Kvartalsrapport for kraftmarknaden
2. kvartal 2011
Tor Arnt Johnsen (red.)
Innhald

Forord ... 4
Samandrag ... 5
1 Kraftmarknaden i andre kvartal 2011 ... 6
 1.1 Ressursgrunnlaget .. 9
 1.1.1 Tilsig i Noreg .. 9
 1.1.2 Tilsig i Sverige .. 10
 1.1.3 Temperatur .. 11
 1.1.5 Snø ... 13
 1.1.6 Grunn- og markvatn ... 14
 1.2 Magasinutviklinga .. 15
 1.2.1 Varmt vêr og mykje nedbør ga nær normal magasinfilling .. 15
 1.2.2 Magasinutviklinga i Sverige og Finland ... 15
 1.3 Produksjon .. 17
 1.3.1 Noreg – auke i produksjonen i andre kvartal ... 19
 1.3.2 Kraftproduksjonen i dei andre nordiske landa ... 20
 1.4 Forbruk .. 24
 1.4.1 Noreg – nedgang i kraftforbruket .. 25
 1.4.2 Kraftforbruket i dei andre nordiske landa .. 28
 1.5 Andre energiberarar i Noreg .. 30
 1.5.1 Fyringsoljar ... 30
 1.5.2 Ved ... 31
 1.5.3 Anna bioenergi ... 32
 1.5.4 Varmepumper ... 34
 1.5.5 Fjernvarme ... 34
 1.5.6 Gass ... 34
 1.6 Kraftutveksling ... 36
 1.6.1 Noreg ... 38
 1.6.2 Andre nordiske landa .. 39
 1.7 Kraftprisar i engrosmarknaden ... 40
 1.7.1 Spotmarknaden ... 40
 1.7.2 Terminmarknaden ... 42
 1.8 Sluttbrukarmarknaden ... 46
 1.8.1 Prisar og kontraktar ... 46
 1.8.2 Leverandørskifte, kontraktsval og samla utgifter ... 50
 2 Øker markedets forventninger til fremtidig prisusikkerhet når hydrologisk balanse forverres?
 .. 54
 2.1 Innledning ... 54
 2.2 Kraftderivater på Nasdaq OMX Commodities .. 55
 2.2.1 Terminkontrakter - forwards og futures ... 55
 2.2.2 Contract for Difference .. 56
 2.2.3 Opsjoner ... 56
 2.3 Opsjonsprisingssteori .. 57
 2.3.1 Opsjonsprisingsmodellen Black-Scholes .. 57
 2.3.2 Black 76 ... 58
 2.3.3 Volatilitetssmil og terminstruktur ... 59
 2.4 Black 76 i det nordiske kraftmarkedet ... 61
 2.5 Øker forventninger til fremtidig prisusikkerhet når hydrologisk balanse forverres? ... 62
 2.5.1 Data ... 63
Forord

Energiavdelinga i NVE presenterer her rapport for kraftmarknaden i andre kvartal 2011. Kvartalsrapporten utarbeidast kvart kvartal, og dette er andre utgåve i kvartalsrapportens 8. årgang. På grunn av datainnsamling og tilverking vert kvartalsrapporten vanlegvis publisert 4-5 veker etter utløpet av kvartalet.

Arbeidet med denne kvartalsrapporten er utført av medarbeidarar ved Energiavdelinga og Hydrologisk avdeling. Bidragsytarane for denne utgåva har vore Stian Henriksen, Erik Holmqvist, Per Tore Jensen Lund, Ingrid Magnussen, Kjerstin Dahl Viggen, Finn Erik Ljåstad Pettersen, Mats Øivind Willumsen, Margit Iren Ulriksen, og Tor Arnt Johnsen, som også har leia arbeidet.

Oslo, 19. august 2011

[Signature]

Marit L. Fossdal
avdelingsdirektør
Samandrag

Mildt og vått vêr i andre kvartal 2011 sikra høgt tilsig til dei norske vassmagasina. Tilsiget skuldast både tidleg snøsmelting og store nedbørmeninger. I løpet av kvartalet kom det 57 prosent meir enn normalt med nedbør, og snømagasinet kulminerte tidleg i juni med nær 85 prosent av normale snømengder. Totalt var tilsiget for kvartalet 64,7 TWh. Det er 11,9 TWh meir enn normalt.

Noreg hadde eit kraftforbruk på 26,5 TWh i løpet av kvartalet, mot 28,1 TWh i same kvartal 2010. Forbruksreduksjonen har samanheng med mildare vêr og høgare kraftprisar i år enn i fjor. For andre kvartal er dette det femte lågaste forbruket sidan 1995. Første halvår 2011 var det samla norske forbruket 64,8 TWh. Det er ein reduksjon på 5,7 prosent frå same periode i 2010, noko som kan sjåast i samanheng med dei relativt høge kraftprisane i første halvdel av 2011.

Kraftproduksjonen i andre kvartal var 25,9 TWh. Det er 11,1 TWh høgare enn i same kvartal 2010. Høgt tilsig er hovudforklaringa på denne produksjonsaufkken. I første halvår vart det samla sett produsert 57,8 TWh kraft i Noreg, som er ein nedgang på 6,8 prosent frå same halvår i fjor. Nedgangen kan koplast til det låge magasinnivået ved inngangen til 2011.

Det var nettoimport på 0,6 TWh til Noreg i løpet av kvartalet. I starten av kvartalet var det høg nettoimport til Noreg, men då ressurssituasjonen betra seg utover kvartalet minka importen, og i slutten av kvartalet var det jamvel norsk nettoeksport. Til samanhlikning var det i andre kvartal 2010 nettoimport på 4,1 TWh.

Kraftprisane fall med over 20 prosent i alle dei norske elspotområda frå første til andre kvartal. Hovudårsaka til denne utviklinga var det milde vêret og den tidlege snøsmeltinga, som resulterte i ei betrakteleg betring av ressurssituasjonen. I snitt var prisane på omlag same nivå som i andre kvartal 2010. Aust-, Sørvest- og Midt-Noreg hadde alle ein gjennomsnittlig spotpris på 403 kr/MWh. Nord-Noreg hadde ein snittpris på 405 kr/MWh, medan snittprisen i Vest-Noreg var 395 kr/MWh. Inntengd produksjon i Vest-Noreg mot slutten av kvartalet som følgje av høgt tilsig til vasskraftverka, samstundes som det var vedlikehaldsarbeid i overføringsnettet, var årsaka til at snittprisen i dette området var lågare enn i resten av landet.

Prisen på terminkontraktar med levering i tredje og fjerde kvartal 2011, handla ved den nordiske kraftbørsen, var 340 og 381 kr/MWh i slutten av andre kvartal. Kontraktane hadde dermed falt i pris med høvesvis 20 og 16 prosent frå starten av kvartalet. Prisane falt i takt med at vassmagasina vart fylt opp, og størst nedgang var det i slutten av kvartalet. I tillegg til den betra hydrologiske balansen var også varslar om framleis mildt og vått vêr framover sommaren med å trekke terminprisane nedover.

I sluttbrukarmarknaden var det, slik som i engrosmarknaden, nedgang i kraftprisane. Samanlikna med første kvartal gjekk snittprisane for spotpriskontrakt ned med mellom 11, og 16,4 øre/kWh i alle dei norske elspotområda. Det vil seie at kontraktane i snitt hadde ein pris på mellom 42,2 og 52,3 øre/kWh. Standard variabel kontrakt hadde ein prinsnedgang på 20,7 øre/kWh til 61,2 øre/kWh, medan fastpriskontrakt med eittårig avtaletid hadde ein nedgang på 2,5 øre/kWh til 59,2 øre/kWh, og kontakten med treårig avtaletid var uendra på 55,7 øre/kWh.
1 Kraftmarknaden i andre kvartal 2011

Høyere tilsig enn normalt

I andre kvartal 2011 var tilsiget til dei norske vassmagasina 64,7 TWh, som er 11,9 TWh meir enn normalt og 21,3 TWh meir enn i same kvartal 2010. Høyest tilsig var det i juni månad. I første halvår har tilsiget vore 72,3 TWh, eller 10,7 TWh meir enn normalt. Dei siste 12 månadane har tilsiget vore 123,9 TWh, eller 1 TWh meir enn normalt.

Mildt vêr i heile Noreg

April månad var mild i heile landet. I Nord-Noreg haldt det milde vêret stand i mai og juni, medan det i Sør-Noreg var omlag normale temperaturar.

Meir nedbør enn normalt

Andre kvartal 2011 var vått i heile Noreg. April var likevel relativt tørr på søraustlandet. I alt kom det 57 prosent meir enn normalt, med nedbør i løpet av kvartalet. Rekna i nedbørenergi var det omlag 32 TWh.

Litt mindre snømagasin enn normalt

Snømagasinet kulminerte tidleg i juni med nær 85 prosent av normale snømengder. Ved utgangen av kvartalet var det mykje av snøen smelta og i høve til normalen var det att omlag 50 prosent av normale snømengder i slutten av juni.

Nær normal magasinfylling

Ved inngangen til andre kvartal 2011 var fyllingsgraden for norske vassmagasinar 18,1 prosent. Det er den lågaste fyllingsgraden registrert ved inngangen til andre kvartal i åra 1982-2011, og det lågaste nivået målet så langt i år. Likevel var magasinfyllinga i slutten av kvartalet 67,2 prosent, som er omlag det normale for årstida. Normaliseringa skuldast ein tidleg vår med varmt vêr og sterk snøsmelting, samt mykje nedbør i mai og juni. Vassmengda i det norske systemet ved utgangen av andre kvartal var dermed betydeleg høgare enn til same tid året før då magasinfyllinga var 13,2 prosentpoeng lågare.

Lågare nordisk kraftforbruk

Det samla nordiske kraftforbruket i andre kvartal var 83,3 TWh. Samanlikna med same kvartal 2010 var det lågare forbruk i alle dei nordiske landa. Mildare vêr i år enn i fjor er truleg årsaka til forbruksreduksjonen. For siste 52-vekersperiode har det nordiske forbruket vore 389,2 TWh. Det er 3,8 TWh høgare enn i føregåande 52-vekersperiode. Aukna kan ha samanheng med det kalde våret i november og desember 2010, samt høgare aktivitetsnivå i den nordiske økonomien.

Lågare nordisk kraftproduksjon

I andre kvartal 2011 var kraftproduksjonen i Norden 80,9 TWh. Det er 1,4 TWh mindre enn i andre kvartal i fjor, noko som kan koplast til lågare kjernekraftproduksjon i Sverige. Vasskraftproduksjonen i heile det nordiske systemet var derimot høgare enn til same tid i fjor, og dette har dempa produksjonsnedgangen. Den samla nordiske produksjonen dei siste 52 vekene var 372,4 TWh, eller 0,8 TWh meir enn dei føregåande 52 vekene. Med unntak av Noreg, som hadde lågare vasskraftproduksjon enn i første 52-vekersperiode, bidrog alle dei nordiske landa til produksjonsauken.

Noreg hadde eit kraftforbruk på 26,5 TWh i andre kvartal 2011, mot 28,1 TWh i same kvartal 2010. Reduksjonen i forbruket har samanheng med
Lågare norsk kraftforbruk

Mildare vêr enn i fjor, men truleg har høgare kraftprisar også hatt ein reduserande effekt. Kraftprisane si betydning for forbruket vert synleggjort i det temperaturkorrigerte forbruket i allminneleg forsyning, som var 18,8 TWh i andre kvartal i år, mot 19,9 TWh til same tid i fjor. Det totale forbruket i andre kvartal i år er det femte lågaste forbruket i dette kvartalet sidan 1995. Første halvår 2011 var det norske forbruket 64,8 TWh. Samanlikna med same periode 2010 er det ein nedgang på 5,7 prosent, noko som også kan sjåast i samanheng med relativt høge kraftprisar.

Høgare norsk kraftproduksjon

Kraftproduksjonen i Noreg var 25,9 TWh i andre kvartal 2011. Produksjonen var dermed 11,1 prosent høgare enn i same kvartal 2010, noko som kan forklarast med høgare tilsig i år enn til same tid i fjor. I første halvår var produksjonen 57,8 TWh, ein nedgang på 6,8 prosent frå same periode i 2010. Dei siste 12 månadene er det produsert 120,2 TWh kraft i Noreg. Det er 23,5 TWh lågare enn den høgaste produksjonen for ein 12-månadersperiode, og vel 11 TWh under gjennomsnittleg årsproduksjon for det norske kraftsystemet.

Lågare nordisk og norsk nettoimport

Vinteren 2010/2011 var det høg nettoimport til Norden, men denne vart betydeleg redusert ved inngangen til våren. Totalt var den nordiske nettoimporten i andre kvartal 2,4 TWh. Det er 1 TWh mindre enn i same kvartal i fjor. Noreg var den største bidragsytaren til denne endringa, då nettoimporten til landet var 0,6 TWh, eller 4,1 TWh lågare enn i andre kvartal 2010.

Årsaka til den reduserte norske nettoimporten kan sporast til mildt vêr, som både gav høgare vasskraftproduksjon, som følgje av tidleg snøssmelting og store nedbørmengder, og lågare forbruk enn til same tid i fjor. Dei siste vekene av kvartalet var det jamvel norsk nettoeksport. For kraftstasjonar med mindre magasin var det tidvis naudsynt å produsere for å unngå spill av vatn.

Lågare nordiske spotprisar enn forventa

Prisfall på over 20 prosent i alle dei norske elspotområda

I alle dei norske elspotområda fall spotprisane med over 20 prosent frå kvartalet før. Aust-, Sørvest- og Midt-Noreg hadde alle ein gjennomsnittleg spotpris på 403 kr/MWh. Nord-Noreg hadde ein snittpris på 405 kr/MWh, medan snittprisen i Vest-Noreg var 395 kr/MWh. Innstendig produksjon i Vest-Noreg mot slutten av kvartalet som følgje av høgt tilsig til vasskraftverka, samstundes som det var vedlikehaldsarbeid i overføringsnettet, var årsaka til at snittprisen i dette området var lågare enn i resten av landet.

Sverige og Finland hadde gjennomsnittlege spotprisar på 402 og 401 kr/MWh i andre kvartal, og på Jylland og Sjælland var snittprisen høvesvis 409 og 412 kr/MWh. Både for Sverige og Finland var dette ein prisnedgang på i overkant av 20 prosent frå første kvartal, medan det for
Dei nordiske kraftprisane vert påverka av kraftprisane på kontinentet gjennom kraftutveksling med Nord-Europa. I delar av andre kvartal låg dei tyske timesprisane under dei nordiske kraftprisane, noko som var med å bidra til at prisnivået i Norden vart lågare enn i første kvartal.

Prisen på terminkontraktar med levering i tredje og fjerde kvartal 2011, handla ved den nordiske kraftbørsen, var 340 og 381 kr/MWh i slutten av andre kvartal. For tredjekvartalskontrakten var det ein prisnedgang på 20 prosent frå starten av kvartalet, medan det for fjerdekvartalskontrakten var ein nedgang på 16 prosent. Nedgangen var størst i siste halvdel av kvartalet. Høgt tilsig i mai og juni betra den hydrologiske balansen i Norden, og i saman med varslar om framleis mildt og vått vêr kan dette forklare den fallande trenden i dei nordiske terminkontrakta.

Slik som i engrosmarknaden gjekk også prisane i sluttselsmarknaden ned frå første til andre kvartal 2011. Den gjennomsnittlege pris for spotprisikontrakta var 52,3 øre/kWh i Aust- og Midt-Noreg, 52,2 øre/kWh i Midt-Noreg, 51,3 øre/kWh i Vest-Noreg og 42,2 øre/kWh i Nord-Noreg. Samanlikna med første kvartal er dette ein nedgang i den snittprisen på mellom 11,1 og 16,4 øre/kWh. Kontrakta var likevel i snitt 3,3 til 5,7 øre/kWh dyrare enn i andre kvartal 2010.

Standard variabel og eittårige fastprisikontrakta hadde også lågare pris i andre kvartal 2011 enn i kvartalet før. Gjennomsnittsprisen for standard variabel kontrakt var 61,2 øre/kWh inkl. mva, eller 20,7 øre/kWh lågare enn i første kvartal. Den gjennomsnittlege prisane på fastprisikontrakta med eittårig og treårig avtaletid var for andre kvartal hvetvervis 59,2 og 55,7 øre/kWh. For dei eittårige kontrakta var det ein nedgang på 2,5 øre/kWh frå første kvartal, medan snittprisen for dei treårige kontrakta var uendra.
1.1 Ressursgrunnlaget

1.1.1 Tilsig i Noreg

Tilsig over normalt

I andre kvartal 2011 var tilsiget til dei norske kraftmagasina 64,7 TWh som er 11,9 TWh meir enn normalt og 21,3 TWh meir enn i andre kvartal 2010.

I første halvår har tilsiget vore 72,3 TWh. Det er 10,7 TWh høgare enn normalt og 23,3 TWh høgare enn i same periode i 2010.

Dei siste 12 månadene har tilsiget vore 123,9 TWh. Det er 1,4 TWh meir enn normalt og 5,8 TWh meir enn i tilsvarande periode eit år tidlegare.

De siste 24 månadene har tilsiget vore 242 TWh eller 3 TWh mindre enn normalt.

Fordelinga av tilsiget gjennom året er vist i figur 1.1.1. April var mild i heile landet, særlig i Sør-Noreg. Vårflaumen kom tidleg (veke 14) og tilsiget var høgare enn normalt fram til litt ut i av mai, da det kom ein periode med kaldt vêr. Tilsiget kulminerte tidleg i juni (veke 23) med 10 TWh. I resten av kvartalet var tilsiget stort sett over normalt, sjølv om det var relativt lite snø i fjella i Sør-Noreg. Mykje regn er forklaringsa på dette.

Forholdet mellom prognosert og faktisk tilsig våren/sommaren 2011

I førre kvartalsrapport vart det presentert ei analyse av venta tilsig i løpet av smelteperioden, frå veke 14 til og med veke 30. Det vil seie heile andre kvartal og fire veker av tredje kvartal.

Prognosen var basert på summen av snømagasina til dei norske vasskraftmagasina og historiske data for tilsig, samt ei vurdering av situasjonen i grunn- og markvatnet. Snømagasinet vart berekna ut frå NVEs landsdekkande snøkart.

Denne analysen ga eit venta tilsig, under ein foresetnad om gjennomsnittlege nedbørtillhøve i smeltesesongen, på om lag 20 TWh under normalt. Ei analyse av også mark- og grunnvasstilhøva gjorde at ein totalt venta eit underskot på opp mot 15 – 20 TWh i smeltesesongen. Analysen hadde eit slingringsmonn på om lag ± 10 TWh, først og fremst grunna uvisse om vêret utover sommaren.

Tilsiget i perioden frå 1. januar til 31. juli 2011 har vore om lag 90 TWh eller 13 TWh meir enn normalt. Samtidig har nedbørenergien i desse vekene vore om lag 86 TWh eller 23 TWh over normalt. Dei to vintrane vi var gjennom, med lite snø, låg magasinfylling og stadig aukande frykt for kraftkrise, er blitt kompensert med mykje nedbør utover våren og sommaren i år.

1.1.2 Tilsig i Sverige

Tilsiget av vatn til svenske kraftmagasin var 34,7 TWh i andre kvartal 2011, eller 5,6 TWh meir enn normalt og 1,0 TWh meir enn i same periode i 2010.

I første halvår har tilsiget vore 38,9 TWh. Det er nesten 5 TWh høgare enn normalt, og 0,9 TWh høgare enn i same periode i 2010.

Dei siste 12 månadene har tilsiget til dei svenske kraftmagasina vore 64,5 TWh. Det er 2,2 TWh meir enn normalt, og 7,7 TWh mindre enn i tilsvarande periode eitt år tidlegare.

Dei siste 24 månadene har tilsiget vore i underkant av 137 TWh. Det er vel 12 TWh meir enn normalt.

1.1.3 Temperatur

April var mild i heile landet, med temperaturar rundt 5 grader over normalt mange plassar. I Nord-Noreg halldt det fram med temperaturar over det normale i mai og juni, medan det i Sør-Noreg var temperaturar omtrent som normalt og litt lågare lengst sør i landet.

1.1.4 Nedbør

Andre kvartal var totalt sett våt i heile landet. I alt kom det 57 prosent meir nedbør enn normalt. April var relativt tørr i sørøst, mens det på Vestlandet og i mykje av Nord-Noreg kom meir nedbør enn normalt i andre kvartal, sett bort frå kyststroka lengst i nord.
Rekna i nedbørenergi kom det i andre kvartal om lag 32 TWh. Det er vel 12 TWh, eller over 50 prosent meir enn normalt. Dei siste 12 månadene har det kome 131 TWh, eller 9 TWh meir enn normalt.

Figur 1.1.4 Nedbør, avvik i prosent frå normalt (1971-2000) i april, mai og juni 2011. Kjelde: www.seNorge.no

Figur 1.1.5 Berekna nedbørenergi per veke i 2009, 2010 og 2011. GWh/veke. Kjelde: NVE
1.1.5 Snø

Snøsituasjonen mot slutten av andre kvartal 2011 er vist i figur 1.1.6. Ved utgangen av juni var det i fjellområda mindre snø enn normalt dei fleste stader utanom enkelte plassar på Vestlandet. I høve til normalt var det om lag 50 prosent av normale snømengder i slutten av juni.

I figur 1.1.7 er utviklinga av snømagasinet, målt som energi i prosent av median kulminasjon for dei tre siste åra, vist. Berekningane er basert på snøkarta som ligg på portalen www.seNorge.no. Alle areala som drenerar til norske vasskraftmagasin er med i berekningane. I år kulminerte snømagasinet 9. april med nær 85 prosent av normalt. Vanlegvis kulminerer snømagasinet i overgangen april/mai. I fjor kulminerte snømagasinet 30. april. For to år sidan kulminerte snømagasinet på same tid som i år.

1.1.6 Grunn- og markvatn

Grunnvasstand i høve til normalt ved utgangen av første og andre kvartal er vist i figur 1.1.8. Karta viser grunnvasstand ved starten og slutten av andre kvartal. Fargane i karta er basert på berekningar med ein vassbalansemodell (HBV), medan sirklane viser observasjonar.

Ved starten av kvartalet var det lågare grunnvasstand enn normalt i heile landet utanom kysten av Sørlandet og fjellområda i Midt-Noreg. Vinteren var kald fram til slutten av mars. Da snøsmeltinga starta i april, og det etter kvart kom ein del regn i mai og juni, har tilhøva i bakken gått frå tørt til blaut mange stader, særleg på Vestlandet.
1.2 Magasinutviklinga

1.2.1 Varmt vêr og mykje nedbør ga nær normal magasinfylling

Ved inngangen til andre kvartal 2011 var fyllingsgraden for norske magasin 18,1 prosent. Det er den lågaste fyllingsgraden som er registrert på denne tida sidan 1982, heile 21,4 prosenteiningar under det normale\(^1\) for årstida og 8,7 prosenteiningar under nivået til same tid året før. Fyllingsgrada er også den lågaste målte så langt i år.

Ein tidleg vår med varmt vêr og sterk snøsmelting, og mykje nedbør i mai og juni, førte til større auke i magasinfyllinga enn normalt fram mot sommaren. Ved utgangen av kvartalet var fyllingsgraden 67,2 prosent, eller om lag som normalt for årstida. Til same tid i 2010 var fyllinga 13,2 prosenteiningar lågare. Det svarer til ei energimengde på 11,1 TWh.

![Figur 1.2.1 Fyllingsgrad for norske magasiner (100 prosent = 84,3 TWh) i 2009, 2010 og 2011, prosent. Kjelde: NVE](image)

1.2.2 Magasinutviklinga i Sverige og Finland

Ved inngangen til andre kvartal 2011 var fyllingsgraden for svenske magasin 12,3 prosent. Det er 15,1 prosenteiningar under medianverdien\(^2\) til same tid. Årets lågaste fyllingsgrad vart registrert i veke 14, med 12,1 prosent. Ved utgangen av kvartalet var magasinfyllinga 72,4 prosent, eller 0,9 prosenteiningar over medianverdien. Til same tid i 2010 var fyllingsgraden 7,3 prosenteiningar lågare. Differansen mellom i år og i fjor svarar til ei energimengde på 2,5 TWh.

<table>
<thead>
<tr>
<th>Magasinfylling</th>
<th>Fyllingsgrad ved utgangen av 2. kvartal (prosent)</th>
<th>Magasin-kapasitet TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2010</td>
</tr>
<tr>
<td>Noreg</td>
<td>67,2</td>
<td>54,0</td>
</tr>
<tr>
<td>Sverige</td>
<td>72,4</td>
<td>65,1</td>
</tr>
<tr>
<td>Finland</td>
<td>59,1</td>
<td>71,3</td>
</tr>
</tbody>
</table>

\(^1\) Median for perioden 1990-2007

I sum var det lagra 1,8 TWh meir energi i svenske og finske vassmagasin ved utgangen av andre kvartal i år enn til same tid i fjor. Den lagra vassmengda i Norden var ved utgangen av kvartalet 84,4 TWh, eller 12,9 TWh meir enn til same tid i 2010, men 0,8 TWh mindre enn normalt. Total magasinkapasitet for norske, svenske og finske vassmagasin er 123,6 TWh.
1.3 Produksjon

I andre kvartal vart det produsert 80,9 TWh elektrisk energi i Norden. Det er 1,4 TWh mindre enn i andre kvartal i fjor. Lågare kjernekraftproduksjon medverka til nedgangen, medan noko høgare vasskraftproduksjon dempa han. Den samla nordiske kraftproduksjonen dei siste 52 vekeane var 372,4 TWh. Det er 0,8 TWh meir enn dei føregåande 52 vekeane. Produksjonen auka i alle land, unntatt Noreg. Lågare magasinfylling ved inngangen til andre kvartal 2011 enn på same tid i 2010, i tillegg til låge tilsig vinteren 2010/2011, medverka til eit monaleg fall i vasskraftproduksjonen. Totalt sett for Norden var auken i kjernekraftproduksjon og anna termisk kraftproduksjon meir enn nok til å vege opp for den låge vasskraftproduksjonen.

Endring frå føregåande 52 veker

<table>
<thead>
<tr>
<th>Land</th>
<th>2.kv. 2011</th>
<th>Endring frå 2.kv. 2010</th>
<th>Siste 52 veker</th>
<th>Endring frå føregåande 52 veker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noreg</td>
<td>25,9</td>
<td>11,1 %</td>
<td>120,2</td>
<td>-7,1 %</td>
</tr>
<tr>
<td>Sverige</td>
<td>32,1</td>
<td>-9,5 %</td>
<td>141,5</td>
<td>4,7 %</td>
</tr>
<tr>
<td>Finland</td>
<td>15,6</td>
<td>-4,2 %</td>
<td>73,5</td>
<td>1,6 %</td>
</tr>
<tr>
<td>Danmark</td>
<td>7,3</td>
<td>0,9 %</td>
<td>37,2</td>
<td>6,9 %</td>
</tr>
<tr>
<td>Norden</td>
<td>80,9</td>
<td>-1,7 %</td>
<td>372,4</td>
<td>0,2 %</td>
</tr>
</tbody>
</table>

Figur 1.3.1 Samla nordisk kraftproduksjon, 2008 – 2011, veke (linje, venstre akse) og kvartalstal (søyle, høgre akse). GWh/veke og TWh. Kjelde: Nord Pool Spot

Figur 1.3.2 viser nordisk kraftproduksjon i sum for dei siste 52 vekeane fordelt på teknologiar. Totalt har det vore produsert 185,1 TWh vasskraft i Norden dei siste 52 vekeane. Det er 12,1 TWh mindre enn i løpet av dei føregåande 52 vekeane. I andre kvartal i år var vasskraftproduksjonen likevel 1,8 TWh høgare enn i same kvartal i fjor. Etter å ha falle sidan starten på 2009, snur derfor vasskraftkurva og vingar opp i slutten av andre kvartal 2011.

Den nordiske kjernekraftproduksjonen har vore 79,8 TWh dei siste 52 vekeane. Det er 8,4 TWh meir enn i dei føregåande 52 vekeane. I andre kvartal 2011 var likevel kjernekraftproduksjonen 2,4 TWh lågare enn i same kvartal i fjor. Det kjem av at svenske kjernekraftverk gjekk seint ut i vedlikehald i fjor, medan revisjonsperioden starta om lag som normalt i år. Kurva for kjernekraft, som har stege sia slutten på første kvartal 2010, fall derfor gjennom andre kvartal i år.
I kategorien anna kraftproduksjon, som består av vind- og termisk kraftproduksjon, har produksjonen vore 105,1 TWh dei siste 52 vekene. Det er 6,3 TWh meir enn i tilsvarande foregåande periode. Den låge vasskraftproduksjonen har medverka til auka termisk kraftproduksjon. Kurva for denne kategorien har såleis auka sidan starten på 2009.

Medan vasskraftproduksjonen har utgjort 50 prosent av den samla kraftproduksjonen i Norden dei siste 52 vekene, har kjerne- og anna kraftproduksjon stått for høvesvis 22 og 28 prosent kvar.

Figur 1.3.2 Nordisk kraftproduksjon fordelt på teknologi, 2005 – 2011, sum for dei siste 52 vekene, TWh. Kjelde: Nord Pool Spot

Figur 1.3.3 viser kraftproduksjonen i sum for dei siste 52 vekene fordelt på land. Produksjonen i Noreg er dominert av vasskraft, og svingingane i den norske kraftproduksjonen følgjer sáleis i stor grad svingingane i vasskraftproduksjonen i figur 1.3.2. Som vasskraftkurva i 1.3.2 hadde produksjonen i Noreg ein negativ trend i 2009 og 2010, men eit lite oppsving mot slutten av 2010. Den kalde perioden i november og desember 2010 medverka til at vasskraftproduksjonen tappa magasina meir enn i same periode i 2009. I første kvartal 2011 medverka den låge magasinfyllinga til at vasskraftproduksjonen var monaleg lågare enn i første kvartal 2010. Tidleg snøsmelting og mykje nedbør i andre kvartal 2011 medverka derimot til høgare vasskraftproduksjon enn året før – og kurva for Noreg snur tydeleg opp.

I Sverige utgjer vass- og kjernekraft mesteparten av kraftproduksjonen. Høgare svensk kjernekraftproduksjon dei siste 52 vekene medverka til at den stipla svenske kurva i figur 1.3.3 svingar opp etter første kvartal 2010. Lågare kjernekraftproduksjon i andre kvartal i år enn i same kvartal i fjar medverka til at den svenske kurva tippa nedover igjen i løpet av andre kvartal.

I Danmark og Finland, der termisk kraftproduksjon er dominerande, er produksjonen meir stabil over tid. Men sidan kraftprisane typisk vil auke i periodar med låge tilsig og låg vasskraftproduksjon, og låg kjernekraftproduksjon, vil anna termisk kraftproduksjon gjerne auke i slike periodar. I figur 1.3.3 ser vi at produksjonen fall noko i Danmark og Finland i 2008 og starten av 2009, då det var høg produksjon i Noreg og Sverige. Låg etterspurnad medverka til at produksjonen i alle landa fall i 2009. I 2010 auka den termiske produksjonen igjen, noko som vi spesielt ser på den stigande, grøne finske kurva gjennom heile 2010. I 2011 har auken vore lågare.
1.3.1 Noreg – auke i produksjonen i andre kvartal
Elektrisitetsproduksjonen i Noreg var 25,9 TWh i andre kvartal 2011. Det er ein auke på 11,1 prosent frå same periode i fjor. Produksjonen i andre kvartal er om lag på nivå med produksjonen i same kvartal i 2006. Auken i produksjonen heng saman med høgt tilsig i andre kvartal 2011.

I første halvår 2011 var produksjonen 57,8 TWh. Det er 4,2 TWh mindre enn i same periode i 2010, dvs. ein nedgong på 6,8 prosent.

Dei siste 12 månadene er det produsert 120,2 TWh elektrisk kraft i Noreg mot 129,4 TWh i tilsvarende periode året før. Det er ein nedgang på 7,1 prosent. Produksjonen dei siste 12 månadene er 23,5 TWh lågare enn den høgaste produksjonen for ein 12-månadersperiode (143,7 TWh) og vel 11 TWh under gjennomsnittleg årsproduksjon for det norske kraftsystemet (vass-, varme- og vindkraft)
som er berekna til 131,6 TWh ved utgangen av 2010. Det var først og fremst låg magasinfylling som førte til nedgangen i kraftproduksjonen dei siste 12 månadene.

Figur 1.3.5 Kraftproduksjon i Noreg, sum for dei siste 12 månadene, TWh. Kjelde: NVE

1.3.2 Kraftproduksjonen i dei andre nordiske landa

Dei siste 52 vekene har det vore produsert 141,5 TWh elektrisk kraft i Sverige. Det er 6,4 TWh meir enn i dei føregåande 52 vekene. Kjernekraftproduksjonen har auka med 8,6 TWh dei siste 52 vekene. Vasskraftproduksjonen har falle med 4,3 TWh, medan anna kraftproduksjon har auka med 2,2 TWh. Medan kjernekraftproduksjonen utgjorde 41 prosent av den samla svenske kraftproduksjonen dei siste 52 vekene, stod vass- og anna kraftproduksjon for høvesvis 43 og 16 prosent.

I andre kvartal vart det produsert 32,1 TWh i Sverige. Det er 3,4 TWh mindre enn i andre kvartal i 2010. Det var hovudsakleg kjernekraftproduksjonen som fall – den var 2,5 TWh lågare enn i same periode i fjor. Det var òg noko lågare vasskraftproduksjon i Sverige i andre kvartal i år enn i fjor. Vasskraftproduksjonen fall med 0,9 TWh.

1 Etter offentleggjering av NVE sin kvartalsrapport for 4. kvartal 2010 har Nord Pool Spot justert opp tala for kraftproduksjonen i Sverige i 4. kvartal 2010 med 1,1 TWh. I dette kvartalet var den svenske kraftproduksjonen 38,3 TWh.

I andre kvartal 2011 starte vedlikehaldsarbeidet ved svenske kjernekraftverk opp meir som normalt og monaleg tidlegare enn året før. Kjernekraftproduksjonen var derfor lågare i andre kvartal i år enn i fjor.
Dei siste 52 vekene har det vore produsert 73,5 TWh elektrisk kraft i Finland, ein aukje på 1,1 TWh frå dei føregåande 52-vekene. Vasskraftproduksjonen har falle med 0,8 TWh, det var ein liten nedgang i kjernekraftproduksjonen, medan anna kraftproduksjon har auka med 2,1 TWh. Kategorien anna kraftproduksjon består hovudsakleg av termisk kraftproduksjon. Denne kategorien har stått for om lag 56 prosent av den samla kraftproduksjonen i Finland dei siste 52 vekene. Vass- og kjernekraftproduksjonen utgjorde høvesvis om lag 15 og 30 prosent.

I andre kvartal utgjorde den finske kraftproduksjonen 15,6 TWh. Det er 0,7 TWh mindre enn i tilsvarende kvartal i fjor. Kjernekraft- og anna kraftproduksjon var om lag uendra i andre kvartal i år samanlikna med same kvartal i 2010. Vasskraftproduksjonen falt med 0,8 TWh.

Figur 1.3.8 Finsk produksjon, 2008 – 2011, veke- (linje, venstre akse) og kvartalstal (søyle, høgre akse). GWh/veke og TWh. Kjelde: Nord Pool Spot

Dei siste 52 vekene vart det produsert 37,2 TWh elektrisk kraft i Danmark. Det er 2,4 TWh meir enn dei føregåande 52 vekene. Det vart produsert 9,0 TWh vindkraft, mot 7,2 TWh dei føregåande 52 vekene. Auka vindkraftproduksjon har medverka til å dempe etterspørumden etter dansk termisk kraftproduksjon.

I Danmark vart det produsert 7,3 TWh elektrisk kraft i andre kvartal i år. Det er 0,1 TWh meir enn i fjerde kvartal i 2009. Den danske vindkraftproduksjonen var 1,9 TWh i andre kvartal, ein auka på 0,4 TWh frå same periode i fjor.
1.4 Forbruk

Det samla nordiske kraftforbruket var 83,3 TWh i andre kvartal 2011. Det er 2,2 TWh mindre enn i same kvartal i fjor. Forbruket fall i alle dei nordiske landa. Fallet kan ha samanheng med mildare vær i heile Norden i andre kvartal i år enn til same tid i fjor.

Det kalde været i november og desember 2010 medverka til at det nordiske forbruket auka med 3,8 TWh dei siste 52 vekene samanlikna med føregåande 52-vekers periode. Samla har forbruket i Norden vore 389,2 TWh dei siste 52 vekene. I tillegg til kaldværspériodane, kan forbruksauken ha samanheng med auka aktivitetsnivå i den nordiske økonomien.

<table>
<thead>
<tr>
<th>land</th>
<th>TWh</th>
<th>2.kv. 2011</th>
<th>Endring frå 2.kv. 2010</th>
<th>Siste 52 veker</th>
<th>Endring frå føregåande 52 veker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noreg</td>
<td>26,5</td>
<td>-5,7 %</td>
<td>128,1</td>
<td>-0,5 %</td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>30,3</td>
<td>-1,3 %</td>
<td>141,3</td>
<td>1,6 %</td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>18,5</td>
<td>-0,7 %</td>
<td>84,4</td>
<td>1,6 %</td>
<td></td>
</tr>
<tr>
<td>Danmark</td>
<td>8,0</td>
<td>-0,9 %</td>
<td>35,5</td>
<td>2,5 %</td>
<td></td>
</tr>
<tr>
<td>Norden</td>
<td>83,3</td>
<td>-2,6 %</td>
<td>389,2</td>
<td>1,0 %</td>
<td></td>
</tr>
</tbody>
</table>

Figur 1.4.1 Samla nordisk kraftforbruk, 2008 – 2011, veke (linje, venstre akse) og kvartalstal (søyle, høgre akse).
GWh/veke og TWh. Kjelde: Nord Pool Spot

I Danmark brukast mykje fjernvarme og berre ein liten del av kraftetterspurnaden går til oppvarming. Det danske forbruket er difor mindre temperaturavhengig enn forbruket i dei andre nordiske landa.
1.4.1 Noreg – nedgang i kraftforbruket

Det norske elektrisitetsforbruket i andre kvartal var 26,5 TWh mot 28,1 TWh i same kvartal i 2010. Det er ein nedgang på 5,7 prosent. Nedgangen heng saman med høgare kraftprisar og at andre kvartal 2011 var ein god del varmare enn same kvartal eitt år før. Forbruket i andre kvartal i år er det femte lågaste forbruket i dette kvartalet sidan 1995.

I første halvår 2011 var det norske elektrisitetsforbruket 64,8 TWh. Det er 3,9 TWh lågare enn i same periode i 2010, dvs. ein nedgang på 5,7 prosent. Nedgangen heng mellom anna saman med relativt høge kraftprisar.
Dei siste 12 månadene har elektrisitetsforbruket vore 128,1 TWh mot 128,6 TWh i same periode eitt år før. Det er ein nedgang på 0,5 prosent. Forbruket dei siste 12 månadene er nesten 4 TWh lågare enn det høgaste forbruket i ein 12-månadersperiode (132 TWh) og 3,5 TWh lågare enn gjennomsnittleg årsproduksjon.

Figur 1.4.4 Innanlandsk elektrisitetsforbruk, sum for dei siste 12 månadene, TWh. Kjelde: NVE

Bruttoforbruket i alminneleg forsyning var 17,6 TWh i andre kvartal i år mot 19,9 TWh i same kvartal i 2010. Det er ein nedgang på 11,7 prosent. I første halvår 2011 var det ein nedgang på 9,1 prosent og for siste 12-månadersperiode ein nedgang på 1,7 prosent.

Andre kvartal i år var mykje varmare enn same kvartal 2010 og betydeleg varmare enn normalt. Korrigert til normale temperaturforhold vart det alminneleg forbruket 18,8 TWh i andre kvartal 2011 mot 20,0 TWh i tilsvarande kvartal i 2010. Det er ein nedgang på 6,0 prosent. I første halvår 2011 var det ein nedgang på 4,4 prosent og for siste 12-månadersperiode ein nedgang på 1,2 prosent.

Figur 1.4.5 Bruttoforbruk i alminneleg forsyning, temperaturkorrigeret, andre kvartal 1995-2011, TWh. Kjelde: NVE

Figur 1.4.6 Forbruk i alminneleg forsyning, med og utan temperaturkorrigering, sum for dei siste 12 månadene, TWh. Kjelde: NVE

Figur 1.4.7 Forbruk i kraftintensiv industri, sum for dei siste 12 månadene, TWh. Kjelde: NVE

Forbruket av kraft til elektrokjelar var i andre kvartal 5,5 prosent lågare jamført med tilsvarande kvartal i 2010. I første halvår var det ein nedgang på 9,2 prosent. Dei siste 12 månadene har forbruket vore 3,3 TWh som er 12,1 prosent lågare enn i same periode eitt år før. Forbruket dei siste 12 månadene er nesten halvert jamført med 1995 og 2000. I begge desse åra kom forbruket opp i omlag 6 TWh.

Figur 1.4.8 Forbruk av kraft til elektrokjelar, sum for dei siste 12 månadene, TWh. Kjelde: NVE

Variasjonsområdet for kraft til elektrokjelar i perioden 1995-2010 er frå rundt 2,5 TWh til vel 6 TWh. Om lag 2,5 TWh av dette forbruket ser derfor ut til å krevje ein høgare pris for å kople ut enn det som er observert i same periode.

1.4.2 Kraftforbruket i dei andre nordiske landa

Det svenske kraftforbruket har vore 141,3 TWh dei siste 52 vekene. Det er 2,2 TWh meir enn i dei føregåande 52 vekene. Korrigert for temperaturar har auken vore på berre 1,3 TWh dei siste 52 vekene, i følgje Svensk Energis temperaturkorrigerte forbrukstal. Det kalde våret hausten 2010 bidrog altså til auken i kraftforbruket i Sverige.

Det svenske kraftforbruket var 30,3 TWh i andre kvartal. Det er 0,4 TWh mindre enn i andre kvartal 2010. Korrigert for temperaturar var det likevel ein auke i forbruket på 0,4 TWh. Det milde våret i andre kvartal i år medverka altså til lågare faktisk forbruk.

Figur 1.4.9 Svensk forbruk, 2008 – 2011, veke (linje, venstre akse) og kvartalstal (søyle, høgre akse). GWh/veke og TWh. Kjelde: Nord Pool Spot
I dei siste 52 vekene har det finske kraftforbruket vore 84,4 TWh. Det er 1,3 TWh meir enn i dei føregåande 52 vekene. Det finske kraftforbruket var 18,5 TWh i andre kvartal i år, noko som er 0,1 TWh mindre enn i same periode i 2010.

Det danske kraftforbruket har vore 35,5 TWh dei siste 52 vekene. Det er 0,9 TWh meir enn i dei føregåande 52 vekene. Forbruket på Jylland har vore 21,1 TWh, medan det på Sjælland har vore 14,4 TWh. Forbruket har dermed auka med 0,6 TWh på Jylland og 0,2 TWh på Sjælland dei siste 52 vekene.

Kraftforbruket i Danmark var 8,0 TWh i andre kvartal i år. Det er 0,1 TWh mindre enn i andre kvartal i 2010, og fordelt seg med 4,8 og 3,2 TWh på Jylland og Sjælland. Nedgangen fant stad på Jylland.

1.5 Andre energiberarar i Noreg

I tillegg til elektrisitet er olje, parafin, gass og biobrensel viktige energiberarar til stasjonært sluttbruk, og fjernvarme har aukande utbreiing. For desse energiberarane finst det ikkje offisiell statistikk for kvartalsvis forbruk. Salstat for petroleumspdfukt kan nyttast som ein indikator på sluttbruken av produkta. For dei andre energiberarane tar vi med tal publisert av interesseorganisasjonar og SSB.

1.5.1 Fyringsoljar

Av petroleumspdfukt til oppvarming i stasjonær sektor vert det i hovudsak nytta fyringsparafin og fyringsolje. Fyringsparafin vert stort sett nytta i hushald. Lett fyringsolje vert nytta i fleire sektorar, men vi fokuserer her på stasjonære formål innan industri, bergverk og kraftforsyning, hushald, næringsbygg mm. og offentlege verksamder. Bruken av petroleumspdfukt til oppvarming avheng i stor grad av prisforholdet mellom olje og elektrisitet, fordi mange sluttbrukarar har utstyr som tillet vekslign til den til ei kvar tid rimelegaste energiberaren. I tillegg speler temperatur ei viktig rolle.

Gjennomsnittsprisene for lett fyringsolje har i andre kvartal 2011 vore om lag 19 prosent høgare enn i same periode i fjor. Grafen under viser at prisen haldt seg relatitiv stabil i 2010, men hadde ein stigande tendens i fjerde kvartal 2010 og første kvartal 2011.

Figur 1.5.1 Pris på lett fyringsolje, øre per liter inkl. mva. Kjelde SSB

2 Vi gjer merksam på at det i forre kvartalsrapport var feil i talen for første kvartal 2011. Grafen viste 127 millionar liter. Dette er no endra til 151 millioner liter.
I andre kvartal 2011 vart det handla 8 millionar liter fyringsparafin mot 9 millionar liter i andre kvartal 2010, og 10 millionar i andre kvartal 2009. Det var altså ei nedgang på 11 prosent i handelen av fyringsparafin i andre kvartal i år, samanlikna med same kvartalet i fjor.

1.5.2 Ved
Tala for bruk av ved i 2010 er dei høgaste sidan SSB si registrering starta i 2006. Tall for 2010 viser at bruk av ved i norske bustadar og fritidsbustadar gjekk opp med heile 16 prosent i 2010, til 1,78 millionar tonn. Om lag 1,53 millionar tonn vart brent i bustadar, og i underkant av 253 000 tonn i
fritidsbustadar. Til saman utgjer dette eit teoretisk energiinnhald på ca 8,3 TWh, og nyttiggjort energi på ca 4,6 TWh. Det er ein aukje på høvesvis 1,1 og 0,7 TWh sidan 2009.

I bustadar har no bruk av ved i reintbrennande omnar kome opp på same nivå som bruk av ved i gamle omnar. Meir enn 48 prosent av veden brukt i bustadar vart brent i reintbrennande omnar i 2010. Det er ein aukje på 5% frå 2009, då i overkant av 43 prosent vart brent i reintbrennande omnar. I 2006 var andelen 38 prosent. Bruken av ved i gamle omnar stod for 48 prosent av den totalte vedbruken i 2010, og dessutan vart 4 prosent brent i peis.

For fritidsbustadane reknar ein at 28 prosent av veden vart brent i nye, reintbrennande omnar, 60 prosent i gamle omnar og 12 prosent i peis. I denne gruppa har det vore nedgang i delen som vart brent i nye reintbrennande omnar.

Figur 1.5.4 Utvikling i type omnar brukt til vedfyring. Kjølde: SSB

1.5.3 Anna bioenergi

Tala for anna bioenergi dekker produkta pellets og brikettar.

Figur 1.5.5 Utvikling i produksjon, eksport, import og sal av pellets, 2003-2009. Kilde: Norsk Bioenergiforening
Figuren under viser utvikling i pelletsprisar, opplasta ved fabrikk, eks mva. Prisane er gjennomsnittsprisar, veid med omsyn på omsetningsvolumet av dei forskjellige varepartia vart handla.

Figur 1.5.6 Utvikling i pelletsprisar, 2004-2009. Kilde: Norsk Bioenergiforening

Figur 1.5.7 Utvikling i produksjon og sal av brikettar, 2003-2008. Kjelde: Norsk Bioenergiforening

1 Forutsatt 4800 kWh per tonn pellets
Prisen på brikettar i små "hushaldspakkar" auka frå 31 øre/kWh i 2009 til omlag 39 øre/kWh i 2010. Prisen på brikettar i storsekk auka frå 21,6 øre/kWh i 2009 til 24,6 øre/kWh i 2010. Prisen på brikettar i bulk endra seg lite frå 2009 til 2010. I 2009 var prisen 23,6 øre/kWh, og i 2010 var den 21,9 øre/kWh.

Figur 1.5.8 Utvikling i prisar på brikettar, 2004-2008. Kjelde: Norsk Bioenergiforening

1.5.4 Varmepumper
Sjå NVEs kvartalsrapport 3/2010 for informasjon om varmepumper.

1.5.5 Fjernvarme

1.5.6 Gass
Gass til stasjonære formål nyttast som regel i industri. Bruken av gass har auka frå 2009, og ligg om lag på det same som i 2006. Gruppene "Gass gjort flytande" og "Andre gassar" har auka, mens bruken av Naturgass har vore stabil. Samla forbruk av gass i stasjonære sektorer svarde til omlag 10,6 TWh i 2010, i følgje den foreløpige energivarebalansen frå SSB. I 2009 var bruken 9,9 TWh, og i 2008 var den 10,2 TWh.

Figur 1.5.9 Utviklinga i bruk av gass, 2005-2008, Kjelde: SSB
Definisjonar¹:
- Gass gjort flytande: LPG (propan og butan) og NGL (propan, butan og etan).
- Naturgass: Naturgass i gassform og LNG (flytande naturgass).
- Andre gassar: Raffinerigass, brenngass (overskotsgass frå kjemisk industri), deponigass/metan og CO-gass.

¹ Kjelde: SSB
1.6 Kraftutveksling

Den nordiske nettoimporten utgjorde 2,4 TWh i andre kvartal i år. Det er 1 TWh mindre enn i same kvartal for eitt år sia.

Endringa var størst i Noreg. Der var nettoimporten 4,1 TWh lågare i andre kvartal samanlikna med same kvartal i fjor. Tidleg snøsmelting førte til høgt tilsig og høgare kraftproduksjon enn på same tid året før. Samstundes medverka mildare vêr til lågare forbruk.

Figur 1.6.1 Import og eksport i Norden i første kvartal 2011, TWh. Kilde: Nord Pool

<table>
<thead>
<tr>
<th>Utveksling (import(+)/eksport(-), TWh)</th>
<th>2.kv. 2011</th>
<th>2.kv. 2010</th>
<th>Siste 52 veker</th>
<th>Føregåande 52 veker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norge</td>
<td>0,6</td>
<td>4,7</td>
<td>7,9</td>
<td>-0,9</td>
</tr>
<tr>
<td>Sverige</td>
<td>-1,8</td>
<td>-4,5</td>
<td>-0,2</td>
<td>4,7</td>
</tr>
<tr>
<td>Finland</td>
<td>2,9</td>
<td>2,3</td>
<td>10,9</td>
<td>10,6</td>
</tr>
<tr>
<td>Danmark</td>
<td>0,7</td>
<td>0,9</td>
<td>-1,7</td>
<td>-0,2</td>
</tr>
<tr>
<td>Norden</td>
<td>2,4</td>
<td>3,4</td>
<td>16,8</td>
<td>14,2</td>
</tr>
</tbody>
</table>
Frå første til andre kvartal i år endra den nordiske kraftutvekslinga med resten av Europa retning, frå nordisk nettoimport til nordisk nettoeksport på alle forbindelsane mot kontinentet. På overføringsforbindelsen frå Russland er det normalt stabil høg nordisk import. Det har og i hovudsak vore nordisk import frå Estland. Den samla nordiske nettoekspporten til Tyskland i første kvartal i år var 0,8 TWh. Utvekslinga mellom Norden og Tyskland i same kvartal for eitt år sia var i balanse. Det var 0,3 TWh norsk nettoeksport mot Nederland i andre kvartal i år, som er akkurat like mykje som i andre kvartal 2010.

Figur 1.6.2 Nordens netto kraftimport, 1996-2011. TWh. Kilde: Nord Pool

Figur 1.6.3 Tilgjengelig og maksimal kapasitet på utvalde nordiske overføringsforbindelsar i andre kvartal 2011, MW. (frå – til) Kilde: Nord Pool

1.6.1 Noreg

Den norske nettoimporten var 0,6 TWh i andre kvartal. Det er 4,1 TWh mindre enn i same kvartal i fjor. Den norske importen gjekk i store trekk gradvis nedover i kvartalet, medan eksporten auka. Den siste veka var det 448 GWh norsk nettoeksport – mot 467 GWh norsk nettoimport den første veka i kvartalet. Det har vore mykje tilsig som følgje av store nedbørsmengder. Kraftstasjonar med mindre magasin har produsert for ikkje å spille vatn. Saman med lågare forbruk som følgje av høgare temperaturar utover våren har det ført til stor nettoeksport.

Den norske nettoeksporten til Nederland utgjorde 0,3 TWh i andre kvartal. Det er like mykje som i andre kvartal 2010, men utvekslingsvolumet var lågare i år. Lågare utvekslingsvolum kan forklarast med at NorNed var ute av drift mellom 18. april og 5. juni, grunna ein feil. I slutten av kvartalet var det stort sett einsidig eksport til Nederland. I 22 prosent av timane i andre kvartal vart den totale overføringskapasiteten til kabelen nytta til norsk eksport til Nederland.

Figur 1.6.4 Norsk kraftutveksling, 1997-2011. TWh. Kilde: Nord Pool
1.6.2 Andre nordiske land

Sverige var det einaste landet i Norden med nettoeksport i andre kvartal. Nettoeksporten var på 1,8 TWh. Det er 2,7 TWh mindre enn i same kvartal i fjor. Denne endringa må sjåast i samanheng med mindre svensk kjernekraftproduksjon, samt auka svensk import frå Noreg jamført med andre kvartal 2010. Norsk etterspørsel etter svensk kraft var lågare enn på same tid i fjor som følgje av betre norsk ressurssituasjon utover våren.

Det var berre på forbindelsen til Finland at det var svensk nettoimport i andre kvartal. Høgaste svensk nettoeksporten var det på forbindelsen til Danmark, totalt 1,3 TWh. Det er 0,1 TWh meir enn i andre kvartal 2010. Den svenske nettoeksporten til Tyskland i andre kvartal i år var 0,2 TWh. Overføringsforbindelsen mellom Sverige og Tyskland var ute av drift mellom 11. april og 2. mai grunna teknisk feil og vedlikehald. Det kan ha dempa den svenske nettoeksporten til Tyskland.

Finland var det einaste nordiske landet med ein auka i nettoimporten jamført med andre kvartal i fjor. Den finske nettoimporten var 2,9 TWh. Det er 0,6 TWh meir enn i same kvartal eitt år tilbake. Auka import frå Russland, samt mindre eksport til Sverige, kan delvis forklare endringa.

Den danske nettoimporten var 0,7 TWh i andre kvartal. Det var også 0,7 TWh dansk nettoimport i andre kvartal i fjor. Låg magasinfylling i Noreg førte til stor norsk etterspørsel etter dansk kraft gjennom 2010. Danmark importerte mykje kraft frå Tyskland som vart eksportert vidare til Noreg. I andre kvartal i år endra utvekslinga mellom Noreg og Danmark retning. Det var 0,1 TWh dansk nettoimport frå Noreg - mot 0,6 TWh dansk nettoeksport til Noreg i andre kvartal 2010. Danmark nettoeksporterte 0,6 TWh til Tyskland i andre kvartal i år.
1.7 Kraftprisar i engrosmarknaden

1.7.1 Spotmarknaden

Våren 2011 starta vårkulminasjonen ein måned tidlegare enn vanleg. Det milde og våte været ga tidleg snøsmelting og låg etterspørsel etter kraft. Ressurssituasjonen i det nordiske kraftsystemet forbetra seg betrakteleg, noko som førte til lågare kraftprisar enn dei prisane ein på førehand trudde skulle bli realisert. I alle dei norske elspotområda, samt i Sverige og Finland, fall spotprisane med over 20 prosent frå kvartalet før. Dermed kom prisnivået ned på same nivå som i andre kvartal 2010. Prisendringane i dei to danske marknadsområda var ikkje like store. Her blei prisane berre nokre prosent lågare enn det dei var i første kvartal. Dei danske prisane var likevel på omlag same nivå som i andre kvartal i fjor.

Aust-, Sørvest- og Midt-Noreg (NO1, NO2 og NO3) hadde alle ein gjennomsnittleg spotpris på 403 kr/MWh i andre kvartal. Spotprisane i desse områda var samanfallande i dei fleste timane gjennom kvartalet. Nord-Noreg (NO4) hadde ein snittpris på 405 kr/MWh, medan snittprisen i Vest-Noreg (NO5) var 395 kr/MWh. Av dei nordiske marknadsområda hadde Vest-Noreg (NO5) lågast snittpris i andre kvartal. Innestengt produksjon i området mot slutten av kvartalet som følgje av högt tilsig til vasskraftverka i kombinasjon med vedlikeholdsarbeid i nettet ga låge prisar. Desse forholda trakk snittprisen for kvartalet ned.

Sverige og Finland hadde gjennomsnittlege spotprisar på 402 og 401 kr/MWh i andre kvartal, medan spotprisane på Jylland og Sjælland (DK1 og DK2) var 409 og 412 kr/MWh. I første kvartal blei dei danske prisane haldt relativt låge gjennom kraftutvekslinga med Tyskland. Prisendringane frå første til andre kvartal var derfor ikkje like store som i dei andre nordiske elspotområda.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aust-Noreg (NO1)</td>
<td>403</td>
<td>0.5 %</td>
<td>-23.2 %</td>
<td>465</td>
<td>31.8 %</td>
</tr>
<tr>
<td>Sørvest-Noreg (NO2)</td>
<td>403</td>
<td>2.6 %</td>
<td>-22.0 %</td>
<td>451</td>
<td>42.9 %</td>
</tr>
<tr>
<td>Midt-Noreg (NO3)</td>
<td>403</td>
<td>0.4 %</td>
<td>-25.0 %</td>
<td>464</td>
<td>18.6 %</td>
</tr>
<tr>
<td>Nord-Noreg (NO4)</td>
<td>405</td>
<td>0.4 %</td>
<td>-21.5 %</td>
<td>472</td>
<td>19.9 %</td>
</tr>
<tr>
<td>Vest-Noreg (NO5)</td>
<td>395</td>
<td>-1.6 %</td>
<td>-25.0 %</td>
<td>464</td>
<td>38.9 %</td>
</tr>
<tr>
<td>Sverige</td>
<td>402</td>
<td>0.4 %</td>
<td>-21.5 %</td>
<td>474</td>
<td>14.9 %</td>
</tr>
<tr>
<td>Finland</td>
<td>401</td>
<td>0.4 %</td>
<td>-20.5 %</td>
<td>474</td>
<td>15.7 %</td>
</tr>
<tr>
<td>Jylland (DK1)</td>
<td>409</td>
<td>0.5 %</td>
<td>-2.8 %</td>
<td>406</td>
<td>27.1 %</td>
</tr>
<tr>
<td>Sjælland (DK2)</td>
<td>412</td>
<td>0.4 %</td>
<td>-3.2 %</td>
<td>448</td>
<td>2.8 %</td>
</tr>
<tr>
<td>Estlink¹</td>
<td>350</td>
<td>-</td>
<td>-3.1 %</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tyskland (EEX)</td>
<td>417</td>
<td>2.3 %</td>
<td>1.9 %</td>
<td>385</td>
<td>16.7 %</td>
</tr>
</tbody>
</table>

¹ 1. april 2010 opna eit nytt estisk prisområde på Nord Pool.
Figur 1.7.1 viser døgnprissnittet for dei nordiske marknadsområda for kraft samt døgnprisen på den tyske kraftbørsen EEX. I figuren ser vi at døgnprisane til dei fleste nordiske marknadsområda ligg rundt 400 kr/MWh, men fall til rundt 350 kr/MWh og lågare mot slutten av kvartalet. På slutten av kvartalet ser vi at døgnprisen i Vest-Noreg (NO5) ligg lågare enn i dei andre områda. Dette skyldast som nemnd innestengt kraft som følgje av høg vassføring samstundes som det var arbeid på linjenettet.

Tabell 1.7.1 viser omfanget av prisforskjellar mellom marknadsområda på Nord Pool samt EEX i andre kvartal. Vi ser til domes at Midt-Noreg (NO3) hadde høgare pris enn Aust-Noreg (NO1) i 9,8 prosent av timane i andre kvartal.

Tabell 1.7.1 Prosentdel av timane i andre kvartal 2011 med prisforskjellar mellom prisområda. Kjelde: Nord Pool

<table>
<thead>
<tr>
<th>Hegast elspot-pris</th>
<th>NO1</th>
<th>NO2</th>
<th>NO3</th>
<th>NO4</th>
<th>NO5</th>
<th>Sverige</th>
<th>Finland</th>
<th>Jylland</th>
<th>Sjælland</th>
<th>EEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Høgast elspot-pris</td>
<td></td>
</tr>
<tr>
<td>NO1</td>
<td>0.4%</td>
<td>10.2%</td>
<td>9.0%</td>
<td>18.4%</td>
<td>18.1%</td>
<td>18.5%</td>
<td>18.3%</td>
<td>18.1%</td>
<td>18.4%</td>
<td>18.1%</td>
</tr>
<tr>
<td>NO2</td>
<td>0.0%</td>
<td>10.2%</td>
<td>9.0%</td>
<td>18.3%</td>
<td>18.1%</td>
<td>18.5%</td>
<td>18.3%</td>
<td>18.1%</td>
<td>18.4%</td>
<td>18.1%</td>
</tr>
<tr>
<td>NO3</td>
<td>9.8%</td>
<td>10.1%</td>
<td>0.2%</td>
<td>24.1%</td>
<td>24.1%</td>
<td>24.1%</td>
<td>24.1%</td>
<td>24.1%</td>
<td>24.1%</td>
<td>24.1%</td>
</tr>
<tr>
<td>NO4</td>
<td>13.6%</td>
<td>13.9%</td>
<td>6.5%</td>
<td>13.9%</td>
<td>7.2%</td>
<td>12.2%</td>
<td>11.3%</td>
<td>9.3%</td>
<td>9.3%</td>
<td>9.3%</td>
</tr>
<tr>
<td>NO5</td>
<td>0.0%</td>
<td>0.3%</td>
<td>9.2%</td>
<td>9.0%</td>
<td>10.1%</td>
<td>14.8%</td>
<td>13.9%</td>
<td>12.2%</td>
<td>18.6%</td>
<td>18.6%</td>
</tr>
<tr>
<td>Sverige</td>
<td>8.1%</td>
<td>8.4%</td>
<td>2.0%</td>
<td>2.2%</td>
<td>8.4%</td>
<td>5.4%</td>
<td>8.2%</td>
<td>5.4%</td>
<td>37.3%</td>
<td>37.3%</td>
</tr>
<tr>
<td>Finland</td>
<td>6.1%</td>
<td>8.4%</td>
<td>2.0%</td>
<td>2.2%</td>
<td>8.4%</td>
<td>0.0%</td>
<td>6.0%</td>
<td>3.9%</td>
<td>35.7%</td>
<td>35.7%</td>
</tr>
<tr>
<td>Jylland</td>
<td>23.6%</td>
<td>23.6%</td>
<td>21.3%</td>
<td>21.4%</td>
<td>23.7%</td>
<td>20.6%</td>
<td>25.1%</td>
<td>28.0%</td>
<td>39.3%</td>
<td>39.3%</td>
</tr>
<tr>
<td>Sjælland</td>
<td>25.5%</td>
<td>25.5%</td>
<td>22.8%</td>
<td>23.0%</td>
<td>25.5%</td>
<td>22.2%</td>
<td>26.9%</td>
<td>7.2%</td>
<td>39.5%</td>
<td>39.5%</td>
</tr>
<tr>
<td>EEX</td>
<td>61.1%</td>
<td>61.1%</td>
<td>62.3%</td>
<td>61.8%</td>
<td>61.2%</td>
<td>62.5%</td>
<td>64.1%</td>
<td>60.4%</td>
<td>60.2%</td>
<td>60.2%</td>
</tr>
</tbody>
</table>

1.7.2 Terminmarknaden

Sjølv om ressurs situasjonen forbetra seg betrakteleg i starten av andre kvartal var det mindre vatn enn normalt i dei nordiske vassmagasina. Dette, saman med uvissa omkring vêrutviklinga utover året, bidrog til at dei nordiske terminprisane heldt seg relativt stabile fram til midten av mai. Store nedbørs mengder i mai og juni forbetra den hydrologiske balansen ytterlegare. I saman med varslar om meir nedbør kan truleg dette forklare den nedagåande trenden etter midten av mai.

I figur 1.7.3 ser vi at prisen på både tredje- og fjerdekvartalskontrakten på Nasdaq begynte å gå ned rundt midten av mai. Vi ser åg prisfallet i den tyske marknaden mot slutten av kvartalet.

Figur 1.7.3 Prisutvikling på utvalte finansielle kraftkontraktar i andre kvartal 2011, kr/MWh. Kjelde: Nord Pool Spot
Ein euro kostar i snitt 7,8 kroner i andre kvartal 2011, omtrent det same som i første kvartal. Figur 1.7.4 visar at euroen har svekka seg betrakteleg mot krona sia 2009.

Figur 1.7.4 Valutakurs, norske kroner mot euro. Kjelde: Nord Pool Spot

![Diagram Figur 1.7.4 Valutakurs, norske kroner mot euro. Kjelde: Nord Pool Spot](image)

Figur 1.7.5 Nordisk systempris og prisar i terminmarknaden, kr/MWh. Kjelde: Nord Pool Spot

![Diagram Figur 1.7.5 Nordisk systempris og prisar i terminmarknaden, kr/MWh. Kjelde: Nord Pool Spot](image)

Prisen på CO2 påverkar prisen på elektrisk kraft då utslепpsrettane er ein del av kostnadane ved termisk kraftproduksjon. I andre kvartal kosta ein utsléppsrett for CO2 i 2011 i gjennomsnitt 16,3 euro/tonn, ein oppgang på 0,9 euro frå kvartalet for. Gjennomsnittsprisen for utsléppsrettar for 2012 og 2013 var 17,0 og 18,3 euro/tonn. Prisane på desse kontraktane fall sterkt på slutten av kvartalet. Kontrakten for utslépp i 2011 vart handla for 13,4 euro/tonn i slutten av kvartalet, og kontaktane for
utslepp i 2012 og 2013 for 14,0 og 15,0 euro/tonn. Uro for at den økonomiske situasjonen i Hellas skal påverke resten av Europa er bakgrunnen for dei låge CO₂-utsleppsprisane.

Figur 1.7.6 Prisutvikling på utslippsrettar for CO₂ i EU ETS, euro/tonn. Kjelde: Nord Pool Spot

Mot slutten av 2008 fall prisen på naturgass på dei tre største handelsplassane, National Balancing Point i Storbritannia, Zeebrugge i Belgia og Title Transfer Facility i Nederland, betydelig. Prisnedgangen haldt fram inn i 2009, men sidan gjekk prisane noko opp igjen. I 2010 har prisane på gass på desse handelsplassane gått frå å ligge rundt 100 øre/Sm³ i først kvartal til over 190 øre/Sm³ på det høgaste i slutten av 2010. På slutten av andre kvartal 2011 låg prisane rundt 180 øre/Sm³.

Prisen på gass på NBP gjekk ned frå 198 øre/Sm³ i veke 14 til 177 øre/Sm³ i siste veke av kvartalet. Snittprisen på gass låg på 183 øre/Sm³ i andre kvartal. Dette er 5 øre høgare enn snittprisen i første kvartal.

Tar ein utgangspunkt i eit kraftverk i Storbritannia med ein nytteeffekt på 55 prosent, ville brenselskostnadane for gass handla på spotmarknaden (eksklusiv rørtariff innanlands) i andre kvartal vore i snitt 329 kr/MWh. Det er ein auke på 9 kr/MWh i forhold til første kvartal 2011. Til samanlikning var brenselskostnaden i andre kvartal 2010 i snitt 224 kr/MWh.

Figur 1.7.7 syner utviklinga i prisen på gasskontrakten for nærmaste kvartal (Front Quarter), levert i Storbritannia (NBP), Belgia (Zeebrugge) og Nederland (TTF) frå 2006 og ut andre kvartal 2011.
Prisen på kol gikk ned i løpet av andre kvartal 2011. I veke 14 vart kontrakten for det nærmaste kvartalet (Front Quarter) handla for 131 dollar/tonn. Ved utgangen av kvartalet var prisen 123 dollar/tonn. Snittprisen i andre kvartal enda på 125 dollar/tonn. Dette er 5 dollar høyere enn i kvartalet før.

Med ein kolpris på 125 dollar/tonn ville brenselkostnaden (eksklusiv transport frå Antwerpen/Rotterdam/Amsterdam til kraftverket) ha vore 218 kr/MWh i eit kolkraftverk som bruker importert kol med 40 prosent nytteeffekt. Det er 2 kroner mindre enn i første kvartal. Til samanlíkning var denne kostnaden 180 kr/MWh i andre kvartal 2010.

Figur 1.7.8 viser kolprisen frå 2006 og ut andre kvartal 2011. API2 er ein indeks for prisutvikling på kol, der frakt- og forsikringskostnadene er inkludert. API2 måler prisar for kol levert til Antwerpen, Amsterdam og Rotterdam.

Figur 1.7.7 Gassprisar front quarter i Storbritannia (NBP), Belgia (Zeebrugge) og Nederland (TTF) 2006 – 2011, øre/Sm3. Kjelde: Syspower og Spectron Group Limited
1.8 Sluttbrukarmarknaden

1.8.1 Prisar og kontraktar

Frå første til andre kvartal 2011 gjekk dei gjennomsnittlege prisane på både spotpriskontraktar1, standard variabel kontrakt og eittårige fastpriskontraktar ned. Snittprisen på dei treårige fastpriskontraktane var uendra.

Den gjennomsnittlege prisen for spotpriskontrakt i elspotområdet Vest-Noreg var 51,3 øre/kWh. Dette er 1,0 øre lågare enn i Aust- og Sørvest- Noreg og 0,9 øre lågare enn i Midt-Noreg. Samanlikna med første kvartal 2011 fall snittprisen i Vest-Noreg med 16,4 øre. Samanlikna med andre kvartal 2010 var prisen 3,3 øre høgare i år.

I Nord-Noreg var den gjennomsnittlege prisen 42,4 øre/kWh for andre kvartal 2011. Prisen er oppgitt ekskl. mva. sidan sluttbrukarar i Nordland, Troms og Finnmark har fritak frå mva. på straum. Som følgje av fritaket frå mva. sto sluttbrukarane i Nord-

1 Alle spotprisane er oppgitt inkl. mva. og eit antatt påslag på 1,9 øre/kWh til kraftleverandørane.
Noreg ovanfor den lågaste straumprisen i Noreg, og samanlikna med første kvartal 2011 fall kraftprisen i snitt med 11,1 øre. Om ein samanliknar andre kvartal i år med tilsvarande kvartal 2010 ser ein at kraftprisen i Nord-Noreg i snitt var 4,8 øre høgare i år.

Gjennomsnittet av standard variabel kontrakt tilbode frå dei dominerande leverandørane i eit utval av dei største nettområda, hadde i andre kvartal 2011 ein gjennomsnittspris på 61,2 øre/kWh inkl. mva. Dette er til dømes 8,9 øre (17 %) høgare enn gjennomsnittsprisane for ei spotpriskontrakt i Aust- og Sørvest-Noreg. Ein må likevel presisere at denne prisen er basert på eit volumvege gjennomsnitt av eit lite utval av kontraktar, og at det finn kontraktar som naturleg nok både har vore billegare og dyrare enn dette gjennomsnittet.

Samanlikna med første kvartal 2011 hadde gjennomsnittsprisen på standard variabel kontrakt ein nedgang på 20,7 øre i andre kvartal 2011. Samanlikna med tilsvarande kvartal i 2010 var prisen på standard variabel kontrakt 5,9 øre lågare i andre kvartal 2011.

Dei gjennomsnittlege prisane på fastpriskontraktar med eitt-årig og tre-årig avtaleperiod var for andre kvartal 2011 høvesvis 59,2 og 55,7 øre/kWh. Samanlikna med første kvartal 2011 er dette ein nedgang på 2,5 øre for dei eittårig kontraktane, medan snittprisen av dei treårig kontraktane er uendra. Om ein samanliknar fastpriskontraktane med andre kvartal 2010, ser ein at dei gjennomsnittlege prisane for eittårig fastpriskontrakt auka med 7,0 øre, og at gjennomsnittet for dei tre-årig fastpriskontraktane auka med 4,4 øre.

Påslag på spotpriskontrakt

Figur 1.8.1 viser ei oversikt over påslaga på elspotprisen for dei ti billegaste spotpriskontraktane tilbode i Oslo i veke 26 2011, dvs. den siste veka i 2. kvartal. Sidan nokre kontraktar har eit påslag per kWh, medan andre har eit påslag som ein fast sum per månad, år eller begge deler, kan det av og til vere vanskelig å samanlikne dei ulike kontraktane. I figuren under er det difor rekna ut eit påslag i øre per kWh for ein kunde med eit forbruk på 20.000 kWh per år, for lettare å kunne samanlikne.

Det er berre kontraktane med etterskotsfakturering som er inkludert i oversikta. Det er eit val grunna i at både forskotsfakturering og akonto fakturering inneber eit potensielt rentetap for forbrukaren ved at ein har eit beløp inneståande hos kraftleverandøren. Det er difor ikkje føremålstøde å inkludere desse kontrakttypane i samanlikninga då storleiken på dette tapet er varierande. Avhengig av rentenivå og storleiken på den inneståande pengesummen kan akonto- og etterskotsfakturering tilsvar ein større kostnad enn det faktiske påslaget mange kraftleverandørar med etterskotsfakturering har på elspotprisen.

Figur 1.8.1 viser at det er store skilnader sjølv blant dei ti billegaste kontraktane. Den rimelegaste kontrakten som vart tilbode hadde eit påslag på 0,48 øre/kWh. Den tiande billegaste hadde eit berekna påslag på 1,50 øre/kWh. Skilnaden mellom valet av den billegaste kontrakten og den tiande billigaste kontrakten tilsvarar då 204 kr per år dersom ein forbruker 20000 kWh per år.2

Figur 1.8.1 Påslag på spotpriskontrakt i øre/kWh for dei ti billegaste spotpriskontraktane tilbode for hushaldskundar i Oslo (prisområde NO1). Påslaget er rekna ut etter eit antatt årlig snittforbruk på 20 000 kWh. Oversikta er frå veke 26 2011. Kjelde: Konkurransetilsynet

1 Om ein har eit påslag på 50 kr i månaden vil dette utgjere 3 øre/kWh for ein forbrukar av 20 000 kWh per år. Dersom ein har eit forbruk på til dømes 10 000 kWh per år, vil det månadleige påslaget på 50 kr utgjere 6 øre/kWh.

2 Sjølv om desse utrekningane tek utgangspunkt i dei spotpriskontraktane som vart tilbode i Oslo, blir dei fleste av desse kontraktane òg tilbode andre stader i landet.
Utvikling av prisane

Figur 1.8.2 samanliknar den volumveka gjennomsnittsprisen for standard variabel kontrakt tilbоде av dei dominerande leverandørane i eit utval av dei største nettområda, med spotpriskontraktar i elspotområda Aust-Noreg (NO1), Sørvest-Noreg (NO2), Midt-Noreg (NO3), Nord-Noreg (NO4) og Vest-Noreg (NO5), frå tredje kvartal 2010 til og med andre kvartal 2011. Av figuren kan ein sjå at prisen på standard variabel kontrakt i stor grad følgjer mønsteret til spotpriskontraktane, men med eit etterslep på nokre veker. Dette har samanheng med at kraftleverandørane har to veker meldeplikt til sluttbrukarane viss leverandøren skal endre prisane. Samstundes som standard variabel kontrakt har eit etterslep kan ein også sjå at prisane på standard variabel kontrakt i snitt ligg høgare enn spotpriskontraktane.

I figuren ser ein at prisane på spotpriskontrakt og standard variabel kontrakt var tilnærma like frå veke 34 2010 t.o.m veke 44 2010. I veke 45 auka den underliggjande spotprisen på Nord Pool Spot og prisen for spotpriskontrakt auka. Grunna det ibuande etterslepet til standard variabel kontrakt, kombinert med at spotprisane auka meir enn det kraftleverandørane som tilbod standard variabel kontrakt kunne foresjå, låg spotpriskontraktnane høgare i pris enn standard variabel heilt frå veke 46 t.o.m. veke 52. I veke 52 byrja spotprisane å falle, medan kraftleverandørane sette opp prisen på standard variabel kontrakt heilt til og med veke 3. Etter dette har både spotprisane og standard variabel kontrakt falt, men frå figuren kan ein sjå at prisen på standard variabel kontrakt har falt i eit lågare tempo enn spotprisane. Det eventuelle tapet ein tilbodar av standard variabel kontrakt hadde i vekene 34 til 44 har han meir enn henta inn frå og med veke 1. Ved å sjå på figuren har spotpriskontraktar vore det økonomisk fordelaktige valet for sluttbrukarane i både første og andre kvartal 2011. Ein må her likevel presisere at prisen på standard variabel kontrakt som er presentert i figuren er basert på eit volumvege gjennomsnitt av eit lite utval av kontraktar, og at det finst kontraktar som naturleg nok både har vore billegare og dyrare enn dette gjennomsnittet.
Figur 1.8.2 Gjennomsnittleg vekesprisar frå tredje kvartal 2010 til og med andre kvartal 2011 for standard variabel kontrakt og spotpriskontrakt i elspotområda NO1, NO2, NO3, NO4 og NO5, inklusive eit påslag på 1,9 øre/kWh. Alle prisar er inkl. mva. unntatt prisar for NO4. Kjelder: Konkurransetilsynet, Nord Pool Spot og NVE.

Frå figuren kan ein òg sjå at prisane på spotpriskontraktane er meir volatile enn standard variabel kontrakt. Årsaka til dette er at standard variabel kontrakt ikkje er direkte knytt til marknadsprisen på Nord Pool Spot i motsetnad til spotpriskontraktane. Sidan dei fleste sluttkundarier ikkje har timesmålare, vert dei som har spotpriskontraktar avrekna ut frå den månedlege gjennomsnittsprisen frå Nord Pool Spot. Den gjennomsnittsprisen er naturleg nok mindre volatil enn vekesprisane som er presentert i figuren. Som følgje av dette vert ikkje sluttkunder med spotpriskontrakt, som ikkje har timesmålare, nødvendigvis eksponert for større risiko enn kundar med standard variabel kontrakt.

Figur 1.8.3 Prisutvikling for 1- og 3- års fastpriskontraktar ved eit forbruk på 20 000 kWh/år for 2010 og 2011 t.o.m. 2. kvartal. Prisane er inkl. mva. Kjelder: Konkurransetilsynet og NVE.

1.8.2 Leverandørskifte, kontraktsval og samla utgifter

Leverandørskifte

Kontraktsval

Oversikten over kva slags kontrakttypar hushalda vel er henta frå ei utvalsundersøking gjennomført av Statistisk Sentralbyrå (SSB), og er basert på informasjon frå 50 av kraftleverandørenes i sluttbrukarmarknaden frå ei veke midt i kvartalet. Sidan tala er tverrsnitt frå ei veke er det grunn til å vere varsom med å leggje for mykje vekt på den kvartalsvise utviklinga i undersøkinga.

Undersøkinga kan likevel gje god informasjon om korleis valet av forskjellige kontraktar har utvikla seg i eit lengre tidsperspektiv, og den kan òg seie noko om den underliggjande trenden. Vi har difor valt å sjå på eit gladande eittårs gjennomsnitt over utviklinga i kontraktsval.

Kraftkontraktar for hushaldskundar

Variabel kontrakt (deriblant standard variabel kontrakt) har tradisjonelt vore den mest vanlege kontrakttypen for hushaldskundar i Noreg. I 2003 blei i snitt 73,5 % av det totale kraftvolumet til hushaldskundar omsett på denne kontrakttypen. Over dei fire siste kvartala (tredje kvartal 2010 - andre kvartal 2011) har derimot berre 38,0 % av kraftvolumet for hushaldskundar vert omsett på denne kontrakttypen. Tala frå SSB visar òg at 56,6 % av kraftvolumet til hushaldskundane vert omsett på kontraktar som er knytt til elspotprisen, medan berre 5,5 % av volumet vert omsett på fastpriskontraktar. Dette er presentert i figur 1.8.4, som bekreftar trenden i retning av at stadig fleire hushaldskundar vel spotpriskontraktar framfor variable kontraktar. Dei siste kvartala har ein også sett ein liten auke i omsett volum på fastpriskontraktar.
Kraftkontraktar for næringskundar
Samanlikna med hushaldskundar, har næringskundar i større grad valt kontraktar knytt til spotprisen. I figur 1.8.5 kan ein sjå at for næringskundar varti snitt 67,1 % av kraftvolumet over det siste året omsett på kontraktar knytt til elspotprisen. 24,3 % av volumet vart omsett på variable kontraktar, og 8,6 % av volumet på fastpriskontraktar. Samanlikna med tala for sist kvartal, ser ein ein reduksjon i omsett volum på fastpriskontraktar og spotpriskontraktar, medan det har vore auka omsett volum på kontraktar med variabel pris som ikkje er tilknytt elspotprisen. Tala er basert på statistikk frå SSB og NVE har ikkje noko god forklaringar på kvifor det har vore auka omsett volum på variabel pris kontrakt relativt til dei andre kontrakttypane.

Figur 1.8.5 Prosentvis fordeling av ulike typer kontraktar i næringsmarknaden. Kjelder: SSB og NVE.
Hushalda sine samla utgifter til elektrisk kraft

Om ein føresett eit forbruk på 20000 kWh per år, eit normalt forbruksmønster basert på ein gjennomsnittleg justert inmatingsprofil frå 2009, og ei nettleige tilsvarende landsgjennomsnittet (27,8 øre/kWh ekskl. mva. i 2011), kan ein for eit hushald med standard variabel kontrakt rekne ut ein sannsynleg kostnad i andre kvartal 2011 på til saman 4193 kroner. Fordelinga av den totale kostnaden kan delast opp i følgjande kostnadsledd: 1014 kroner i nettleige, 1300 kroner i avgifter og 1879 kroner i kraftkostnad. Den prosentvise fordelinga på dei ulike kostnadsledda vert, 24 % nettleige, 31 % avgifter og 45 % kraft.

Med dei same føresetnadane, men med ein spotpriskontrakt med eit påslag på 1,9 øre/kWh, får ein fordelinga: 1014 kroner i nettleige, 1231 kroner i avgifter og 1601 kroner i kraft. Alle kostnadsledda for kvartalet under eitt vert då 3846 kroner, som er 347 kroner lågare enn ved val av standard variabel kontrakt.

Figur 1.8.6 Totalkostnad i andre kvartal 2011 til kraft, nettleige, og offentlege avgifter ved eitt årleg forbruk på 20 000 kWh. Kjelder: Konkurransetilsynet og NVE.

Som ein kan sjå er kraftprisen den største enkeltbestanddelen i totale kostnader for forbrukaren, og han er òg det kostnadsleddet som varierer mest. Gjennomsnittsprisen for kraft har som ein kan sjå vore høgare enn normalt gjennom 2010 og 2011, men historisk sett kan ein sjå at ein òg har hatt høge kraftprisar tidlegare. Talgrunnlaget som visast i figuren for andre kvartal 2011 er 48,9 øre/kWh for kraft (basert på standard variabel kontrakt), 27,8 øre/kWh for nettleige, 11,2 øre/kWh i forbruksavgift og 22,0 øre i meirverdiavgift.
2 Øker markedets forventninger til fremtidig prisusikkerhet når hydrologisk balanse forverres?

Av Mats Øivind Willumsen og Kjerstin Dahl Viggen, Seksjon for analyse, Energiavdelingen

Denne artikkelen er utarbeidet i forbindelse med fullførelsen av Kraftanalytikerstudiet ved Norges Handelshøyskole våren 2011. Kraftanalytikerstudiet er et deltidsstudium som går over to semestre. Det er et spesialstudium rettet mot kraftmarkedet.

Sammendrag

I denne oppgaven undersøker vi sammenhengen mellom det nordiske kraftmarkedets forventninger til fremtidig prisusikkerhet i forwardmarkedet og hydrologisk balanse i Norden. Dette gjør vi ved en enkel regresjonsanalyse. Som indikator på markedsaktørenes syn på fremtidig prisusikkerhet har vi benyttet egne beregninger av implisitte volatiliteter basert på opsionspriser for det nordiske kraftmarkedet, notert på Nasdaq OMX Commodities. Beregningene er gjort med utgangspunkt i opsionsprisingsmodellen Black 76.

Vi diskuterer Black 76 som opsionsprisingsmodell i det nordiske kraftmarkedet. Foreliggende litteratur tyder på at implisitt volatilitet for opsioner i det nordiske kraftmarkedet beveger seg tidvis med strike og mot forfall. Videre viser foreliggende litteratur at prisene på underliggende forwardkontrakter ikke er lognormale. Dette impliserer brudd på forutsetningene bak Black 76, noe vi forsøker å hensynta i analysen.

Regresjonsanalysen peker i retning av at det er en viss negativ sammenheng mellom implisitt volatilitet og hydrologisk balanse. Dette innebærer at forverring av den hydrologiske situasjonen alt annet likt trekker i retning av økt implisitt volatilitet. På grunn av svakhetene ved Black 76 er det likevel usikkert om vi kan trekke samme slutsning om forholdet mellom markedsaktørenes vurdering av fremtidig prisusikkerhet og hydrologisk balanse. Analysen gir likevel grunn til å tro at markedets forventninger til fremtidig usikkerhet øker når hydrologisk balanse forverres.

2.1 Innledning

I denne oppgaven undersøker vi nærmere om hydrologisk balanse bare påvirker dagens forwardpriser gjennom energiknappheten, eller om det i tillegg kan være en effekt der hydrologisk underskudd gir økt forventet volatilitet i forwardmarkedet. Dersom dette er tilfelle betyr det at hydrologisk underskudd også gir høyere opsionspriser, slik at det blir dyrere for aktørene å bruke opsionsmarkedet til å redusere risikoen knyttet til sine posisjoner.

Vi benytter egne beregninger av implisitte volatiliteter, basert på opsionspriser for det nordiske kraftmarkedet notert på Nasdaq OMX Commodities, som en indikator på markedsaktørenes syn på fremtidig prisusikkerhet. Disse beregningene er gjort med utgangspunkt i opsionsprisingsmodellen Black 76. Forståelsen av analysen er det nødvendig med en redegjørelse av denne modellen.
I kapittel 2.2 gir vi en kort beskrivelse av kraftderivatene som omsettes på Nasdaq OMX Commodities. I kapittel 2.3 redegjør vi for opsjonsprisingsmodellen Black 76 – som er utgangspunktet for beregningene av den implisitte volatiliteten til en opsjon. I kapittel 2.4 diskuterer Black 76 som opsjonsprisingsmodell i det nordiske kraftmarkedet i lys av tidligere arbeider på feltet. I kapittel 2.5 undersøker vi sammenhengen mellom markedets forventninger til fremtidig prisusikkerhet i forwardmarkedet og hydrologisk balanse. Her har vi lagt til grunn at den teoretisk beregnede implisitte volatiliteten – som vi utreder i kapittel 2.3 – faktisk uttrykker markedsskikkens vurdering av prisusikkerheten i fremtidige kraftkontrakter. Vi gjør en enkel regresjonsanalyse for å finne sammenhengen mellom opsjoners implisitvolatilitet og hydrologisk balanse, hvor hypotesen er at hydrologisk balanse påvirker implisitte volatilitet negativt. Det vil si at en negativ hydrologisk balanse – et negativt avvik fra det hydrologiske normalnivået – fører til høyere implisitte volatilitet enn en hydrologisk normalsituasjon.

2.2 Kraftderivater på Nasdaq OMX Commodities

I det nordiske kraftmarkedet handles og klareres de finansielle kontraktene på børsen Nasdaq OMX Commodities og i det bilaterale markedet, over-the-counter (OTC). På Nasdaq OMX omsettes standardiserte finansielle produkter, mens i OTC-markedet blir kontraktene forhandlet og sluttet via en meglere.

Hensikten med det finansielle kraftmarkedet er å håndtere risiko knyttet til det fysiske kraftmarkedet. En kjøper eller en selger av kraft i det nordiske kraftmarkedet kan redusere risikoen for tap ved fremtidige prisendringer og endre risikoeksponering ved å handle ulike kraftderivativer. Aktørene har mulighet til å sikre prisen på fremtidig produksjon og/eller konsum gjennom å inngå kontrakter med spesifiserte volum til bestemte priser.

Derivater er finansielle instrumenter hvis verdi avhenger av verdien av et annet underliggende instrument. På Nasdaq OMX omsettes det terminkontrakter (forwards og futures), Contract for Difference (CfD) og opsjoner for det nordiske kraftmarkedet. For de to førstnevnte er underliggende instrument systemprisen, mens i OTC-markedet blir kontraktene forhandlet og sluttet via en meglere.

Nedenfor gis en kort beskrivelse kraftderivatene som omsettes på Nasdaq OMX.

2.2.1 Terminkontrakter - forwards og futures

Det er to typer terminkontrakter på Nasdaq OMX, forward- og futurekontrakter. Leveringen av disse kontraktene korresponderer med en tidsperiode og ikke et spesifisert tidspunkt. En forwardkontrakt er en avtale om fremtidig salg eller kjøp av underliggende instrument til en forhåndsbestemt pris. Verdi av kontrakten avhenger av prisen på underliggende instrument, slik at det ved prisendringer i underliggende vil oppstå en fordring/gjeldsposisjon mellom de to kontraktpartene. En forwardkontrakt gjøres opp etter handelsperioden er over, mens en kontrakt som gjøres opp både i handels- og i leveringsperioden kalles en futurekontrakt. For nærmere om spesifisering av terminkontrakter på Nasdaq OMX, se http://www.nasdaqomxcommodities.com/trading/practicaltradingsinformation/tradefinancialmarket/.

Figur 2.2.1 viser utbetalingsved et lang posisjon (kjøpt termin) der man eier en terminkontrakt og en kort posisjon (solgt termin) der innehaveren har solgt en terminkontrakt. Y-aksen viser gevinst/tap ved posisjonen og x-aksen gjennomsnittlig systempris gjennom leveringsperioden. K er innløsningsprisen.

1 Heretter Nasdaq OMX.
2.2.2 Contract for Difference

Contract for Difference (CfD) er et instrument for at aktørene skal kunne prissikre seg mot områdeprisrisiko. Markedsprisen på CfD-kontractene reflekterer markedets forventninger om prisforskjellen mellom det enkelte markedsområdet og systemprisen.

2.2.3 Opsjoner

I og med at kjøps- og salgsopsjoner kan kjøpes og selges, danner dette fire grunnposisjoner. Kjøpt kjøpsopsjon (long call), solgt kjøpsopsjon (short call), kjøpt salgsopsjon (long put) og solgt salgsopsjon (short put).

Figur 2.2.2 nedenfor viser potensiell utbetaling ved kjøpt call og kjøpt put. Y-aksen viser gevinst/tap og x-aksen prisen på underliggende. K er innløsningsprisen.
2.3 Opsjonsprisingsteori

I dette kapitlet presenteres teorien som vil ligge til grunn for beregninger av indikatoren for markedets forventning til fremtidig prisusikkerhet – opsjoners implisitte volatilitet. Vi tar utgangspunkt i Black 76 som opsjonsprisingsmodell med forwardkontrakter som underliggende, og går ikke inn på andre modeller. Vi legger til grunn at vi har å gjøre med europeiske opsjoner, siden det er slike som tilbys av Nasdaq OMX.

Vi forutsetter at investorene er pristakere i markedet underliggende handles i, og at alle investorer er nyttemaksimerende og rasjonelle.

Redegjørelsen i delkapitlene 2.3.1 og 2.3.2 er i hovedsak basert på Hull 2009.

2.3.1 Opsjonsprisingsmodellen Black-Scholes

I Black-Scholes-modellen blir den teoretiske opsjonsprisen beregnet ut fra verdien på følgende variabler:

- \(S \) - kursen på underliggende aksje
- \(K \) - innløsningskurs eller strike
- \(r \) - risikofri rente
- \(T-t \) - tid til forfall
- \(\sigma \) - volatiliteten til underliggende

På innløsningsdatoen er det bare strike og kursen på underliggende som bestemmer om opsjonen utøves eller ikke. En kjøpsopsjon har verdien \(S_T - K \) om kursen er høyere enn strike – opsjonen er in-the-money – og null om det er omvendt – opsjonen er out-of the money. Om kursen er lik strike er opsjonen at-the-money og har ingen verdi. En salgsopsjon har verdien \(K - S_T \) på innløsningsstidspunktet om strike er høyere enn kursen, og null om det er omvendt. Opsjonsprisen skal gjenspeile verdien på opsjonene. Verdsettelsen av kjøps- og salgsopsjoner er funksjoner av ovennevnte uavhengige variabler.

Modellen bygger på følgende forutsetninger:

![Diagram av opsjonsprisingsmodell](image-url)

2. Det eksisterer ingen risikofri profitt – ingen arbitrasjemuligheter.

3. Det er ingen skatter eller transaksjonskostnader.

4. Det er kontinuerlig handel over tid.

5. Det er ingen begrensninger i såkalt kortsalg.

6. Avkastningen på aksjen er stokastisk uavhengig av kursen og tidligere avkastninger.

7. Logaritmen av avkastningen er normalfordelt.

8. Volatiliteten er konstant over tid.

9. Enhver utfalsbane er kontinuerlig i tid.

2.3.2 Black 76

Black 76 bygger på samme forutsetninger som Black-Scholes, men i Black 76 er underliggende forwardkontrakter, ikke aksjer. Her er det prisen på forwardkontrakten som antas å følge en geometrisk brownsk bevegelse – den utvikler seg som en stokastisk prosess og har konstant volatilitet. I denne oppgaven legger vi til grunn denne standardversjonen av Black 76.

Verdien på en kjøpsopsjon kan beregnes som følger:

\[C = e^{-rT} \left[F_0 \Phi(d_1) - K \Phi(d_2) \right] \]

Det er her lagt til grunn at \(t = 0 \). \(r \) er da tid til forfall eller innløsning \((r - t)\). \(F_0 \) er prisen på underliggende forwardkontrakt i dag, tidspunkt 0, med levering på tidspunkt \(T \) der \(T > t \).

\(d_1 \) og \(d_2 \) er gitt ved

\[d_1 = \frac{\ln(\frac{F_0}{K}) + \frac{1}{2} \sigma^2 t}{\sigma \sqrt{t}} \]

\[d_2 = d_1 - \sigma \sqrt{t} \]

1. Sælg en opsjon uten å eie underliggende.
2. Eller: Avkastningen er lognormalfordelt.
4. I utgangspunktet er det forwardkontrakter i råvaremarked, ikke i kraftmarkeder, som er underliggende i Black 76.
\(N(d_1) \) og \(N(d_2) \) er den kumulative standard normalfordelingen til henholdsvis \(d_1 \) og \(d_2 \).

\[e^{-rT} \{ P_{BT} N(d_2) \} \] er nåverden av å motta forwardkontrakten i en risikonøytral verden hvis, og bare hvis, \(F_{BT} > K \).

\[e^{-rT} \{ KN(-d_2) \} \] uttrykker nåverden av å betale strike ved forfall hvis og bare hvis \(F_{BT} > K \).

Uttrykket kan tolkes som strike multiplisert med sannsynligheten for at opsjonen vil bli innløst i en risikonøytral verden.

Det kan vises at sammenhengen mellom prisen på en kjøpsopsjon og prisen på en salgsopsjon skal være

\[P + e^{-rT} F_{BT} = C + e^{-rT} K \]

Dette kalles put-call-pariteten. Gitt at den holder kan prisen på en salgsopsjon utledes til

\[P = e^{-rT} \{ KN(-d_2) - F_{BT} N(-d_1) \} \]

Dess høyere volatilitet, \(\sigma \), på underliggende forwardkontrakt, jo høyere er sannsynligheten for at kjøps- eller salgsopsjonen enten skal ende in-the-money eller out-of-the-money. Siden investoren har sikret seg mot tap, vil han måtte betale for den økte sannsynligheten for at opsjonen skal ende in-the-money. Prisen på både kjøps- og salgsopsjoner øker dermed med volatiliteten til underliggende forwardkontrakt:

\[\frac{\sigma}{\sigma} > 0, \frac{\sigma}{\sigma} > 0 \]

Volatiliteten er den eneste variabelen som inngår i Black 76 som er ukjent – det vil si det er den eneste variabelen som ikke kan leses av i markedet. Gitt forutsetningene i modellen kan dermed opsjonens innebygde forventning til volatiliteten til underliggende beregnes. Dette kalles opsjonens implisitte volatilitet. Man kan iterere seg fram til en verdi av \(\sigma \) som gjør at den teoretiske opsjonsprisen blir lik opsjonsprisen som observeres i markedet for kjøps- eller salgsopsjonen. Denne forteller hva markedet tror at volatiliteten til underliggende vil være i fremtiden, dersom forutsetningene til modellen holder mål.

Dersom de ikke gjør det, vil den implisitte volatiliteten ikke være et nøyaktig mål på markedets forventninger om volatiliteten til underliggende forwardkontrakt. Siden \(\sigma \) er den eneste ukjente i Black 76 er det bare denne variabelen som blir påvirket av brudd på forutsetningene eller andre mangler i opsjonsprisingsmodellen.

2.3.3 Volatilitetssmil og terminstruktur

Volatiliteten skal også etter Black 76s forutsetninger være den samme uavhengig av hvor lenge det er til forfall. Hvordan volatiliteten utvikler seg som funksjon av strike og tid til forfall kalles volatilitetens terminstruktur (volatility term structure). Konstant volatilitet i tid innebærer en såkalt flat terminstruktur. Det betyr at (det flate) volatilitetssmilet er flatt for opsjoner observert på samme tid, men med ulik tid til forfall.

Gitt at forutsetningene bak Black 76 holder, skal altså den implisitte volatiliteten være konstant i strike og uavhengig av løpetid – tiden til opsjonens forfall.

Brudd på lognormalitet er allerede nevnt, men det kan være flere forklaringer på at implisitt volatilitet ikke er konstant i strike og løpetid. Volatiliteten til underliggende vil gjerne ikke være konstant i tid, men øke mot forfall. En naturlig forklaring på dette er at markedssjokk får større betydning for prisen på kort sikt enn på lengre sikt, etter som markedet på lengre sikt i større grad vil kunne korrigerere for slike effekter.

Det kan også være at volatiliteten ikke er uavhengig av sin historie. Volatiliteten kan i seg selv være volatil med perioder med høy volatilitet og perioder med lavere volatilitet.

Forutsetningene impliserer at man kan replikere en portefølje av underliggende (delta hedge) kontinuerlig. Dette er i praksis så godt som umulig, blant annet på grunn av transaksjonskostnadene det medfører. Plutselige hopp eller fall i underliggende kan derfor lede til betydelige tap. Dette forholdet kan påvirke betalingsvilkjen for opsjoner, dermed også opsjonens pris og derigjennom den teoretisk beregnede implisitte volatiliteten.

Endringer i tilbud og etterspørsel etter visse typer opsjoner vil altså kunne gi utslag i den implisitte volatiliteten. Hvis det for eksempel er høy etterspørsel etter salgsopsjoner til strike lavere enn dagens pris på underliggende (out-of-the-money), gitt den teoretisk riktige opsjonens pris, vil denne prisen presses opp. Det vil gi utslag i høyere implisitt volatilitet for denne salgsopsjonen out-of-the-money enn en tilsvarende salgsopsjon at-the-money. Det gjenstår i så fall å forklare hvorfor etterspørselen til den teoretisk riktige opsjonens pris er så høy.

Dette fenomenet kan også forklares av at underliggende har fetere haler (nedside) enn lognormalitet tilsier. Kriser skjer, og dersom de oppstår oftere enn lognormalitet antyder, er det naturlig at aktørene priser opsjoner som gir denne type forsikring noe høyere, fordi etterspørselen etter salgsopsjoner til lavere pris enn underliggende øker.

Crashophobia-forklaringen må også sees i sammenheng med det faktum at man ikke kan gjennomføre en perfekt hedge. Det er dette som gjør at man risikerer å tape stort ved en krise. Ingen perfekt hedge betyr at risikoen for å tape øker, og dermed øker opsjonsprisen som forsikrer mot slike tap.
Oppsummert innebærer dette at dersom aktører har preferanser for opsjoner in-the-money eller out-of-the-money i stedet for at-the-money, kan dette resultere i volatilitetssmil.

Forklaringer som tar utgangspunkt i tilbud og etterspørsel vil være så godt som fraværende for lite handlede opsjoner. Dersom omsetningen av opsjoner øker mot forfall kan også dette bidra til å forklare hvorfor smilene blir mer tydelige mot forfall.

2.4 Black 76 i det nordiske kraftmarkedet

I dette kapitlet diskuterer vi kort, basert på foreliggende litteratur, om opsjoners implisitte volatilitet kan vurderes som et godt mål på markedets forventninger om fremtidig prissusikkerhet i det nordiske kraftmarkedet. For å begrense oppgavens omfang har vi ikke gjort tilsvarende analyser selv.

2.4 Black 76 i det nordiske kraftmarkedet

I dette kapitlet diskuterer vi kort, basert på foreliggende litteratur, om opsjoners implisitte volatilitet kan vurderes som et godt mål på markedets forventninger om fremtidig prissusikkerhet i det nordiske kraftmarkedet. For å begrense oppgavens omfang har vi ikke gjort tilsvarende analyser selv.

Mosegaard (2008) viser også at fordelingen av forwardprisene ikke er lognormal.

Funnene over peker i retning av at implisitt volatilitet for opsjoner i det nordiske kraftmarkedet er preget av tidvis betydelig bevegelse med strike og mot forfall. Analysene trekker i retning av at prisene på forwardkontrakter ikke er lognormale. Typisk vil fete haler og kurtosis, som bryter med den lognormale fordelingen, lede til at volatiliteten ikke er konstant i strike.

På bakgrunn av diskusjonen med utgangspunkt i foreliggende litteratur ovenfor kan det være vanskelig å legge til grunn at implisitt volatilitet fra Black 76 er et godt mål på aktørenes forventninger om fremtidig prisusikkerhet, i alle fall på kort sikt. Til det synes manglene med Black 76 som opsjonsprisingsmodell i det nordiske kraftmarkedet for tydelige.

Vi velger likevel å legge dette til grunn for analysen i kapittel 2.5. Vi gjør dette fordi våre beregninger bare bygger på implisitt volatilitet beregnet at-the-money og fordi vi låser fast løpetiden. Dette betyr ikke at vi har løst alle problemene knyttet til våre ønskede tolkning av implisitt volatilitet i Black 76, men at vi forsøker å ta hensyn til manglene ved Black 76 så godt vi kan.

2.5 Øker forventninger til fremtidig prisusikkerhet når hydrologisk balanse forverres?

Siden vannkraften dominerer kraftproduksjonen i Norge, setter den hydrologiske ressurs situasjonen rammer for hvor mye kraft som vil kunne produseres i Norge innenfor et gitt tidsrom. Vannkraften spiller også en viktig rolle i det nordiske kraftmarkedet.

Vi ønsker å undersøke nærmere om hydrologisk balanse ikke bare påvirker dagens forwardpriser gjennom energiknappheten, men om det i tillegg kan være en effekt der hydrologisk underskudd gir økt forventet volatilitet i forwardmarkedet. Dersom dette er tilfellet betyr dette at hydrologisk underskudd også gir høyere opsjonspriser, slik at det blir dyreste for aktørene å bruke opsjonsmarkedet til å redusere risikoen knyttet til sine posisjoner.

Vi benytter implisitt volatilitet som proxy for markedets forventninger til fremtidig prisusikkerhet, og spør om det er en sammenheng mellom den hydrologiske balansen og implisitt volatilitet. Kausaliteten her må i så fall gå fra hydrologisk balanse til implisitt volatilitet. For å kunne gi denne sammenhengen mening, må vi legge til grunn at den teoretisk beregnede implisitte volatiliteten faktisk uttrykker markedsaktørens vurdering av prisusikkerheten i fremtidige kraftkontrakter. Til tross for at vi avdekket klare svakheter ved denne størrelsen i kapittel 2.4, legger vi dette til grunn.

Intuitivt antar vi at en slik sammenheng vil være negativ. Det vil si at en negativ hydrologisk balanse – et negativt avvik fra det hydrologiske normalnivået – fører til høyere implisitt volatilitet enn i en hydrologisk normalsituasjon. Vi spør om negativ hydrologisk balanse innebærer et knappere energisystem hvor prisen på forwardkontrakter forventes å bli mer volatile, for eksempel ved at den blir mer sårbar for markedssjokk eller endringer i andre fundamentale prissdriver, enn ved en hydrologisk normalsituasjon. Dette er vår hypotese. Nullhypotesen blir at det ikke er noen
sammenheng mellom implisitt volatilitet og hydrologisk balanse. Vi ønsker å teste om vi kan finne grunnlag for en slik antagelse i data for hydrologisk balanse og egne beregninger av implisitt volatilitet. Dette gjør vi ved en enkel regresjonsanalyse.

Det kan argumenteres for at hypotesen heller bør testes på bakgrunn av historisk volatilitet, på grunn av usikkerheten rundt de beregnede implisitte volatilitetene. Historisk volatilitet vil imidlertid i mindre grad enn implisitt volatilitet, som per definisjon er framoverskuddende, kunne reflektere den hydrologiske balansen i dag, og heller slik den har vært. Den fundamentale forskjellen er likevel at vi her ikke ønsker å teste hvorvidt hydrologisk underskudd faktisk fører til mer volatil priser i forwardmarkedet, men om det påvirker markedsaktørenes vurdere av fremtidig volatilitet i forwardmarkedet.

2.5.1 Data
For å kunne teste om det er en sammenheng mellom implisitt volatilitet og det hydrologiske underskuddet, må vi lage flere tidsserier fra aktuelle data. Vi tar for oss perioden fra og med 2007 til og med 2010.

Hydrologisk balanse
Tidsserien for avviket mellom faktisk og normal hydrologisk balanse må beregnes på ukenivå, fordi magasindata publiseres én gang i uken. Serien bygger på data for magasinfylling i Norge og Sverige, snømagasin i Norge og nedbørsvarsler i Norge. Den er således bygd opp på samme måte som i Johnsen og Willumsen (2010). Vi har ikke tilgang til snødata fra Sverige og Finland. Magasinfyllingen i Finland er antatt å påvirke samlet hydrologisk balanse svært lite og er derfor utelatt. Tilsigdata er ikke inkludert i tidsserien. Tilsig påvirker, og er således korrelert med, endringen i fyllingsgraden i vannmagasinene, og hensyntas derigjennom. Vi har derimot inkludert nedbørsvarsler. Dette er informasjon aktørene har tilgang til og som de vil kunne legge til grunn i sine vurderinger.

Avviket fra normalmagasinfylling i Norge og Sverige, og avviket fra normal snøbeholdning i Norge, ved slutten av uke \(t \), publiseres onsdag i uke \(t+1 \). Nedbørsvarsler for uke \(t+1 \), som de foreligger ved utgangen av uke \(t \), publiseres samme dag. I sum gjelder altså dette avviket ved utgangen av uke \(t \). Den hydrologiske balansen ved utgangen av uke \(t \), vil ligge til grunn for markedsaktørenes vurderinger for uke \(t+1 \), gitt at de har denne informasjonen. Vi antar altså at det er den hydrologiske balansen ved slutten av forrige uke som påvirker implisitt volatilitet denne uken. Dette må hensyntas i regresjonen. Vi modellerer derfor hydrologisk balanse med én ukes lag.

I regresjonsanalysen er hele tidsserien addert med 50, slik at hele serien har positive verdier. Dette er gjort for at variablen skal kunne inngå på logaritmisk form. Det påvirker ikke analysen av sammenhengen mellom implisitt volatilitet og hydrologisk balanse.
Implisitt volatilitet

Det er viktig at implisitt volatilitet beregnes fra nøyaktig samme tidspunkt som opsjonsprisingen blir gjennomført. Om dette ikke er tilfelle vil for eksempel pris på underliggende kunne ha endret seg noe, noe som vil påvirke utregningene av implisitt volatilitet. Vi hensyntar dette ved at alle observasjoner er gjort på samme tidspunkt (dag).

Med hensyn til volatilitetssmil og –termininstruktur, har vi gjort noen stikkprøver i vårt eget datamateriell som viser de samme tendensene som de tidligere arbeidene vi har redegjort for. Vi forsøker å hensynta dette når vi skal konstruere tidsserien for implisitt volatilitet.

Vi står overfor flere utfordringer når vi skal konstruere en dataseire fra våre beregninger av implisitt volatilitet. For det første må vi velge hvilke opsjoner vi skal legge til grunn. For det andre må vihandle problemet med tidsavhengig volatilitet, det vil si at volatiliteten til underliggende øker mot levering av underliggende. For det tredje må vi konstruere en tidsserie med samme oppløsning som tidsserien for den hydrologiske balansen – på ukenivå.

Hver dag noteres priser på opsjoner med kvartalskontrakter og på opsjoner med årskontrakter som underliggende. Vi velger å bruke implisitt volatilitet beregnet fra opsjoner med årskontrakter som underliggende. Grunnen til dette er at volatiliteten til kvartalskontrakter kan variere med kvartalene. Ved å benytte årkontrakter slipper vi å vurdere sesongvariasjoner med hensyn på underliggende. Vi har hver handledag implisitte volatiliteter for minst to opsjoner med årskontrakter som underliggende. Underliggende er årkontrakter for år t+1 og t+2. For hele utvalgsperioden ble det handlet opsjoner med forfall i desember. For år t+1 ble det i 2009 og 2010 også handlet opsjoner med forfall i mars og

¹ Beregninger fra priser på salgsopsjoner vil gi samme implisitt volatilitet gitt at put-call-pariteten holder. Vi har gjort stikkprøver som underbygger at denne holder for opsjonsprisene som er oppgitt av Nasdaq OMX.
september. Vi ser i det videre bort fra disse opsjonene. Av de to opsjonene som til enhver tid ligger til grunn har den ene løpetid – tid til forfall – mellom ett og to år (lang løpetid), mens dens andre har løpetid under ett år (kort løpetid).

Vi legger alltid til grunn implisitt volatilitet for opsjonen som er nærmest at-the-money, det vil si opsjonen hvor utøvende pris, strike, er nærmest prisen på den underliggende forwardkontrakten. Implisitt volatilitet øker når opsjonens forfall nærmer seg. Figur 2.5.2 under illustrerer hvordan implisitt volatilitet øker mot forfallsdatoen\(^1\) for at-the-money-opsjoner med underliggende årskontrakter. Vi ser en tendens til at volatiliteten øker når forfall nærmer seg, selv om denne ikke er utvetydig. De siste dagene før forfall er kurvene uansett svært bratte. Den beregnede implisitte volatiliteten er altså svært høy rett før forfall.

Figur 2.5.2 Implisitt volatilitet for opsjoner at-the-money med underliggende årskontrakter.

![Implisitt volatilitet for opsjoner at-the-money med underliggende årskontrakter](image)

På denne bakgrunn konstruerer vi en dataserie der vi forsøker å låse fast opsjonens tid til forfall. Det gjør vi ved å vekte slik at gjennomsnittet av de to opsjonene holder løpetiden konstant. For å kunne vekte de implicitte volatilitetene på en best mulig måte skulle vi helst hensyntatt at utviklingen mot forfall ikke er lineær, men heller følger en utvikling som blir eksponensiell nær forfall (negativ eksponensiell med hensyn på løpetid). For enkelhets skyld legger vi likevel til grunn en lineær sammenheng når vi vekter opsjonene, til tross for at økningen i volatiliteten er betydelig større de siste dagene mot forfall. Vi vekter opsjonene som følger

\(^1\) Inntil dagen før forfall.
\[\lambda_{\text{kort}} T_{\text{kort}} + \lambda_{\text{lang}} T_{\text{lang}} = \tau_{\text{fast}} \]

\(\lambda_{\text{kort}} \) og \(\lambda_{\text{lang}} \) er vektene av opsjonene med hhv. kort og lang løpetid – \(\tau_{\text{kort}} \) og \(\tau_{\text{lang}} \).

Vi har videre at \(\lambda_{\text{kort}} + \lambda_{\text{lang}} = 1 \).

\(\tau_{\text{fast}} \) er opsjonenes faste vektede løpetid. Vi velger denne til 360, som er det antall dager som Microsoft Excel beregner til ett år. Det betyr at vi vekter opsjonene med kort og lang løpetid slik at det vektede gjennomsnittet blir 360 dager. Ved å velge dette nivået på fast løpetid sørger vi for at opsjoner med kort tid til forfall, og opsjoner hvor handelen nettopp er startet og hvor handelsvolumet\(^1\) trolig er minst, vektes minst. Opsionen med lang løpetid skifter til å være opsjonen med kort løpetid når opsjonen med kort løpetid har hatt forfall og det tilbys opsjoner på ny årskontrakt.

Det kan vises at

\[\lambda_{\text{kort}} = \frac{\tau_{\text{fast}} - \tau_{\text{lang}}}{\tau_{\text{kort}} - \tau_{\text{lang}}} \]

Vektingen av en kontrakt vil gjennom løpetiden endre seg slik at \(\Delta \lambda_{\text{kort}} = -\Delta \lambda_{\text{lang}} \) og disse vil være konstante. Vektingen er sterkest for opsjonen hvis løpetid til enhver tid er nærmest \(\tau_{\text{fast}} \). Tidserien for hydrologisk balanse er som vist konstruert som serie på ukenivå. Tidserien for implisitte volatiliteter må beregnes på samme nivå. Vi omregner fra daglige data til ukedata ved å beregne ukentlige gjennomsnitt, fra og med mandag til og med fredag, av den vektede implisitte volatiliteten.

Å anta en lineær sammenheng i volatiliteten med hensyn på opsjonens løpetid kan være en kilde til feil i analysen. Vi kunne omgått dette problemet ved å inkludere løpetiden som en variabel i regresjonslikningen, i stedet for å låse fast løpetiden i tidserien. Det kunne gitt en mer presis modellering av sammenhengen mellom tid til forfall og implisitt volatilitet.

Figur 2.5.3 Tidserie implisitt volatilitet.

\(^{1} \) Vi har ikke vurdert handelsvolumet for opsjonene. Dersom opsjoner med ett år til forfall er lite omsatt, kan det medføre at vår tidsserie blir lite reliabel med hensyn på den beregnede volatilitetens evne til å si noe om prissikkerheten i markedet. I vår analyse har vi implisitt antatt at opsjonsprisene ikke er påvirket av variasjoner i handlet volum.
Figur 2.5.3 viser hvordan tidsserien for implisitt volatilitet har utviklet seg fra 2007 til og med 2010. Vi ser at den implisitte volatiliteten var betydelig høyere under finanskrisen mot slutten av 2008 og begynnelsen av 2009. I regresjonsanalysen er den implisitte volatiliteten multiplisert med 100 for å forenkle tolkningen av resultatene.

Pris på underliggende forwardkontrakt og forwardkontrakter på kull og gass
Vi har redegjort for at vi ønsker å teste om hydrologisk balanse påvirker markedsaktørenes vurdering av fremtidig prissikkerhet, her den implisitte volatiliteten. Dette gjør vi ved en enkel regresjonsanalyse. Vi tar ikke mål av oss til å modellere den implisitte volatiliteten perfekt, vi ønsker bare å teste om de data vi har underbygger hypotesen vår eller ikke. Det er flere elementer som påvirker markedsaktørenes vurdering av prissikkerheten, og en fullstendig modellering går utenfor formålet med denne oppgaven.

På samme måte som for implisitte volatiliteter konstruerer vi tidsserier for den underliggende forwardkontrakten, og forwardkontrakter for kull og gass front year og 2. Vi beregner tidsseriene på grunnlag av de samme vektene som tidsseren for implisitte volatiliteter, og beregner ukegjennomsnitt.

1 I den grad den hydrologiske balansen kan sies å ha påvirket prisene på enten kull, gass eller CO2-kvoter, er trolig påvirkningen på CO2-kvoter prisene størst. Vi velger derfor ikke å se nærmere på CO2-kvoter prisene. Vi regner prisene på kull og gass å være upåvirket av den hydrologiske balansen i Norden.

2 Prisene er notert i Storbritannia og Nederland, og er omregnet til euro.
Figur 2.5.4 viser hvordan underliggende forwardpris og forwardprisen på kull og gass har utviklet seg gjennom utvalgsperioden. Figuren illustrerer at det er en tett sammenheng mellom disse brenselprisene og forwardprisen på kraft i Norden.

Vi ser at prisene steg fram mot finanskrisen mot slutten av 2008, før de falt bratt. Etter det har det i hovedsak vært stigning i prisene på disse forwardkontraktna. Forwardprisene på kull og gass utviklet seg svært likt de første to årene i utvalgsperioden, men prisstigningen på kull har vært sterkere de siste to årene.

Tabell 2.5.1 viser at korrelasjonen mellom kull-/gasspris og forwardkontraktna er positiv og sterk. Korrelasjonen mellom kullpris og hydrologisk balanse er fraværende, mens den (tilfeldigvis) er positiv for gasspris og hydrologisk balanse.

<table>
<thead>
<tr>
<th>Dataserier</th>
<th>Korrelasjon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kull</td>
<td>Forwardkontrakt</td>
</tr>
<tr>
<td>Gass</td>
<td>Forwardkontrakt</td>
</tr>
<tr>
<td>Kull</td>
<td>Hydrologisk balanse</td>
</tr>
<tr>
<td>Gass</td>
<td>Hydrologisk balanse</td>
</tr>
</tbody>
</table>

2.5.2 Regresjonsanalyse

I den enkle regresjonsanalysen tar vi utgangspunkt i at den implisitte volatiliteten avhenger av forwardpriser på kull\(^1\) og hydrologisk balanse. Det legges til grunn at sammenhengen for begge variablene går gjennom prisen på opsjonens underliggende forwardkontrakt.

Vi gjør regresjoner med utgangspunkt i følgende generelle uttrykk:

\[
IV = f(H, P^K, D^F)
\]

der

\[
IV = \text{implisitt volatilitet multiplisert med 100}
\]

\(^1\) Det er testet regresjoner med dataserier for både gass- og kullpris. Estimatene og forklaringskraften ble relativt like. Videre i regresjonsanalysen legges bare kullprisen til grunn.

\(^2\) Det kan argumenteres for at finanskrisen startet langt tidligere enn uke 48 i 2008, men den medførte ingen store endringer i implisitt volatilitet før da.
\[H = \text{hydrologisk balanse ved utgangen av uke } t-1 \text{ addert med 50} \]
\[P^K = \text{forward pris på kull} \]
\[D^F = \text{dummy for finanskrisen – tar verdien 1 fra og med uke 48 i 2008 til og med uke 23 i 2009} \]

Vi ønsker å undersøke sammenhengen mellom implisitt volatilitet og hydrologiske balanse (og kullprisen), men vi er usikre på hvordan denne sammenhengen er. Spesifikasjonen av funksjonsformen er derfor ikke åpenbar. Vi tester tre funksjonsformer\(^1\) der vi varierer bruken av variablene på logaritmisk og lineær form.

Vi er ikke opptatt av sammenhengen mellom kullpris og implisitt volatilitet i seg selv. Regresjonstester viser at spesifikasjonen av kullprisen på nivå eller logaritmisk form spiller liten rolle for nivået og skarpheten til koeffisienten til hydrologisk balanse. Vi velger åholde kullprisen på samme form som variabelen for hydrologisk balanse.

Det enkleste alternativet er å modellere en lineær sammenheng mellom implisitt volatilitet og hydrologisk balanse. Det innebærer at koeffisienten til hydrologisk balanse viser hvor mange prosentpoengs endring i implisitt volatilitet vi kan forvente ved en endring i hydrologisk balanse på én TWh.

En annen mulighet er at begge variablene er uttrykt på logaritmisk form – en log-lineær sammenheng. Det innebærer at koeffisienten til hydrologisk balanse uttrykker hvor mange procentendringen i implisitt volatilitet vi forventer ved én procent endring i hydrologisk balanse. Her må vi huske på at dateringen for hydrologisk balanse er manipulert ved at den er addert med 50. Lave verdier på denne variablen tilsier altså stort underskudd. Det betyr for det første at en absolutt endring i hydrologisk balanse innebærer større prosentvis endring ved stort hydrologisk underskudd enn ved hydrologiske normalnivåer. Det skal altså mindre til før hydrologisk balanse endrer seg med én prosent når underskuddet er stort. Det innebærer at implisitt volatilitet forventes å øke mer for en absolutt endring i hydrologisk balanse, hvis det i utgangspunktet var hydrologisk underskudd. For det andre forventer vi at implisitt volatilitet øker mer i prosentpoeng dersom implisitt volatilitet i utgangspunktet er høy.

Funksjonsformen kan tilpasses slik at bare den førstnevnte egenskapen tas med. Det innebærer at hydrologisk balanse er på logaritmisk form, men ikke implisitt volatilitet.

Med utgangspunkt i tre mulige funksjonsformer setter vi opp regresjonslikningen hvor \((ln)\) innebærer at vi ønsker å gjøre regresjoner både på nivå og logaritmisk form for etterfølgende variabler:

\[(ln)IV = a + b(ln)H + c(ln)P^K + dD^F + \text{residual} \]

\(a\) er konstantleddet. Dette blir den estimerte verdien på IV dersom verdiene på alle de avhengige variablene er null. Vi antar i utgangspunktet at residualene er såkalt hvit støy. Men denne antagelsen vil trolig ikke holde vann med våre ukentlige daterier og enke regresjonslikninger.

Regresjonslikningen(e) estimeres ved hjelp av minste kvadraters metode (OLS), og gir følgende koeffisient- (standardavvik i parentes) og t-verdier:

\(^1\) Vi har også testet regresjoner hvor de uavhengige variablene er polynomer, uten at dette ga gode resultater.
Tabell 2.5.2 Parameterverdier på koeffisientene til variablene (standardavvik i parentes) med t-verdier for likning 1.

<table>
<thead>
<tr>
<th>1</th>
<th>Kons. t</th>
<th>H t</th>
<th>P^n t</th>
<th>D^p t</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>26,839</td>
<td>26,1</td>
<td>-0,081</td>
<td>-6,84</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td>(1,027)</td>
<td></td>
<td>(0,012)</td>
<td>(0,011)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,062</td>
<td>5,49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14,630</td>
<td>26,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2.5.3 Parameterverdier på koeffisientene til variablene (standardavvik i parentes) med t-verdier for likning 2.

<table>
<thead>
<tr>
<th>2</th>
<th>Kons. t</th>
<th>lnH t</th>
<th>lnP^n t</th>
<th>D^p t</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnIV</td>
<td>2,878</td>
<td>19,2</td>
<td>-0,080</td>
<td>-5,87</td>
<td>0,74</td>
</tr>
<tr>
<td></td>
<td>(0,150)</td>
<td></td>
<td>(0,014)</td>
<td>(0,032)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,172</td>
<td>5,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,438</td>
<td>22,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 2.5.4 Parameterverdier på koeffisientene til variablene (standardavvik i parentes) med t-verdier for likning 3.

<table>
<thead>
<tr>
<th>3</th>
<th>Kons. t</th>
<th>lnH t</th>
<th>lnP^n t</th>
<th>D^p t</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>15,351</td>
<td>3,44</td>
<td>-2,212</td>
<td>-5,48</td>
<td>0,79</td>
</tr>
<tr>
<td></td>
<td>(4,464)</td>
<td></td>
<td>(0,403)</td>
<td>(0,944)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,823</td>
<td>5,11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14,986</td>
<td>26,3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alle koeffisienter er signifikante på 99 % konfidensnivå. Forklaringskraften til regresjonslikningene er relativt god og ikke veldig ulike. Hydrologisk balanse og kullpris, sammen med dummyvariablen for finanskrisen, synes å forklare store deler av variasjonen i implisitt volatilitet.

Resultatene for likning 1 viser at implisitt volatilitet øker med 0,081 prosentpoeng dersom den hydrologiske balansen forverres med én TWh. Det betyr at et underskudd på 40 TWh antas å utgjøre over tre prosentpoengs økning i implisitt volatilitet.

I likning 2 er koeffisienten til den hydrologiske balansen -0,080. Dette betyr at en forverring av den hydrologiske situasjonen med én prosent vil forårsake en økning i implisitt volatilitet på 0,08 prosent. Som redegjort for over, innebærer dette at økningen i implisitt volatilitet blir sterkere jo dårligere den hydrologiske balansen var i utgangspunktet, og jo større den implisitte volatiliteten var i utgangspunktet.

I likning 3 blir koeffisienten til hydrologisk balanse -2,212. Det kan tolkes som at én prosents forverring av den hydrologiske balansen medfører en økning på 0,02212 prosentpoeng i implisitt volatilitet. Her er altså økningen i implisitt volatilitet uavhengig av nivået på den avhengige variabelen i utgangspunktet, men blir større jo verre den hydrologiske balansen var i utgangspunktet. Ikke overraskende er finanskrisedummmien svært signifikant og tar en høy verdi.
Figur 2.5.5 viser absoluttverdien av restleddene\(^1\) eller feilsimuleringen i prosentpoeng, plottet mot den hydrologiske balansen. De største restleddene finner sted når den hydrologiske balansen er mellom normal og 35 TWh i underskudd. Modellens forklaringskraft er ikke perfekt og det er til tider betydelige restledd.

Den samme figuren antyder problemer med heteroskedastisitet, det vil si at variansen ikke er konstant over variabelen hydrologisk balanse. Figur 2.5.6 under viser restleddene til likning 1. Den viser at det er betydelige autokorrelasjonsproblemer i modellen – restleddene er ikke uavhengig av hverandre.

\(^1\) For modellen hvor den avhengige variabelen er på logaritmisk form, er residualene skalert opp.

Det er ikke noe hovedmål med våre regresjonslikninger å avdekke den korrekte sammenhengen mellom implisitt volatilitet og hydrologisk balanse. Vi går derfor ikke videre med å finne den korrekte funksjonsformen, og vi godtar de manglene modelleringen vår medfører.

Våre resultater peker i retning av at markedsaktørenes vurdering av fremtidig prisusikkerhet, forstått som implisitt volatilitet, henger negativt sammen med den hydrologiske balansen. Teoretisk har vi også redegjort for at denne sammenhengen går gjennom hydrologisk balansens påvirkning på opsjonens underliggende forwardpris. Gitt at vi kan stole på de resultatene vi har funnet, ser vi en begrensning, men ikke ubetydelig sammenheng mellom implisitt volatilitet og hydrologisk balanse.

Analysen er for enkel til å sette to streker under svaret og forkaste nullhypotesen om at hydrologisk balanse ikke påvirker markedsaktørenes vurdering av fremtidig prisusikkerhet. Det behøves en langt grundigere analyse, med fokus på den økonometriske modelleringen, for å kunne konkludere. Resultatene underbygger likevel hypotesen.

2.5.3 Kritikk av analysen

Analysen kan kritisieres både ut fra antagelsen om at vår beregnede implisitt volatilitet er en god indikator for markedsaktørenes vurdering av fremtidig prisusikkerhet, og ut fra regresjonsanalyserne.

For det første ble omsatt volum sett bort fra ved beregningen av tidsserien implisitt volatilitet. I den grad serien inneholder prising av opsjoner som er lite eller ikke omsatt, utgjør dette en feilkilde i analysen. Det kan argumenteres for at vi i stedet for selv å beregne implisitt volatilitet burde hentet inn volatilitetsdata fra meglere, og beregnet en tidsserie basert på deres volatilitetsvurderinger. Vi har imidlertid sett det som mest hensiktsmessig å gjøre beregningene selv.

For det andre kan den påståtte negative sammenhengen mellom implisitt volatilitet og hydrologisk balanse stemme fra at sikringsbehovet til kraftkjøpere øker når det hydrologiske underskuddet øker. En slik forklaring innebærer at etterspørselen etter sikring i opsjonsmarkedet øker, og at denne etterspørselen driver opp opsjonsprisen. I Black 76 hensyntas økt forwardpris som følge av økt hydrologisk underskudd, men dersom denne ikke i tilstrekkelig grad forklarer det økte sikringsbehovet kan dette få utslag i økt implisitt volatilitet, selv om markedsaktørenes vurdering av prisusikkerheten ikke har endret seg.

Med hensyn til regresjonsanalysen, er et hovedpoeng at utelatte variablere som kan være korrelerte med variablene vi har inkludert, kan forklare sammenhenger vi påstår å ha funnet. Analysen av restledde/residualene – variasjonen i implisitt volatilitet som modellen ikke kan forklare – viser åpenbare avhengigheter i tid.

Det kan også hevdes at vi burde ha testet likningene på et post-sample. For eksempel kunne vi undersøkt hvor godt likningene predikerer implisitt volatilitet i første kvartal 2011.
Det er flere tilnærminger for å analysere sammenhengen mellom prisusikkerheten i markedet og hydrologisk balanse nærmere. Det kunne vært nyttig å analysere om publisering av magasindata på onsdager fører til endringer i volatiliteten rett i etterkant.

2.5.4 Konklusjon
Vi har ikke tatt mål av oss å forklare all variasjon i implisitt volatilitet. Våre regresjoner peker likevel i retning av at det er en negativ sammenheng mellom implisitt volatilitet og hydrologisk balanse. Regresjonsanalysen er svært enkel og det er nødvendig med en grundigere analyse for å kunne forkaste nullhypotesen.

Gitt at vi godtar sammenhengen fra regresjonsanalysen om at det er en negativ sammenheng mellom implisitt volatilitet og hydrologisk balanse, er det fortsatt usikkert om vi kan trekke samme slutning om forholdet mellom markedsaktørenes vurdering av fremtidig prisusikkerhet og hydrologisk balanse. Dette skyldes svakheter ved opsjonsprisingsmodellen Black 76, som ligger til grunn for beregningen av implisitt volatilitet. Vi forsøkte å ta hensyn til disse svakheterne da tidsserien for implisitt volatilitet ble konstruert.

2.6 Referanser

Glover, James: *A radial basis function approach to reconstructing the local volatility surface of European options*, University of Witwatersrand, Johannesburg. 2010.

Mosegaard, Tor: *Risikoledelse i Elmarkedet – Optioner, et redskab eller en illusion?*, kandidatafhandling ved Insittut for Øekonomi, Århus Universitet. 2008.

3 Vedlegg

Figur 3.7 Dansk vindkraftproduksjon, 2010 - 2011 GWh/veke. Kjelde: Energinet.dk

Denne serien utgis av Norges vassdrags- og energidirektorat (NVE)

Utgitt i Rapportserien i 2011

Nr. 1 Samkøyring av vind- og vasskraft. Betre utnytting av nett og plass til meir vindkraft (42 s.)

Nr. 2 Årsrapport for tilsyn 2010. Svein Olav Arnesen, Jan Henning L’Abée-Lund, Anne Rogstad (36 s.)

Nr. 3 Kvartalsrapport for kraftmarknaden. 4. kvartal 2010. Tor Arnt Johnsen (red.)

Nr. 4 Evaluering av NVE sitt snøstasjonsnettverk. Bjørg Lirhus Ree, Hilde Landrø, Elise Trondsen, Knut Møen (105 s.)

Nr. 5 Landsomfattende mark- og grunnvannsnett. Drift og formidling 2010. Jonatan Haga, Hervé Colleuille (41 s.)

Nr. 6 Lynstudien. Klimaendringenes betydning for forekomsten av lyn og tilpasningsbehov i kraftforsyningen. (29 s.)

Nr. 7 Kvartalsrapport for kraftmarknaden. 1. kvartal 2011. Tor Arnt Johnsen (red.) (69 s.)

Nr. 8 Fornyelse av NVE hydrologiske simuleringsystemer (22 s.)

Nr. 9 Energi bruk. Energi bruk i Fastlands-Norge (59 s.)

Nr. 10 Økt installasjon i eksisterende vannkraftverk (91 s.)

Nr. 11 Kraftsituasjonen vinteren 2010/2011 (70 s.)

Nr. 12 Utvikling av regional snøkredvarsling. Rapport fra det første året. Rune Engeset (red.) (76 s.)

Nr. 13 Energi bruk. Energi bruk i Fastlands-Noreg (59 s.)

Nr. 14 Plan for skredfarekartlegging. Status og prioriteringer innen oversiktskartlegging og detaljert skredfarekartlegging i NVEs regi

Nr. 15 Plan for skredfarekartlegging - delrapport fjellskred, steinskred og steinsprang

Nr. 16 Plan for skredfarekartlegging – delrapport jordskred og flomskred

Nr. 17 Plan for skredfarekartlegging – delrapport kvikkleireskred

Nr. 18 Plan for skredfarekartlegging – delrapport snøskred og sørpeskred

Nr. 19 Kvartalsrapport for kraftmarknaden. 2. kvartal 2011. Tor Arnt Johnsen (red.) (70 s.)
Norges vassdrags- og energidirektorat
Middelthunsgate 29
Postboks 5091 Majorstuen,
0301 Oslo
Telefon: 22 95 95 95
Internett: www.nve.no