapporten gjennomført ytterligere analyser av samtidighet og flomstørrelser i sidevassdrag og Drammenselva ut over de som ligger til grunn i forprosjektet av 20.04.2015 fra konsulentselskapet Dr. Blasy-Dr. Øverland. Disse analysene er basert på en til dels større datamengde, fra hhv flere målestasjoner og lengre måleserier.
Arbeidsgruppen

I februar 2016 ble det satt ned en arbeidsgruppe med følgende personer:

Nils Roar Sælthun Konsulent
Per Alve Glad NVE
Martin Jespersen NVE
Eirik Traae NVE

Det har vært avholdt flere arbeidsmøter hvor en i fellesskap har diskutert utfordringene rundt samtidighet og hvordan vi best dokumenterer det. Det har også vært et nært samarbeid utenom arbeidsmøtene. Det har vært kontakt med andre fagpersoner utenfor arbeidsgruppen, spesielt mhp statistikk.

I sluttfasen med rapporten har Harald Sakshaug NVE og Turid Bakken Pedersen NVE bidratt med innspill. De representerer prosjektledelsen i prosjektet for flomsikring Mjøndalen.
2 Hydrologiske grunnlagsdata

2.1 Beskrivelse
I forprosjektet av 20.04.2015 fra konsulentselskapet Dr. Blasy-Dr Øverland foreligger det planer for flom sikringstiltak i Mjøndalen sentrum som inkluderer flomluker som stenges når vannstanden i Drammenselva blir stor og hvor vannet fra sidebekkene skal pumpes ut i Drammenselva. Et viktig aspekt i beregningen av pumpekapasitet, er å se på sannsynlighet for samtidighet av flom i Drammenselva og sidebekkene. Det er liten tvil om at flommer i Drammenselva og sidebekker innehar en viss grad av avhengighet. Det er den samme nedbøren som bidrar til flom i hovedelv og sidebekker. Det er imidlertid mange andre faktorer enn nedbør som spiller vesentlige roller i denne problemstillingen og som gjør det svært utfordrende å regne på sannsynlighet direkte. Eksempelvis vil det i regulerte vassdrag som Drammenselva være helt avgjørende hvordan magasininfyllingen er i forhold til en nedbørhendelse og også fordelingen av nedbøren gjennom hendelsen vil også være styrende. Stort sett vil magasininfyllingen være høyere om høsten enn om våren og sånn sett vil Drammenselva være mer sårbar for rene regnflommer om høsten enn om våren. For små nedbørfelt er det i all hovedsak intens nedbør som gir store flommer, mens det for Drammenselva sin del vil være store nedbørmengder over lengre tid (gjerne kombinert med snosmelting) som vil gi de største flommene. Tidevann og stormflo er også svært avgjørende for vannstanden i nedre deler av Drammenselva.

2.2 Historiske flommer

2.2.1 Flommen i 1927
Vårflommen i 1927 oppsto som en følge av sen og kraftig smelting av snøen kombinert med store nedbørmengder i slutten av juni. Flommen er den største som er registrert ved vannmerket 12.68 Døvikfoss og etter beregninger utført for Drammensvassdraget av Drageset i 2001 tilsvarer dette ca en 100-200 årsflom (høyeste døgnverdi ved Døvikfoss var 2325 m3/s). Det bør imidlertid påpekes at reguleringen av Drammensvassdraget ikke var den samme i 1927 som den er i dag, og det forventes at flommen hadde blitt noe mindre med dagens reguleringssystem i forhold til 1927. Per dags dato er det følgende reguleringssgrad som gjelder. Reguleringsgrad areal = 0,91 og reguleringsgrad magasin = 0,29. Når det gjelder reguleringssgraden i 1927 var den lavere enn i dag, men å fastsette et tall på dette vil kreve en grundig gjennomgang av historiske konsesjonssaker. Figur 1 viser vannføringen ved Døvikfoss i perioden 31.05.1927 – 17.08.1927. Gjennom denne perioden lå Drammenselva over kote 2 (ca 1000 m3/s) i ca 6 uker og over kote 3 (ca 1500 m3/s) i ca 2 uker (27.06 – 11.07). Det er forholdsvis sparsommelig med nedbørdata i Drammensvassdraget i dette tidsrommet, men Meteorologisk Institutt hadde en del manuelle målestasjoner også i 1927 på Østlandet som kan illustrere utbredelsen av de store nedbørmengdene (nedbørstasjonene er vist i Figur 2). Av nedbørdataene er det verdt å merke seg at nedbørdøgnet 29.06 er det kraftigste selv om det også regnet godt de foregående dagene. For dette nedbørdøgnet var imidlertid vannstanden i Drammenselva over kote 3 (1500 m3/s ved Døvikfoss). Følgelig er det interessant å se om det kan forventes at det samtidig var flom i sidebekkene i Mjøndalen. Med ca 50mm nedbør i de to dagene før 29.06.1927 syntes ikke urimelig å anta at bakken er forholdsvis våt og at
Vannføringen var noe over normalen. De tre nedbørstasjonene som ligger nærmest Mjøndalen og som hadde observasjoner i 1927 er Blektjern ved Drammen som målte 79mm, Ytre Sandsvær i Kongsberg kommune som målte 94,5mm og Besstul i Gjerpen som målte 88,9mm. Om en aksepterer at disse tre målestasjoner er representativt for Mjøndalen, kan en for eksempel bruke snittnedbøren som et estimat for døgnnedbøren denne dagen. Dette gir en døgnnedbør for sidebekkene i Mjøndalen på 87mm. Hvor stor vannføring dette vil gi i sidebekkene vil naturligvis være avhengig av fordelingen på nedbøren gjennom døgnet, og dette har vi ikke informasjon om. Det som imidlertid går an er å se på flommene i senere tid og se hva slags nedbørverdier som har gitt hvilke flomstørrelser. Vårflommen i mai 2013 (Figur 16) var ved Fiskum en tilnærmet ren regnflom (for Drammenselva var det betydelig bidrag fra snøsmelting). Nedbøren som er registrert ved Kongsberg brannstasjon og Hokksund i tilknytning til denne flommen er henholdsvis 62mm på 48 timer og 50mm på 48 timer. Med disse nedbørverdierne gikk Fiskum flom stor med et gjentaksintervall på ca 15 år.

Ved å kjøre nedbør-avløpsmodell (PQRUT) for Evja og Hagatjernbekken med jevn nedbør over hele døgnet (som forventes å gi den laveste flommen) kommer fortsatt begge sidebekkene opp i flomverdier under denne hendelsen (Figur 3 og Figur 4). Fra modellkjøringene får en flomverdier i Evja på ca 970 l/s*km² og Hagatjernbekken på ca 800 l/s*km² som antas å være forholdsvis lave estimer på grunn av måten nedbørforløpet er konstruert på. Det er i tilknytning til flomsonet for Evja bekken er det ikke registrert med de høyeste verdiene. Modellen ble kjørt med 4 tidevannsscenarier (1.54 moh, 1.39 moh, 0.8 moh og 0 moh). Resultatene av kjøringen er gitt i figur 5 og de antyder at flommen i 1927 kulminerte (døgn) mellom 4,42-4,18 moh ved Mjøndalen bru.

Tabell 1. Viser vannstand fra nivelleringskjema sammenlignet med simulert vannstand med fire forskjellige tidevannsscenarier
Figur 1. Viser Drammenselva ved Døvikfoss under vårfloffen i 1927

Figur 2. Viser nedbørstasjoner som observerte nedbør under floffen i 1927
Figur 3. Flomforløp for Evja for 1927-flommen med "gunstig" nedbørforløp

Figur 4. Flomforløp for Hagatjernbekken for 1927-flommen med "gunstig" nedbørforløp
2.2.2 Flommen i juni 1926

Flommen i juni 1926 oppsto som følge av sen og kraftig snøsmelting kombinert med store nedbørmengder. Vannmerket 12.68 Døvikfoss har observasjoner fra 1912 og er fortsatt i drift i dag. Flommen i 1926 er den neststørste i måleperioden kun overgått av flommen i 1927. Tilsvarende som flommen i 1927 oppsto flommen som følge av at det kom store nedbørmengder mot slutten av en sen og kraftig smelteperiode hvor Drammenselva allerede hadde stor vannføring. Figur 6 viser flomforløpet i juni 1926 sammen med observert nedbør ved Blektjern (Drammen). Under flommen lå vannføringen over 1500 m³/s ved Døvikfoss i over 3 uker og den kulminerte 14.06 på ca 2285 m³/s. Med gjeldene flom beregning for Drammenselva gir dette et gjentaksintervall på ca 80 år. Det kraftigste nedbordøgnet under denne hendelsen var 12.06 hvor det ble observert 78 mm på målestasjon Blektjern (Drammen). Rekonstruksjon av denne flommen tyder på at vannstanden ved Mjøndalen bru før dette nedbordøgnet var på 3,2-3,5 moh. Utover nedbordøgnet 12.06 var det også betydelig nedbør i døgnene før og etter 12.06. 10, 11 og 13 juni ble det registrert henholdsvis 30, 38 og 47 mm nedbør. Kulminasjonsvannstanden ved Mjøndalen bru 14.06.1926 var på ca 4,32-4,08 moh.
Figur 6. Vannføring for Drammenselva under flommen i 1926 sammen med observert nedbør ved Blektjern (Drammen)

2.2.3 Flommen i juli 2007

Flommen i juli 2007 var en følge av vedvarende store nedbørmengder. Det var også bidrag fra snøsmelting, spesielt fra de øvre delene av nedbørfeltet. Nedbøren og snøsmeltingen medførte omfattende flomskader i områdene langs Drammensvassdraget og Numedalslågen. Det var blant annet stengte veier i Eiker, Eggedal og Hallingdal, samt flomskader i Valdres. Under denne flommen lå Drammenselva over kote 2 (ca 1000 m³/s ved Mjøndalen bru) i litt over 2 uker (03-19 juli 2007) og i dette tidsintervallet hadde Fiskum to flomtopper (Figur 7). Den største flomtoppen ved Fiskum (530 l/s*km²) ble registrert 4 juli og vannføringen i Drammenselva ved Mjøndalen bru Fiskum kulminerte var ca 1450 m³/s (ca 2,5 moh). Dette er den tredje største vannføring som er målt ved Fiskum siden observasjonene begynte i 1976. Tett på kulminasjonstidspunktet for denne flommen var det en relativt lokal nedbørepisode hvor det ble målt 80 mm på to timer på nedbørmåleren til Nedre Eiker kommune på teknisk sentral i Mjøndalen.
Ekstremværet «Frida» i august 2012 medførte omfattende flomskader og mange skred over store deler av Sør- og Østlandet. Hardest rammet var en smal sone i kommunene Modum, Øvre Eiker og Nedre Eiker i Buskerud og Hof, Holmestrand og Re i Vestfold (Beldring mfl., 2012). Flere kilder tyder på at det i området med maksimum nedbør kan ha falt 70-130 mm i løpet av kvelden 6. august (Lundquist, 2012). I området rundt Krokstadelva og Mjøndalen kan det ha kommet 70 mm nedbør i løpet av 40 minutter rundt kl. 22:00 (met.no info nr. 15, 2012). På Nedre Eiker kommune sin nedbørmåler på teknisk sentral i Mjøndalen ble det registrert 115 mm nedbør på 2 timer kvelden 6 august 2012 og 140 mm på et døgn. De store vannmassene medførte oversvømmelser og omfattende skader på bygninger og infrastruktur.

Jespersen (NVE - Teknisk notat 01-2012) har på grunnlag av observerte kulminasjons-vannstander i Krokstadbekken og i utløpet av Evja beregnet kulminasjonsvannføringen under «Frida».

<table>
<thead>
<tr>
<th>Nedbørfelt - Beregningspunkt</th>
<th>Areal</th>
<th>Vannføring Frida</th>
<th>Spesifikk vannføring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krokstadbekken (Lysakerveien 9)</td>
<td>17,5 km² (i flom)</td>
<td>38 - 39 m³/s</td>
<td>2200 l/(s*km²)</td>
</tr>
<tr>
<td>Evja (Utløpet i Drammenselva)</td>
<td>15,0 km²</td>
<td>25 -27 m³/s</td>
<td>1700 l/(s*km²)</td>
</tr>
</tbody>
</table>

Figur 7. Viser samtidig flom i Drammenselva ved Mjøndalen bru og Fiskum under flommen i juli 2007

2.2.4 Flommen i august 2012 «Frida»

Ekstremværet «Frida» i august 2012 medførte omfattende flomskader og mange skred over store deler av Sør- og Østlandet. Hardest rammet var en smal sone i kommunene Modum, Øvre Eiker og Nedre Eiker i Buskerud og Hof, Holmestrand og Re i Vestfold (Beldring mfl., 2012). Flere kilder tyder på at det i området med maksimum nedbør kan ha falt 70-130 mm i løpet av kvelden 6. august (Lundquist, 2012). I området rundt Krokstadelva og Mjøndalen kan det ha kommet 70 mm nedbør i løpet av 40 minutter rundt kl. 22:00 (met.no info nr. 15, 2012). På Nedre Eiker kommune sin nedbørmåler på teknisk sentral i Mjøndalen ble det registrert 115 mm nedbør på 2 timer kvelden 6 august 2012 og 140 mm på et døgn. De store vannmassene medførte oversvømmelser og omfattende skader på bygninger og infrastruktur.

Jespersen (NVE - Teknisk notat 01-2012) har på grunnlag av observerte kulminasjons-vannstander i Krokstadbekken og i utløpet av Evja beregnet kulminasjonsvannføringen under «Frida».
Fiskum kulminerte under denne flommen på ca 580 l/s*km² som er den neste høyeste i måleperioden.

Nedbørepisoder som «Frida» gir svært stor avrenning i små nedbørfelt, men vil kun medføre utfordringer for systemet «Drammenselva med sidebekker» dersom vannføringen i Drammenselva er stor i utgangspunktet. Det var ikke tilfellet i august 2012 og under dette regnskylllet kulminerte Drammenselva ved Mjøndalen bru på ca 860 m³/s og kote 1,4 m som ikke engang tilsvarende middelflommen.

2.2.5 Flommen «Synne» i desember 2015 på Sør-Vestlandet
Denne hendelsen er lite aktuell for Drammensvassdraget i vinterhalvåret. Denne typen værsystemer forventes ikke å nå langt nok øst til å true Drammensvassdraget. Såkalte Vb lavtrykk som kan sees på som værsystemer som vil kunne gi «Synne»-nedbør på Østlandet er avhengig av varmluft på kontinentet for å dra med seg fuktighet fra Middelhavet. Som oftest vil det være for kaldt for at luften skal ta med seg de helt store nedbørstyrkene fra desember og utover vinteren.

2.3 Flomboeregning for to av sidebekkene i Mjøndalen

2.3.1 Evja
Det er utført flomboeregning for Evja som har utløp i Drammenselva rett oppstrøms Mjøndalen bru. Evja har et nedbørfelt på 15 km² og er dominert av skog i de øvre delene av nedbørfeltet. De nedre delene domineres av dyrket mark og urbane arealer ved utløpet. Det er lav grad av naturlig dempning i feltet. Flomboeregningen er utført ved bruk av formelverk for flomboeregninger i små nedbørfelt (Glad mfl., 2015) og nedbør-avløpsmodellen PQFLOM. Resultatet fra formelverket er gitt i Figur 8 og medianestimatet for 200-årsflommen er på 17 m³/s (1130 l/(s*km²)). Usikkerheten i formelverket tilsier at 200-årsflommen ligger mellom 9-34 m³/s. Resultatet fra nedbør-avløpsmodellen er gitt i Figur 9. Flomverdien fra nedbør-avløpsmodellen (42 m³/s) ligger langt over medianestimatet fra formelverket og også utenfor usikkerhetsbåndet (95%-konfidensintervall). Resultatet kan tyde på at medianestimatet fra formelverket for Evja ligger noe lavt og bør ligge oppunder over kurve.

I notatet til Jespersen (NVE - Teknisk notat 01-2012) er det regnet på flomstørrelsen i Evja og i Kroksstadbekken under «Frida» basert på vannstandsobservasjoner i terrenget. Kroksstadbekken har svært tilsvarende nedbørfelt som Evja og spesifikk avrenning under «Frida» ble da regnet til henholdsvis 1700 l/(s*km²) og 2200 l/(s*km²).

Basert på de ulike tilnærmingene som er beskrevet over setter vi Q200 lik «Frida» og dette tilsvarende tilnærmet øvre kurve for formelverket.
Figur 8. Flomestimator for Evja ved bruk av formelverk for små nedbørfelt

Evja

<table>
<thead>
<tr>
<th>Areal</th>
<th>15.0 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tids skull</td>
<td>1 timer</td>
</tr>
<tr>
<td>Neds. korr</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Tømme konst 1 | 0.145 l/time
Tømme konst 2 | 0.031 l/time
Qmax | 42 m³/s = 2800 l/s*km²

Figur 9. 200-års flomestimat for Evja ved bruk av PQFLOM
2.3.2 Hagatjernbekken

Det er utført flomberegning for Hagatjernbekken rett oppstrøms Miletjern. Hagatjernbekken har her et nedbørfelt på 11 km² og er dominert av skog. De nedre delene domineres av urbane arealer. Den østre delen av nedbørfeltet forventes å ha en forholdsvis høy grad av naturlig flomdempning gjennom Hagatjern. Flomberegningen er utført ved bruk av formelverk for flomberegninger i små nedbørfelt (Glad mfl., 2015) og nedbør-avløpsmodellen PQFLOM. Resultatet fra formelverket er gitt i Figur 10 og medianestimatet for 200-årsflommen er på 10 m³/s (900 l/(s*km²)). Usikkerheten i formelverket tilsier at 200-årsflommen ligger mellom 5-20 m³/s. Resultatet fra nedbøravløpsmodellen er gitt i Figur 11. Flomverdien fra nedbør-avløpsmodellen ligger tett opp mot 97,5-persentilen fra formelverket i Figur 10 og gir 18 m³/s som 200-åresestimat. Resultatet kan tyde på at medianestimatet fra formelverket for Mjøndalen ligger noe lavt. For Hagatjernbekken – ved innløpet til Miletjern - settes 200-årsflommen til 18 m³/s (1600 l/(s*km²)).

Figur 10. Flomestimater for Hagatjernbekken ved bruk av formelverk for små nedbørfelt.
2.4 Flomberegning Drammenselva

Resultatene viser at flomestimatene blir lavere både for regulert periode (1977-d.d.) og for hele observasjonsperioden (1912-d.d.) ved å inkludere de siste 15 årene med data. For den regulerte delen av kurven (opp til ca 50 års gjentaksintervall) blir eksempelvis Q20 10% lavere ved å inkludere de siste 15 årene med data. Resultatene fra frekvensanalysen for hele observasjonsperioden blir 4% lavere for Q200 ved å inkludere de siste 15 årene med data. Dette er ikke overraskende ettersom en inkluderer en lengre periode med regulerte data enn det som var tilgjengelig i 2001. Dette kan tyde på at antagelsen om at vassdraget vil oppføre seg nærmest uregulert for de virkelig store flommene (eksempelvis 200-årsflommen) muligens ikke er helt realistisk. Det kan her også nevnes at den største flommen etter at utbyggingen i vassdraget avtok kraftig (sluten av 70-tallet) fant sted i juli 2007 (Figur 13). Flommen kulminerte den gang rett under 1500 m³/s ved Døvikfoss. Ifølge gjeldende frekvenskurve for Drammenselva (flomsonekartet) har flommen i 2007 et gjentaksintervall på rett over 10 år. At den største flommen de siste 40 årene kun har et gjentaksintervall på rett over 10 år kan også være et tegn på at gjeldene kurve er noe konservativ. Det anbefales imidlertid ikke på det nåværende tidspunkt å endre verdien for

Figur 12. Flomfrekvensanalyser for Drammenselva ved Døvikfoss for forskjellige perioder. Sort stiplet linje er den gjeldene for dagens flomsonekart.

Tabell 2. Viser resultater fra flomfrekvensanalyser for Drammenselva ved Døvikfoss ved bruk av forskjellige tidsperioder

<table>
<thead>
<tr>
<th>Fordeling</th>
<th>QM</th>
<th>Q5</th>
<th>Q10</th>
<th>Q20</th>
<th>Q50</th>
<th>Q100</th>
<th>Q200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Døvikfoss (1912-2015) GEV (max lik)</td>
<td>1082</td>
<td>1401</td>
<td>1622</td>
<td>1820</td>
<td>2057</td>
<td>2220</td>
<td>2372</td>
</tr>
<tr>
<td>Døvikfoss (1959-2015) GEV (max lik)</td>
<td>520</td>
<td>1170</td>
<td>1329</td>
<td>1449</td>
<td>1578</td>
<td>1654</td>
<td>1719</td>
</tr>
<tr>
<td>Døvikfoss (1977-2017) GEV (max lik)</td>
<td>857</td>
<td>1208</td>
<td>1375</td>
<td>1476</td>
<td>1595</td>
<td>1672</td>
<td>1734</td>
</tr>
<tr>
<td>Døvikfoss (1977-1998) LN3 - MLE</td>
<td>950</td>
<td>1270</td>
<td>1460</td>
<td>1620</td>
<td>1810</td>
<td>1930</td>
<td>2060</td>
</tr>
<tr>
<td>Døvikfoss gjeldende kurve</td>
<td>950</td>
<td>1270</td>
<td>1460</td>
<td>1620</td>
<td>1970</td>
<td>2310</td>
<td>2470</td>
</tr>
</tbody>
</table>
2.5 Samtidighet

Den største målte flommen i nedre deler av Drammenselva er vårflommen i 1927, men fra denne hendelsen foreligger det svært lite hydrologiske data utover observasjoner i hovedvassdraget. For å se nærmere på samtidighet av flommer i sidebekkene og hovedelva er det, i mangel av målinger i de aktuelle sidebekkene, sett på den nærliggende stasjonen 12.193 Fiskum. Kartoversikt over nedbørfeltet til Drammenselva og vannmerket Fiskum er gitt i Figur 14. Vannmerket 12.193 Fiskum ligger ca 13 km sørvest for Mjøndalen. Nedbørfeltet til vannmerket Fiskum er større og tregere enn Evja og Hagatjernbekken og er sånn sett ikke en optimal sammenligningsstasjon, men er det beste vannmerket å bruke i mangel av bedre data. Flomfrekvensanalyse for vannmerket 12.193 Fiskum er gitt i Figur 15. Det er sett på samtidig vannføring i Drammenselva og Fiskum for å forsøke å identifisere om det kan forventes flom i sidebekkene når Drammenselva er stor. Dersom en ser på de 10 største flommene som er målt ved Døvikfoss i periodene Drammenselva er over kote 2 (ca 980 m³/s ved Døvikfoss) finner en at det i juli 2007 ved Fiskum var flom med gjentaksintervall på rundt 20 år. I Oktober 1987 var det mellom 10-20 års flom ved Fiskum samtidig som Drammenselva var over kote 2. I mai 2013 var det også flom ved Fiskum samtidig som Drammenselva lå over kote 2. Under den episoden nådde Fiskum et gjentaksintervall på rundt 15 år. Av de 10 største flommene som er registrert ved Døvikfoss etter at det ble startet observasjoner med tidsoppløsning finere enn døgn for Fiskum (1980) er det registrert flom ved Fiskum samtidig som Døvikfoss ligger over 980 m³/s ved 4 av de 10 tilfellene (eksempel gitt i Figur 16). Størst av disse flommene var flommen i juli i 2007 og gjentaksintervallet for flommen var ca 10 år om en tar utgangspunkt i flomberegningen utarbeidet av Drageset i 2001. Rekonstruksjonen av 1927-flommen antyder at Drammenselva var svært stor allerede før det mest intense
nedbørdøgnet 29 juni. Ved å kjøre nedbør-avløpsmodell for Evja og Hagatjern med observert nedbør 29 juni 1927 tyder simuleringen på at begge disse bekkene gikk flomstore dette døgnet (minst 10-årsflom).

Figur 14. Viser nedbørfeltet til Drammenselva (i rødt) og vannmerket Fiskum (grønn sirkel)
Figur 15. Flomfrekvensanalyse for vannmerket 12.193 Fiskum

<table>
<thead>
<tr>
<th>Q30</th>
<th>Q50</th>
<th>Q10</th>
<th>Q20</th>
<th>Q50</th>
<th>Q100</th>
<th>Q200</th>
</tr>
</thead>
<tbody>
<tr>
<td>275</td>
<td>363</td>
<td>439</td>
<td>518</td>
<td>611</td>
<td>685</td>
<td>790</td>
</tr>
</tbody>
</table>

Figur 16. Vannføring for Døvikfoss og Fiskum under flommen i mai 2013
2.6 Tidevannshensyn

For flomsonekartet (2017) i Mjøndalen er det lagt til grunn 10-års stormflo samtidig som 200-årsflommen. Vanligvis sees det på samtidighet med 1-års stormflo i NVEs flomsonekartleggsarbeid, men en masterstudie (Indergård, 2005) fant en større grad av samtidighet for flom i Drammenselva og stormflo enn for andre vassdrag som loper ut i havet. Tidevannet spiller altså en rolle for forholdet mellom vannstanden og vannføringen i Drammenselva.

2.7 Oppsummering

Det er i dette kapittelet utført hydrologiske analyser og beregninger for Drammenselva og to bekkere i Mjøndalen. Det er også gjort et forsøk på å identifisere i hvilken grad det kan forventes at sidebekkene i Mjøndalen går flomstore samtidig som vannstanden i Drammenselva er høy. Det er sett på de 10 største flommene i Drammenselva siden 1980 (året hvor vanmerket Fiskum begynte å registrere vannstand/vannføring med oppløsning finere enn døgn). Nedbørfeltet til vanmerket Fiskum er større og tregere enn Evja og Hagatjernbekken og er så sett ikke en optimal sammenligningsstasjon, men er det beste vanmerket å bruke i mangel av bedre data. I fire av de ti flomhendelsene var det flomvannføring ved vanmerket Fiskum samtidig som Drammenselva lå over kote 2 ved Mjøndalen. De to største flommen sidene begynnelsen av 1900-tallet i Drammenselva fant sted i 1926 og 1927. Ved å undersøke historiske hydrologiske og meteorologiske data er det gjort et forsøk på å vise at det under disse hendelsene er svært sannsynlig at det var stor flom i sidebekkene i Mjøndalen samtidig som Drammenselva lå over både kote 3 og 4 (NN2000). Resultatene fra analysen viser at selv om det finnes mange eksempler på tilfeller hvor det er flom i Drammenselva og ikke samtidig flom i sidebekkene (eksempelvis juni 95 og mai 1983), og tilsvarende tilfeller hvor det er flom i sidebekkene, men ikke flom i hovedvassdraget (eksempelvis august 2012), er det ikke rimelig å anta uavhengighet. Drammensvassdraget er mest utsatt for storflom i år hvor det er sen og gjerne kraftig snøsmelting, og hvor det kommer store nedbørmengder (enten vedvarende (juli 2007) eller intens (juni 1927) nedbør) når Drammenselva allerede har bygget seg opp gjennom smelteperioden. Om høsten er gjerne fyllingsgraden høyere i magasinene enn om våren følger det Drammensvassdraget mer sårbart for store nedbørmengder på denne tiden av året. De største høstflommene som er observert i Drammensvassdraget i senere tid er oktober 1987 og november 2000. Under begge disse hendelsene var det flom ved Fiskum samtidig som Drammenselva lå over kote 2.

Det ble utført en rekonstruksjon av 1927-flommen som kan tyde på at Drammenselva ved Mjøndalen lå på ca kote 3,2 moh (NN2000) allerede dagen før det kraftige nedbørdøgnet 29 juni og at kulminasjonsvannstanden (døgn) var i størrelsesorden 4,1-4,3 moh (NN2000). Ved å konstruere et nedbørforløp av døgnnedbøren den 29 juni 1927 er det kjørt nedbør-avløpsmodell for sidebekkene Evja og Hagatjernbekken for å undersøke om det er sannsynlig at det var flom i disse samtidig som Drammenselva var over kote 3. Nedbørforløpet ble bevisst konstruert for å gi den minste flommen i sidebekkene for å se om det gikk an å finne forløp som ikke ga flom. Resultatene fra nedbør-avløpsmodellen for de to sidebekkene var at begge to gikk flomstore selv med dette «gunstige» nedbørforløpet og den spesifikke vannføringen for de to feltene varierte mellom 800-970

Det syntes ut i fra analysene utført her tydelig at det ved gjentatte historiske flomepisoder har vært flom i sidebekkene i Mjøndalen samtidig som vannstanden i hovedvassdraget har vært høy. Dette har vært tilfellet både under høstflommer og vårflommer. For nedre deler av Drammensvassdraget har tidevann og stormflo en stor innvirkning på vannstanden ved Mjøndalen bru.

3 Følsomhetsanalyse for Evja

Gjennomgangen og sammenstillingen av de historiske dataene i forrige kapittel viser en viss samtidighet for flommer i sidebekkene og Drammenselva. Hovedutfordringen når det gjelder vurdering av samtidighet mellom flom i Drammenselva og i sidebekkene er at vi har gode observasjonsserier for vannstanden i Drammenselva men vi har ikke tilsvarende data for sidevassdragene. For å få et mest mulig robust analysegrunnlag for samtidigheten av vannføringer er det naturlig å sammenligne resultatet fra flere ulike metoder.

- I forrige kapittel er det sett på historisk store flommer.

- I dette kapitlet ser vi nærmere på en følsomhetsanalyse for Evja.
Følsomhetsanalyse for Evja

Med utgangspunkt i den hydrauliske modellen for Evja som Dr. Blasy og Dr. Øverland har brukt som grunnlag for prosjektering av flomsikringstiltakene i «konseptplanen datert 20.04.2015» er det kjørt en følsomhetsanalyse på vannstanden i Drammenselva mot vannføringen i sidebekkene. Analysen er gjennomført ved å kjøre modellen med en rekke kombinasjoner av vannstand i Drammenselva og vannføring i sidebekkene. Som en funksjon av disse ulike kombinasjonene beregnes da vannstander på ulike steder i Evja. Som vedlegg til rapporten har vi lagt et større kart som viser følsomhetsanalysene for flere punkt langs Evja. I Figur 17 under er det vist et utsnitt av det vedlagte kartet.

Kombinasjonene er vist i Tabell 3, der kolonnen lengst til venstre viser vannstandene i Drammenselva og den øverste raden viser vannføringene i Evja. De andre kolonnene viser de beregnede, resulterende vannstandene ved samløp Evja/Skalpebekk.

<table>
<thead>
<tr>
<th>Modellpå</th>
<th>2 m³/s</th>
<th>5 m³/s</th>
<th>10 m³/s</th>
<th>20 m³/s</th>
<th>30 m³/s</th>
<th>35 m³/s</th>
<th>40 m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maks VT</td>
<td>2 m³/s</td>
<td>5 m³/s</td>
<td>10 m³/s</td>
<td>20 m³/s</td>
<td>30 m³/s</td>
<td>35 m³/s</td>
<td>40 m³/s</td>
</tr>
<tr>
<td>kt+2.0</td>
<td>2.13</td>
<td>2.21</td>
<td>2.42</td>
<td>2.87</td>
<td>3.38</td>
<td>3.47</td>
<td>3.63</td>
</tr>
<tr>
<td>kt+2.5</td>
<td>2.63</td>
<td>2.65</td>
<td>2.76</td>
<td>3.08</td>
<td>3.43</td>
<td>3.59</td>
<td>3.74</td>
</tr>
<tr>
<td>kt+3.0</td>
<td>3.12</td>
<td>3.13</td>
<td>3.12</td>
<td>3.41</td>
<td>3.68</td>
<td>3.82</td>
<td>3.97</td>
</tr>
<tr>
<td>kt+3.5</td>
<td>3.61</td>
<td>3.63</td>
<td>3.67</td>
<td>3.82</td>
<td>4.04</td>
<td>4.16</td>
<td>4.29</td>
</tr>
<tr>
<td>kt+4.0</td>
<td>4.11</td>
<td>4.12</td>
<td>4.15</td>
<td>4.27</td>
<td>4.44</td>
<td>4.54</td>
<td>4.64</td>
</tr>
</tbody>
</table>

Med utgangspunkt i ovenstående tabell er det mulig å estimere hvor høyt vannstanden vil være i Evja ved ulike samtider. Dersom vannstanden i Drammenselva eksempelvis er kt 3.5 og vannføringen 20 m³/s i Evja vil den resulterende vannstanden i Evja være kt 3.82.
Figur 17. Kart over nedre del av Evja. Terrengkoter fra laserdata, symbolisert med 0,5 m intervall.
4 Vedlegg

5 Referanser

Det Norske Meteorologiske Institutt. 1927. Nedbøriakttagelser i Norge. Årgang XXXIII.

http://drammenhavn.no

Jespersen, M. 2016. Estimering av vannføring i Nedre Eiker under flommen 6.-7. august 2012 (Frida), Norges vassdrags-og energidirektorat, Teknisk notat 01-2012, 8 s, NVE sak 201205482-56).

