Plan for skredfarekartlegging

Delrapport jordskred og flomskred

16 2011
Plan for skredfarekartlegging

Delrapport jordskred og flomskred

Norges vassdrags- og energidirektorat
2011
Rapport nr 16/2011

Plan for skredfarekartlegging – Delrapport jordskred og flomskred

Utgitt av: Norges vassdrags- og energidirektorat
Redaktør: Terje H. Bargel
Medvirkende: NVE: Terje H. Bargel (gruppeleder), Åse Tharan Fergus, Graziella Devoli, Kjartan Orvedal, Ivar Peereboom, Eli K. Øydvin
NGU: Knut Stalsberg, Kari Sletten, Luzia Fischer, Lena Rubensdotter, Raymond Eilertsen

Trykk: Elektronisk format
ISSN: 1501-2832
ISBN: 978-82-410-0757-6

Sammendrag: Målet med arbeidet som presenteres i dette dokumentet er å påvise områder i Norge som bør kartlegges med tanke på jordskred samt å foreslå en metode for identifisering av områder som kan være utsatt for flomskred langs elver og vassdrag.

Emneord: Jordskred, farekartlegging, faresonekart, flomskred, plan for skredfarekartlegging.

Norges vassdrags- og energidirektorat
Middelthunsgate 29
Postboks 5091 Majorstua
0301 OSLO

Telefon: 22 95 95 95
Telefaks: 22 95 90 00
Internett: www.nve.no

Desember 2011
Innhold

Forord .. 5
Sammendrag ... 7
1 Innledning ... 9
 1.1 Klimaendringer og skred ... 9
 1.2 Økt nedbør fører til økt skredaktivitet .. 11
2 Definisjoner og beskrivelse av skredtyper ... 12
 2.1 Jordskred – definisjon og karakteristika ... 13
 2.2 Utløsning av jordskred ... 16
 2.2.1 Skråningshelning .. 16
 2.2.2 Løsmasser .. 16
 2.2.3 Stabilitet .. 16
 2.2.4 Skredutløsende faktorer ... 18
 2.3 Flomskred - definisjon og karakteristika .. 18
3 Status pr. i dag – hvilke skredfarekart finnes? 20
 3.1 Aktsomhetskart ... 20
 3.1.1 Jordskred .. 20
 3.1.2 Flomskred .. 21
 3.2 Faresonekart ... 21
 3.2.1 Jordskred .. 21
 3.2.2 Flomskred .. 22
 3.3 Risikokart .. 22
4 Metodeutvikling og tilgjengelige grunnlagsdata – kvalitet og dekning ... 23
 4.1 Metodeutvikling ... 23
 4.2 Grunnlagsdata ... 23
5 Identifisering og prioritering av områder med behov for faresonekart ... 24
 5.1 Jordskred ... 24
 5.1.1 GIS-analyse jordskred – metoder og data 24
 5.1.2 Gjennomgang av analyseresultatet 26
 5.1.3 Skredhendelsesdatabasen kombinert med befolkningstall 27
 5.1.4 Resultater av NVEs spørreundersøkelse til kommunene 27
 5.1.5 Klimascenarier .. 27
 5.1.6 Kontroll av foreløpig rangering mot lokalkunnskap på NVEs
 regionkontor .. 27
 5.1.7 Innspill fra fylkesmenn og fylkeskommuner 27
 5.1.8 Prioriteringsskriterier og vekting av skredrelevante parametre 28
 5.1.9 Prioritering av områder for kartlegging av fare for jordskred . 32
 5.1.10 Vurdering av resultatene .. 33
 5.2 Flomskred ... 34
 5.2.1 GIS-analyse flomskred – metode og data 34
Forord

Denne rapporten sammenfatter arbeidet som prosjektgruppa jordskred og flomskred under ”Plan for statlig skredfarekartlegging” har gjort i forhold til identifisering av områder i Norge som bør kartlegges med tanke på jordskred. Videre gis det forslag til metode for identifisering av områder med tanke på kartlegging av flomskred som kan forekomme langs eksisterende elver og bekker.

Prosjektgruppa har foretatt en helhetlig tilnærming for skredtypene jordskred og flomskred. Det er gjort opp status i kartleggingsarbeidet, vurdert tilgang til og behov for grunnlagsdata, metodeutvikling og gitt anbefalinger. I tillegg er det foretatt prioritering av geografiske områder for farekartlegging av jordskred, ut fra dagens risikobilde.

Denne rapporten er en av fire delutredninger som danner grunnlaget for ”Plan for skredfarekartlegging” (NVE-rapport 14/2011).

Rapporten er utarbeidet i samarbeid mellom NVE og NGU.

Takk til medvirkende!

Oslo, desember 2011

[Signature]

Anne Britt Leifseth
direktør for skred-
og vassdragsavdelingen

Eli K. Øvdvin
fung. seksjonssjef
Sammendrag

Målet med arbeidet som presenteres i dette dokumentet er å påvise områder i Norge som bør kartlegges med tanke på jordskred samt å foreslå en metode for identifisering av områder som kan være utsatt for flomskred. Ved identifisering og utvalg av områder, er antall utsatte mennesker hovedkriteriet for prioriteringen.

Jordskred og flomskred er begge vann- og klimarelaterte skred der frekvensen kan endre seg som resultat av klimaendringer. Det blir derfor gitt en kort orientering om forholdet mellom klima og skred i dokumentet.

Klassifisering av disse skredtypene har lenge vært diskutert. Det er mange ulike parametere som kan brukes i forhold til klassifisering, for eksempel materialtype og materialsammensetning (sedimentegenskaper), vann/sediment forhold, totalt volum, bevegelseshastighet, bevegelsesstype, landformer (terrengets bratthet) og avsetningsforhold. Avhengig av hvilket utgangspunkt en velger vil en kunne lage ulike klassifikasjoner som tilfredsstiller ulike behov. Av den grunn finnes en rekke forslag i litteraturen både til klassifikasjonssystemer og til nomenklatur med ulike navn på samme fenomen. For en bruker er dette svært forvirrende. Vi foreslår derfor å bruke bare de to betegnelsene jordskred og flomskred med evt. supplerende spesifikasjoner med parametrene nevnt over. Dette gir en enkel og lett forståelig modell som vi tror vil kunne tilfredsstille norske forhold.

Områdene som foreslås prioritert for nærmere kartlegging med tanke på jordskred er valgt ut på grunnlag av de kjente skredutløsende faktorene: Skråningshelning og tilstedeværelse av løsmasser sett i sammenheng med terrengformene. Risikovurderingen er basert på antall utsatt mennesker (antall adressepunkter) og infrastruktur som potensielt ligger innenfor rekkevidden av et eventuelt skred. Ved hjelp av en nærmere spesifisert GIS-analyse basert på parametre innen de tre nevnte datassetene ble ca. 30.000 områder over hele landet identifisert. Alle identifiserte områder er gjennomgått videre ut fra ulike skredfaglige vurderinger som ligger til grunn ved utvalg og prioritering av områder for farekartlegging. Viktige kriterier ved vurdering av potensiell jordskredfare er blant annet skog i løsneområdet, størrelse på nedslagsfelt, terrengdetaljer og tidligere skred.

Detaljerte topografiske kart (ØK) og flyfoto er benyttet i analysene. I tillegg er svarene fra den kommunale spørreundersøkelsen med lokal kunnskap og informasjon gjennomgått og vurdert opp mot identifiserte områder.

Av disse er områder med prioritert 1 og 2 tatt inn i Plan for skredfarekartlegging. I tillegg listes det i dette dokumentet opp områder med lavere prioritet (prioritet 3).

For flomskred har NVE siden 2007 arbeidet videre med en metode, basert på å identifisere vassdrag med stor forskjell på middelflom og ekstremflom. Sannsynligheten for at det skal kunne oppstå kraftig erosjon av løsmassene langs en elvestrekning som igjen kan føre til et flomskred er blant annet avhengig av den relative forskjellen mellom vannføringen ved en ekstremflom og flomvannføringer som opptrer ofte.

Anbefalinger:

• Klassifikasjon: Vi foreslår å benytte begrepene jordskred og flomskred med evt. supplerende/deskriptive adjektiver som synonymer til de engelske betegnelsene: debris slide, debris flow og debris flood. De primære forskjeller mellom jordskred og flomskred er knyttet til ulike løsnemekanismer, løsningstilpasninger, bevegelsesmekanismer og avsetningsformer.

• Det er nødvendig med kvartærgeologiske kart minimum i målestokk 1:50.000 i områder som skal skredfarekartlegges. Ideelt bør kartene ha en detaljeringsgrad som tilsvarer en målestokk på 1:10 000 eller 1:5000.

• Metodeutvikling for aktsomhetskartlegging for jord- og flomskred: Samordne metode- og modellutvikling jordskred og flomskred.

• Metodeutvikling for faresonekartlegging: Gjennomfør detprosjekt i en kommune med høy prioritet for flere skredtyper.

• Faresonekartlegging jordskred: Faresonekartlegge områdene med størst skadepotensial etter prioriterteinområdliste og kriterier for gjennomføring i plan for skredfarekartlegging (NVE rapport 14/2011).
1 Innledning

I Norge fører jord- og flomskred hvert år til stor skade på infrastruktur og boliger, men heldigvis sjelden til tap av menneskeliv.

I løpet av de siste 10 årene har det vært flere slike skredhendelser i Norge. Alle ble utløst av store og kraftige nedbørs mengder, gjerne i kombinasjon med andre faktorer som varmt vær, høy grunnvannsstand og stor snøsmelting (Colleuille & Engen 2009):

- **November 2000**: 90 hendelser på Sør-Østlandet skapte mange små skader på jordbruk og andre eiendommer. Flere veier og jernbaner var stengt og mange husstander evakuert. Flere hus og gårder ble skadet (Jaedicke og Kleven, 2008)
- **November 2005**: 1 person drept i hus under bygging i Bergen.
- **Mai 2008**: 4 hendelser i Otta i Oppland skapte mange skader på jernbane (Dovrebanen stengt) og veier (bl.a. E6). 2 hus totalskadet og 150 personer ble evakuert.
- **Juni 2011**: Mer enn 100 hendelser i Gudbrandsdalen i sammenheng med flom, jordskred og flomskred. Bare i Veikledalen ved Kvarv i Nord-Odal gikk det 25-30 skred. Dessuten gikk en mengde jordskred/flomskred i skogs- og fjellområder. Også i Troms var det mange hendelser.
- **August 2011**: en rekke nye hendelser både i Valdres (Vang, Sør-Aurdal) på Vestoppland (Østre Toten), på Hedmarken (Stange) i Østerdal (Åmot, Stor-Elvdal) og i Trysil. Lenger nord i Gauldalen (Ålen) var det den største flom på minst 50 år med påfølgende stort antall jordskred. Nord-Trøndelag og Nordland ble også berørt.

1.1 Klimaendringer og skred

Klimaforskningen viser at vi kan forvente mer nedbør og økt frekvens av ekstreme nedbørsituasjoner i de kommende 50-100 år. I så fall kan dette blant annet medføre økt frekvens av alle former for vannrelaterte skred. Resultater fra forskningsprosjektet GeoExtreme (2009) viser mellom annet at de forventede klimaendringene de neste 50 årene antakelig vil føre til økt jordskredhyppighet i store deler av Norge, fra Trøndelag og nordover (Jaedicke mfl. 2008, Kronholm og Stalsberg 2009) (Figur 1.1).
Figur 1.1
Endringer i relativ hyppighet av jordskred som følge av framtidige klimaendringer (Kronholm og Stalsberg 2009).
1.2 Økt nedbør fører til økt skredaktivitet

I prosjektet GeoExtreme er det gjennomført en statistisk analyse av sammenhengen mellom mer enn 30 meteorologiske elementer og utløsningen av ulike historiske skredhendelser, og resultatene viser at nedbør er den hyppigste årsaken til skred løses ut. Analysen viste også at sammenhengene kan variere i ulike deler av landet. Sammenhengen er mest signifikant for snøskred, fulgt av jordskred, mens det bare er en svak sammenheng mellom nedbør og utløsning av steinsprang.

For jordskred er det ikke statistisk belegg for å regionalisere utløsningsårsakene. En tommerfingerregel sier imidlertid at hvis mer enn 8 prosent av årsnedbøren kommer i løpet av ett døgn, er det fare for jordskred.

Jordskred og flomskred blir ofte utløst av nedbør og/eller snøsmelting. Det antas derfor at frekvensen av de to skredtypene vil utvikle seg likt. Økningen i antall døgn med nye nedbør har betydning for endringen i hyppigheten av jordskred. Det forventes at skredhyppigheten vil øke mest langs kysten fra Nord-Norge til Vestlandet, da kortvarig og kraftig nedbør i form av regn er den viktigste utløsningsfaktoren i disse områdene. Det antas imidlertid at hele landet vil oppleve flere døgn med kraftig nedbør og påfølgende økt hyppighet av jordskred.

Det er også kjent at åpne områder er i ferd med å gro igjen som følge av færre dyr på utmarksbeite og et varmere klima. Etablering av skog vil kunne redusere skredaktiviteten en del steder. Det er også vanskelig å vite nøyaktig hvordan endringer i nedbørsåpning fra året til året kan påvirke skredaktiviteten. Dersom den økte nedbøren kommer som snø, kan vi anta at frekvensen av snøskred i fjellområdene øker. Men dersom mengden regn øker tilsvarende i lavlandet, vil sannsynligvis jord- og flomskred øke her.
2 Definisjoner og beskrivelse av skredtyper

Begrepet løsmasser benyttes om alle typer masser som ligger oppå fast fjell: stein, grus, sand, silt og leire, samt jordsmorn med høyt innhold av organisk materiale (torv og myr), eller masser som er deponert av mennesker. Som en presisering benyttes ofte i stedet egenskapsbeskrivende navn knyttet til løsmassesennens dannelse, som f.eks. marin leire, morene, forvitrimatingsmateriale osv.

Begrepet jordskred og flomskred blandes ofte sammen fordi det er en glidende overgang mellom dem. Ulikhetene er i dette dokumentet sammenstilt i tabellform for å lette oversikten. se tabell 2.1.

Tabell 2.1 Sammenligning mellom jordskred og flomskred

<table>
<thead>
<tr>
<th>Forhold i løsnoområde</th>
<th>Utlosningsmekanisme</th>
<th>Bevegelse og rekkevidde</th>
<th>Kjennetegn i avsetningsområde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordskred</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bratte, løsmassedekkedek skråninger (> 25-30°)</td>
<td>Intens/langvarig nedbør og/eller snøsmelting.</td>
<td>Utglidning av vannmettede masser som kan vokse i omfang, både i lengde- og bredderetning.</td>
<td>Tungeformede rygger (lober) og langsgående rygger (levéer) av grøvemateriale langs skredbanen og nedenfor i skredbanen der terrenget flater ut</td>
</tr>
<tr>
<td>Utenfor bekker og elver</td>
<td>Punktbredd eller tversgående sprekk i vannmettede løsmasser</td>
<td>Kan resultere i en massestrøm med stor rekkevidde.</td>
<td>Vifte av grovt materiale i øvre del av vifta og finmateriale utover i bunnen av skråningen (ofte brattere enn flomskredviftene)</td>
</tr>
<tr>
<td>En del finmateriale i massene, men også stein, grus og sand blandet med vegetasjon.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varierende vanninnhold.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flomskred</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opptrer langs klart definerte elve- og bekkeløp og raviner, giel eller skar der det vanligvis ikke er permanent vannføring.</td>
<td>Intens erosjon i sammenheng med svært stor vannføring danner en vannmettet sedimentstrøm</td>
<td>Stor hastighet og tetthet.</td>
<td>De groveste massene avsettes ved viftas rot (øverst på vifta), og gradvis finere masser avsettes utover i vifta (ofte jevnere overflate og en fremre front på flomskredviftene).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Svært stor rekkevidde.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selve flommen kan fortsette mye lengre enn løsmassene.</td>
<td></td>
</tr>
</tbody>
</table>

Side 12 av 46
2.1 Jordskred – definisjon og karakteristika

Jordskred er en rask massebevegelse av grov- og/eller finkornede løsmasser og noe vann, ofte iblandet vegetasjon. Skredene kan arte seg som langstrakte soner i bratt terreng, eller som grunne utglidninger i mindre bratt terreng uten skogvegetasjon.

De langstrakte jordskredene løsner gjerne i et punkt, og vannmettede masser beveger seg nedover langs en sone som blir gradvis bredere og bredere fordi nærliggende masser blir dratt med i skredet. Noen av disse skredbanene kan ha en tilnærmet trekantet form (se figur 2.1).

![Figur 2.1](image)

Langstrakt, trekantformet jordskred i Virumdalen, Sunndal, sannsynligvis utløst av steinsprang på vannmettet jord. Skredbanen er 1300 m lang.

Foto: Terje H. Bargel.

Figur 2.2

Grunne jordskred er ca. 0,5 – 3,0 m dype, og oppstår ofte i mindre brutt/kupert terreng med finkornet, vannmettet jord og leire, gjerne på dyrket mark (beiteland), eller i naturlige skråninger i terrenget i områder uten skogvegetasjon, (se figur 2.3). Skredene er særlig vanlige om våren, når jord eller leire kan gli opp på telen, men også etter intense nedbørs- og flomperioder ellers i året. Slike skred er vanligvis små, men ødeleggelsler kan forekomme lokalt og er vanskelig å iverksette tiltak imot. De kan også oppstå som konsekvens av planeringsarbeider uten tilstrekkelig drenering, hvor fyllmasser glir ut og drar med seg en del av den omkringliggende originale grunnen.
Figur 2.3
2.2 Utløsning av jordskred

Sannsynligheten for at jordskred utløses kan til en viss grad forutsies dersom en har svært gode nedbørsprognoser, men en kan ikke forutse detaljert hvor skredene kommer til å gå.

Det er prinsipielt fire betingelser som må være oppfylt for at jordskred skal bli utløst:

A. Det må være bratt nok
B. Det må være løsmasser til stede
C. Lite/dårlig stabilitet i løsmassene
D. Utløsende faktor må være til stede

2.2.1 Skråningshelning
Ut fra erfaringer vet vi at jordskred normalt kan utløses i skråninger som er brattere enn 30º. I områder uten vegetasjon, og skråninger med tynt løsmassedekke oppå fjelloverflater med liten ruhet eller med store, uheldige menneskeskapte inngrep, kan jordskred løses ut også i skråninger med noe lavere graderinger, ned til ca. 25º. Dersom mye vann er til stede kan jordskred løsne ved enda lavere graderinger (se avsnitt 3.4). Skoglose skråninger vil ha de laveste helningene ved utløsning av jordskred. I terrenge brattere enn ca. 45º forekommer jordskred svært sjelden, i hovedsak fordi det er lite løsmasser i så bratt terrenge.

2.2.2 Løsmasser
Det er vanligvis områder dekket av morene som er skredutsatt i Norge fordi denne løsmassetypen er vanligst i dalsidene. Det kan imidlertid også gå jordskred i tidligere avsatte skredmasser, forvitringsmateriale og marin leire. Ved flomsituasjoner kan også breelavsetninger og elveavsetninger eroderes og materialet rase ut. Fordelingen av disse løsmassene der vi finner dem i dag framgår bl.a. av kvartærgeologiske kart (se figur 2.4 og vedlegg 1 og 2).

2.2.3 Stabilitet
Skråningers stabilitet er en funksjon av terrengform, vegetasjon, løsmassetype, tykkelse og hydrologiske prosesser. Stabiliteten vil være relatert til løsmassesens mellomkornbindinger (friksjons- og kohesjonskrefter) og tyngdekraften. Mellomkornbindingene er en funksjon av kornstørrelsesene, kornformen og jordas vanninnhold, og avtar med økende vanninnhold. Økt vannmetning i jorda kan føre til overtrykk (poretrykk).

Som et eksempel på stabilitetsendringer over tid kan vi betrakte en typisk moreneavsetning i en typisk norsk dalside. Morenematerialet ble dannet, transportert og avsatt av tidligere isdekk under istidene. Morene er et produkt av mekanisk forvirring av berggrunnen: frostsprenning og abrasjon som skjedde under isen. Dette materialet ble avsatt under isen som bunnmorene. Morene vises med grønn farge på kvartærgeologiske kart (se figur 2.4). Bunnmorenen er normalt hårdt sammenpresset (konsolidert) på grunn av stempel som den har vært utsatt for. De øverste ca. 1-2 m (det ”aktive” topplaget) har gradvis blitt endret etter isavsmeltingen for ca. 10.000 år siden på grunn av gjenstoor, frysing og tining som skylles navne temperaturvariasjoner (telepåvirkning = forvirring), slik at det har blitt losere og mer permeabelt (se figur 2.5). Når vanninnholdet i dette løse laget varierer ved nedbør eller snømeltning vil poretykket endres og dermed også stabiliteten i områder med skredgradienter. Det er oftest dette topplaget som gir ut i forbindelse med jordskred. I områder der tykkelsen på bunnmorenen er liten kan forvirtingsprosessene ha påvirket løsmassene helt ned til fjellgrunnen.
Figur 2.4
Utsnitt fra NGUs kvartæergeologisk kart 1219-4 Sykkylven, som viser skredløp og andre skredspor i morenematerialet (grønn farge) i dalsidene (Blikra 1998). Skredavsetninger er i rød farge og skredløpene er stiplede linjer som leder ned til områder vist med rosa farge. Slike kart gir informasjon om hvor ulike skred har gått og hvor nye skred helst vil finne sted, men kartene sier ikke noe om sannsynlighet.

Figur 2.5
Et typisk norsk jordprofil i en dalside består oftest av morene som har et løst, telepåvirket topplag ("aktivt" lag) som ligger oppå fast, overkonsolidert jord. Mellom disse er det potensielle glidesjiktet for jordskred. Modifisert etter (NBI 1998).
2.2.4 Skredutløsende faktorer
Det er nesten alltid vann som er den utløsende faktoren ved jordskred, oftest som følge av mye nedbør eller i kombinasjon med snøsmelting. Jordskred utløses ofte grunnet kraftig elve- og bekkeerosjon. Andre naturlige mekanismer som steinsprang og fjellskred kan også utløse jordskred (se figur 2.1).

Menneskelige ingrep med utilstrekkelig fokus på drenering og vektbelastninger er også vanlige skredutløsende faktorer, f.eks. ved bygging av skogsbelveger (se figur 2.6).

![Figur 2.6](image)
*Figur 2.6

2.3 Flomskred - definisjon og karakteristika
Flomskred er et hurtig, vannrikt, flomlignende skred som opptrer langs klart definerte elve- og bekkeødeløp og i raviner, gjel eller skar der det vanligvis ikke er permanent vannføring. Vannmassene kan rive løs og transportere store mengder løsmasser, større steinblokker, trær og annen vegetasjon i og langs løpet (se figur 2.7).

Begrepet flomskred har vært i bruk i Norge de siste 30-40 år, og er dermed, så vidt vi vet, ikke noe gammelt begrep. I et innlegg til en konferanse om flomskred i 1989 skriver daværende fagsjef for

Figur 2.7
Flomskredvifte i Eikesdalen dannet i 2003. Store vannmengder som kom ned skaret til venstre har erodert kraftig i løsmassene i dalsiden, noe som bl.a. medførte at veien ble ødelagt. Mange steder i Norge er det ofte bebyggelse på skredvifter. Foto: NVE.
3 Status pr. i dag – hvilke skredfarekart finnes?

Det finnes ingen landsdekkende undersøkelser eller kart over fare for jordskred eller flomskred. Flere lokale kartlegginger er imidlertid utført. Denne situasjonen omtales i dette kapittelet.

Ved kartlegging av skredfare og informasjon om dette er det tre karttyper som er aktuelle:

- **Aktsomhetskart**
- **Faresonekart**
- **Risikokart**

3.1 Aktsomhetskart

Aktsomhetskart viser potensielle kildeområder og utløpsområder for ulike typer skred.

3.1.1 Jordskred

En metode for kombinert modellering av jordskred og flomskred for aktsomhetskartlegging er under utvikling ved NGU og NVE. Det arbeides med å identifisere mulige kildeområder for jord- og flomskred og modellere utløpsområde og rekkevidde basert på topografiske parametre og med hydrologiske modeller for å plukke ut potensielt utsatte områder.

NGUs tilnærmning innebærer testing mot kjente hendelser og kartlagte skredavsetninger fra førhistoriske hendelser. Simuleringer er utført på forskjellige teststeder i Norge. Modellkalibrering ble gjort basert på kvartærkart, geologiske kart, ortofoto og feltundersøkelser. Fordi modellen er avhengig av en god og detaljert DTM er beregningene kjørt i noen testområder med ulik opplosning på høydemodellen. Resultatene viser at identifisering av kildeområder og modellering av utløpsområder reproduserer historiske hendelser med god nøyaktighet ved bruk av DTM med 5 til 10 m cellestørrelse. Taster med en 25 m DTM resulterer i et tap av mange startsoner. Akseptabel presisjon oppnås med en DTM-oppløsning på 10 x 10 m. En slik terrengmodell ble laget av Statens kartverk i 2010, og er nå landsdekkende. Denne terrengmodellen har imidlertid bare godt detaljeringsnivå i dalområder, mens mange fjellområder er basert på interpolasjon fra den eksisterende 25 m DTM og har lavere detaljeringsnivå.
Jordskredmodellen peker ut kildeområder både i bekklopp/kanaler og også i mer åpen-skråningstopografi hvor overflaten er litt ubevegelse. Men identifisering av jordskredskilder i åpen-skråningstopografi er veldig avhengig av DTM-kvaliteten. Ulike prosesser som jordskred og flomskred (som har en flytende overgang) er funnet i én modelleringsspesesyre. Men det trenges fortsatt tilpassing og testing av parameterverdier for ulike geomorfologiske, geologiske og klimatiske regioner i Norge. For aktsomhetskartlegging må denne landsdekke jordskredmodelleringen kombinieres med flomskredmodellering langs elver og vassdrag som er beskrevet i følgende avsnitt.

3.1.2 Flomskred

Det ser ut til at metoden kan gi gode resultater. Metoden er imidlertid basert på et begrenset antall observasjoner av helsing på vifter og tilførselsstrekninger (8 nedbørsfelt). Det er ikke jobbet videre med metoden for å skaffe flere empiriske data eller automatisere GIS arbeidet.

3.2 Faresonekart
Faresonekart angir soner med ulik faregrad (sannsynlighet) for skred. Det foreligger svært få faresonekart for jordskred og ingen ferdigstilte faresonekart for flomskred i Norge.

3.2.1 Jordskred
Et faresonekart utarbeidet i statlig regi er et kart fra Vestfjorddalen, Tinn kommune i Telemark. Her utarbeidet NGU, NGI og regiongeologen i Vestfold, Buskerud og Telemark faresonekart i et samarbeid (Sletten mfl. 2004). Dette faresonekartet dekker Vestfjorddalen ved Rjukan i en lengde av 7,5 km. I tillegg til kartet fra Vestfjorddalen er det laget faresonekart for mindre områder bl.a. ved Otta i Oppland, i Hjelledalen i Sogn og Fjordane og Tromsdalen i Troms, som del av forskningsprosjektet GeoExtreme. I tillegg er skredfare utredet i enkelte områder på bestilling fra kommuner de siste årene. NGU har i samarbeid med Møre og Romsdal fylkeskommune vurdert skredfare i Tomrefjorden i Møre og Romsdal (Bliker og Anda 2000). Her ble det utarbeidet et skredfarekart med grenser for farenivå 1/300 år og 1/1000 år. Det ble ikke laget separate faregrenser for ulike skredtyper, men jord-og flomskred utgjør det største farepotensialet i området som strekker seg ca. 4 km langs Tomrefjorden.

Det er ikke utarbeidet en norsk standard og veileder for hvordan faresonekart for jordskred skal lages. Den metodikken som er blitt benyttet i de kartene som er nevnt over innebærer geologisk kartlegging og vurdering av kildeområder, skredbaner og skredavsetninger. Graving gjennom skredavsetninger og
datering av individuelle skredlag har gitt informasjon om frekvens, sammen med data om historiske hendelser. Helningskart er benyttet for å finne potensielle kildeområder, og dreneringsområde og dreneringsveier for vann er tatt i betraktning når det gjelder sannsynlighet for utløsning av skred.

Det å sette grensene for de ulike skredsannsynligheter (1/100 år, 1/1000 år og 1/5000 år) er vanskelig, spesielt i områder med lite data om historiske og førhistoriske skred. Det er til nå ikke utviklet gode modeller som kan brukes til å beregne utløp og sannsynlighet for jordskred, men det er mulig å beregne løsmassenes styrke i skråningene. Dette er noe de geotekniske miljøene benytter seg av ved vurdering av jordskredfare for enkeltobjekter slik som enkelte bolighus eller liknende.

3.2.2 Flomskred

Det finnes et system for nasjonal kartlegging av faresoner for flomskred i Sveits (se www.bafu.ch) og i Østerrike (www.naturgefahren.at).

3.3 Risikokart

Risikokart viser konkret skadepotensialet (mennesker, infrastruktur) for ulike typer skred, og er en funksjon av sannsynlighet og konsekvens.

Det finnes ingen risikokart for jordskred og flomskred i Norge.
4 Metodeutvikling og tilgjengelige grunnlagsdata – kvalitet og dekning

4.1 Metodeutvikling

Metode for aktsomhetskart for jordskred og flomskred er som tidligere nevnt under utvikling. I videre arbeider vurderes felles metode for aktsomhetskartlegging av jordskred og flomskred.

Vurderingene som ligger bak angivelse av faresoner for jordskred, er normalt omfattende og svært erfaringsbaserte. En slik studie innebærer detaljert geologisk kartlegging, utarbeidelse av helningskart med tilhørende analyse av topografien, statistisk analyse av de viktigste klimatiske trekker trekk for området (nedbør, vind, temperatur, mv.), vurdering av regionale trekker og opplysninger om tidligere skredhendelser og bruk av statistiske - empiriske metoder og/eller dynamiske modeller for beregning av skredrekkevidden. Beregning av rekkevidden for skred med ulike gjentaksintervall er derfor nødvendigvis basert på en rekke forutsetninger når det gjelder sannsynlighet, skredvolumer, effekt av lokale faktorer som skog eller ulendt terreng, mm. Hvilken vekting de enkelte elementene skal ha i vurderingen, varierer fra tilfelle til tilfelle og er derfor sterkt erfaringsavhengig.

4.2 Grunnlagsdata

Landsdekkende digital terrengmodell med horisontal oppløsning på 10 x 10 m (5 m koter i områder med ØK-dekning, ellers 20 m koter) trengs for aktsomhetskartlegging jordskred etter de metodene som er skissert foran. Et kart som viser helningsgrad mellom 25° og 45° vil identifisere de fleste løsneområder for jordskred. For detaljert skredfareutredninger og faresonekartlegging trengs detaljerte høydedata gjerne basert på laserkansnedde data.

Kvartærgeologiske kart (løsmassekart) som er basert på et tett observasjonsnett i felt er nødvendig for å gjøre skredfarevurderinger for størst mulig grad av detaljer. Minimum kvartærgeologiske kart i M 1:50.000, helst M 1:10.000 er nødvendig for å identifisere områder som bør kartlegges. Kartleggingen av fare for løsmasseskred bør koordineres med NGUs øvrige kvartærgeologiske kartlegging og bør inneholde informasjon om:

- Jordartsgenese. Viktig å skille mellom ulike avsetningstyper (tykke/tynne) i dalsidene (løsneområdene), spesielt morenemateriale, forvitringsmateriale og ulike typer skredmateriale (snøskred-, jord- og flomskredavsetninger, steinsprangmateriale)
- Skredbaner
- Jordskredlober og vifter
- Sedimentmektighet. Skrånings med tynt løsmassedekke er særlig utsatt for utglidninger. Fjellblotninger gir en indikasjon på løsmassemektighet, men det er ønskelig med konkrete observasjoner av løsmassemektighet
- Kornfordelingsprøver av typiske jordarter i et område
- Beskrivelser av snitt, gjerne med daterede hendelse
- Opplysninger om enkelt hendelser, datofestet
5 Identifisering og prioritering av områder med behov for faresonekart

5.1 Jordskred

Innledning
Forslag til prioritering av områder for detaljert faresonekartlegging av fare for jordskred er utarbeidet ved en kombinert vurdering av følgende informasjonskilder og tilnærminger, som ble gjennomgått i samme rekkefølge som listet nedenfor:

1) GIS-analyse for påvisning av potensielle løsneområder nært bebyggelse (identifisering av områder)
2) Manuelt gjennomgang med prioriteringskriterier og vekting av skredrelevante parametre (utvalg og prioritering av identifiserte områder)
3) Skredhendelser sett opp mot befolkningstall
4) Resultater av spørreundersøkelsen til kommunene
5) Klimascenarier
6) Kontroll av foreløpig rangering mot lokal kunnskap på NVEs regionkontor
7) Innspill fra fylkesmenn og fylkeskommuner
8) Prioriteringskriterier og vekting av skredrelevante parametre

Disse informasjonskilder og tilnærminger er enkeltvis beskrevet nedenfor. Svakheter og utfordringer ved de enkelte fasene er også beskrevet.

5.1.1 GIS-analyse jordskred – metoder og data
En innledende GIS-analyse er utført for identifisering av potensiell løsneområder for jordskred nær bebyggelse. Det er tatt utgangspunkt i høydedata fra Statens kartverk (DTM) med oppløsning 25 x 25 m. Denne terrengmodellen er benyttet til å beregne helningen til alle cellene i datasettet og videre er alle celler med helning mellom 25° og 45° valgt ut. Med dette som utgangspunkt er datasettet klippet mot NGUs datasett for løsninger (sammenhengende og usammenhengende morenmateriale samt skredmateriale) slik at kun celler som møter betingelsene helning mellom 25° og 45° og kartlagt skredutsatte løsninger er tatt med videre (kildeområder: morene- og skredmateriale). Ut fra dette er det lagt til en buffersone på 300 m til alle kartlagte kildeområder og koblet dette mot SSBs datasett for befolkning og GAB-data for sykehus, barnehager, kontorbygg osv. Resultatet av analysen er et datasett som kombinerer datasettene helning, løsmassefordeling og løsmassetype, befolkning og viktig infrastruktur (se figur 5.1 og figur 5.2).
Figur 5.1
Figur 5.2
Skjermbilde som viser ortofoto over Førde sentrum, samme utnitt som figur 5.1. Vi ser at løsneområdene er skogdekket.

5.1.2 Gjennomgang av analyseresultatet
GIS-analysen identifiserte nesten 30.000 potensielle løsneområder fordelt over hele landet. På Sør-Ostlandet er mange kommuner ikke representert pga. lite relieff og slake terrengformer. Oppdraget er å identifisere områder prioritert for farekartlegging. Det ble derfor først tatt utgangspunkt i de identifiserte områder med størst antall adressepunkter innenfor 300-meters områder omkring løsneområdene.

Følgende forhold ble observert:
- Ved nærliggende løsneområder der 300 m-områder overlappet med naboområdet ble adressepunktene talt opp innen alle berørte områder. GIS-analysen viser derfor i slike tilfeller for mange potensielt skredutsatte adressepunkter.
- Langstrakte løsneområder (lange, bratte dalsider f.eks.) kan få høyt antall adressepunkter, selv om bebyggelsen kan være spredt.
- Analysen tar ikke hensyn til detaljer i topografien til løsneområdene, f.eks. helningsretningene til skråningene og eventuelt kanaliserende topografidetaljer i forhold til bebyggelsen. GIS-analysen viser derfor i slike tilfeller for mange potensielt skredutsatte adressepunkter.
- Analysen har også tatt hensyn til eventuelt bebyggelse over skråninger, altså uavhengig av skråningenes helningsretning i forhold til bebyggelsen (bebyggelse på toppen av skråninger). Også i slike tilfeller viser GIS-analysen for mange potensielt skredutsatte adressepunkter.
- Også svært små potensielle løsneområder er markert. Dette er ofte områder med svært lite nedslagsfelt som neppe vil kunne føre til jordskred selv ved store nedbørs mengder.
- Områder med svært lite areal med løsmassedekke innenfor 300 meter sirkelen er markert.
Potensielle løsneområder som ligger utenfor 300 m-sirkelen (høyt oppe i dalsidene) er ikke med i analysen.

Ved den manuelle gjennomgangen er, pga. de foran nevnte forhold, en stor mengde uaktuelle områder identifisert og utelukket i den videre vurderingen. F.eks. vil størrelsen på nedslagsfelt kunne påvirke vanntilgangen til enkelte potensielle løsneområder. I tillegg til dataene fra GIS-analysen, er det også benyttet kartdata fra SK Norgesglasset (OK, M5) og flyfoto fra NorgeiBilder og ortofoto under vurderingene.

5.1.3 Skredhendelsesdatabasen kombinert med befolkningstall
Kart over befolkningstetthet/infrastruktur som viser bolighus, skoler, barnehager og andre bygninger der mennesker oppholder seg over lengre tid er nødvendig for å identifisere områder som prioriteres for farekartlegging.

Skredhendelsesdatabasen i Nasjonal skreddatabase viser tidligere registrerte hendelser, spesielt mot veier, jernbane og bebyggelse. Dataene er av svært ulik karakter og varierende kvalitet og er derfor generelt vanskelig å benytte som utgangspunkt for identifisering av skredutsatte områder. Vurdering av skredhendelser er imidlertid viktig og er tatt med i totalvurderingen, fordi informasjon om tidligere skred viser samtidig at områder kan være utsatt også i framtiden.

En god del skredhendelser er sjekket opp mot områder som framkommer med størst konsekvens (høy befolkningstetthet) i GIS-analysen. Her er kvartærgeologiske kart og topografiske kart benyttet som bakgrunnsdata for analysene.

5.1.4 Resultater av NVEs spørreundersøkelse til kommunene
Det ble vinteren 2010 gjennomført en spørreundersøkelse om vurdering av skredfare rettet mot alle landets kommuner. Svarene fra alle kommuner er gjennomgått og analysert. Mange kommuner svarer at et konsevenskart (potensielle områder utsatt for jordskred kombinert med data om befolkningstetthet) utarbeidet som underlag for påvisning av skredutsatte områder var for grove til å være spesifikke. Videre er spørsmålet om hvilke skredtyper som er relevante for kommunenes besvart ulikt og noe usystematisk. Et annet inntrykk er at klassifisering av løsmasseskred/flomskred til forskjell fra kvikkleireskred/utglidninger i leirområder kan være problematisk og ikke gjort korrekt i mange tilfeller. Direkte påvisning av områder som bør prioriteres for kartlegging er begrenset ut fra spørreundersøkelsen.

5.1.5 Klimascenarier
Mange områder er klassifisert som svært skredutsatte til tross for at ingen historiske skred er registrert. Det er i slike tilfeller tatt hensyn til klimautviklingen som er presentert fra ulike forskningsgrupper som FN’s klimapanel (IPCC), norske meteorologiske eksperter (RegClim) og norske skredeksperter (GeoExtreme) som antar en framtid med klimaendringer og økt nedbør (se kapittel 2.1).

5.1.6 Kontroll av foreløpig rangering mot lokalkunnskap på NVEs regionkontor
NVEs regionkontakter fikk oversendt foreløpige prioriteringslister 01.11.2010. Materialet er omfattende, og det er få personer som har total oversikt over skredsituasjonen for sin region.. De fleste/alle kjente skredområdene er imidlertid representert.

5.1.7 Innspill fra fylkesmenn og fylkeskommuner
Fylkesmennene fikk i 2010 forespørsel om deres syn på skredsituasjonen i fylkene og på kartleggingsbehovet. De fleste hadde generell kunnskap om situasjonen, spesielt i fylker der skred lenge har vært et problem.
5.1.8 Prioriteringskriterier og vekting av skredrelevante parametre

Nesten 30.000 løsneområder for jordskred nær bebyggelse ble identifisert. Prioritering blant disse, ved å benytte antall adressepunkter alene, viste seg i mange tilfeller å gi feil resultat fordi adressepunktene ofte lå i sikre posisjoner for et evt. skred, enten høyere enn løsneområdet eller utenfor rekkevidden til et skred på grunn av topografiske forhold. Lokaliteter med et visst antall adressepunkter (ca >100 personer) er tatt med i videre vurderingen for å få en håndterbar mengde lokaliteter.

Kartresultatene for alle kommunene ble deretter gjennomgått manuelt med den hensikt å identifisere områder med mange adressepunkter i utsatt posisjon med hensyn til jordskred (= nær løsneområder) og vurdert opp mot skredrelevante parametre (manuell gjennomgang). Disse parametrene er så gitt vekting (indeks) som summert har gitt en risikofaktor som er benyttet i prioriteringen:

Tabell 5.1
Prioritet 1-4 (sluttresultatet) framkommer ut fra summering av ulike skredrelevante parametre med indekstall, som igjen gir prioritet etter en risikofaktor / totalfaktor. Prioritet 1 er angitt med 1 farge, prioritet 2 med blå farge og prioritet 3 med gul farge, Prioritet 1 og 2 er områder prioritert for faresonekartlegging i Plan for skredfarekartlegging (NVE rapport 14/2011).

<table>
<thead>
<tr>
<th>Risikofaktor / totalfaktor</th>
<th>< 5</th>
<th>5-6-7</th>
<th>8</th>
<th>>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritet</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Figur 5.3 GIS-resultat for Ål kommune, Buskerud. Den største befolkningskonsentrasjonen befinner seg omkring Ål sentrum, midt i kartbildet (sorte prikker), og flere potensielle løsneområder ligger like i nærheten. Utsnitt av dette området er vist i figur 5.4 og figur 5.5.

Skredparametre/elementer som er vurdert/tatt hensyn til i vekingen er:

1. **Infrastruktur (bygninger)**

 Sykehus, skoler, kontorbygg etc. og bolighus i tettbygd strøk som alle vil ha et stort antall mennesker hele/deler av døgnet. Antall personer som er benyttet ved beregning av risikofaktoren er basert på bygningsdelen i GAB (Nasjonalt register for grunneiendommer, eiere, adresser og bygninger).

 Tabell 5.2

 Det er estimert et antall mennesker som oppholder seg i ulike offentlige bygninger. Bygningstyper nedenfor er hentet fra GAB.

<table>
<thead>
<tr>
<th>Bygningstype</th>
<th>Sykehus</th>
<th>Skoler</th>
<th>Kontorbygg</th>
<th>Bolighus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antall personer</td>
<td>50</td>
<td>200</td>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

Den mest usikre personverdien her er for bolighus. Utgangspunktet er adressepunktene fra SSB (antall personer pr boenhet) som kan være eneboliger med et lite antall personer via lavblokker til høyblokker der hvert adressepunkt kan representere fra noen få til kanske mer enn 50 personer. Den åpenbare feilen som introduseres her vil et stykke på veg bli kompensert ved grenseverdiene som benyttes for beregning av "person"-indeks.
Basert på en skredfaglig vurdering med vekt på topografiske detaljer og antatt skredrekkevidde er utsatte adressepunkter identifisert og talt opp og multiplisert med 3. Det er så beregnet en "person"-indeks ut fra følgende personontall:

Tabell 5.3 En "person-indeks" er gitt fra 1 til 4 etter inndeling av personer i intervallklasser.

<table>
<thead>
<tr>
<th>Antall personer</th>
<th>1 - 10</th>
<th>11 - 100</th>
<th>101 - 1000</th>
<th>> 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Person"-indeks</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

2. Naturgitte forhold
Det er velkjent at flere faktorer må være tilstede for at skred skal kunne utløses. I tillegg til helningen (= løsneområder) må løst materiale og vann være tilstede samt en utløsende faktor.

- Tilstedeværelse av løsmasser i løsneområdet er selvfølgelig en forutsetning for jordskred. Det trenger ikke å være tykke løsmasser, selv på områder som er kartlagt som bart fjell vil det mange steder finnes nok materiale til å utløse skred.
- Skog i et potensiet løsneområde er fordelaktig da røttene binder løsmassene.
- Terrengformer som klofter og forsenkninger kan dirigere skredmasser mot eller fra bebyggelse, eller ikke ha slik virkning.
- Størrelse fra løsneområdets nedbørfelt har betydning for vanntilgang til løsmassene og derav mulig stabilitetsendring og mulighet for erosjon. Nedbørfeltets størrelse er skjønnsmessig anslått:
 - **Svært lite** betyr at løsneområdet ligger svært nær toppen av en konveks landskapsform.
 - **Lite**: Dalsiden over er noen hundre m høy.
 - **Stort**: Dalsiden er mer enn 500 m høy.

Tabell 5.4
Det er gitt en indeksering for ulike skredrelevante parametere benyttet i vektingen.

<table>
<thead>
<tr>
<th>Løsmaterialer</th>
<th>Bart fjell/dårlig kartlagt</th>
<th>Tynt/tykt dekke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Løsmasseindeks</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skog</th>
<th>Glissen skog</th>
<th>Ingen skog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skogindeks</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terrengformer</th>
<th>Styrende fra bebyggelse</th>
<th>Nøytralt</th>
<th>Styrende mot bebyggelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrengindeks</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nedbørfelt</th>
<th>Svært lite</th>
<th>Lite</th>
<th>Stort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nedbørferldeindeks</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

3. Tidligere skredhendelser innen kommunen
Tidligere kjente skredhendelser tas hensyn til ut fra erkjennelsen: "Har det gått skred her en gang kan det skje igjen". Det innebærer at dersom det har gått skred innen en kommune, så betyr det at en eller flere skredutløsende faktorer er til stede. Det antas derfor at det under gitte betingelser kan gå skred der igjen.

Tabell 5.5 Skredindeks ved verdi fra 0 til 2 basert på antall registrerte skredhendelser.

<table>
<thead>
<tr>
<th>Tidligere skred</th>
<th>Ingen reg.</th>
<th>Svært få skred (< 3)</th>
<th>Flere/mange skred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skredindeks</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
4. **NVEs spørreundersøkelse primo 2010**

Knyttet til bl.a. lokalkunnskap og utbyggingsplaner m.v. og forslag/ønsker fra kommunene om skredfarekartlegging teller positivt.

Tabell 5.6
Kommuneindeks gitt ved verdi med 0 eller 1 behov for skredfarekartlegging gitt på besvarelsene i spørreundersøkelsen.

<table>
<thead>
<tr>
<th>Kommuneønske</th>
<th>Ikke svart</th>
<th>Ikke behov</th>
<th>Behov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommuneindeks</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Totalt gir dette en summering av indeksene, som igjen gir en totalpoeng på risikofaktor/totalfaktor. Denne er igjen sortert etter størrelse og prioritet framkommer ut fra dette. Jo høyere score jo høyere prioritet. Figur 5.4 og figur 5.5 viser eksempler på hvordan indekseringen for noen av parametrene er utført.

Figur 5.4
GIS-resultatet fra Ål sentrum øst. Løsmassene i området er ikke detaljert kartlagt, men i følge kartet er det mye morene i nordskråningen (grønne farger) (Indeks 2). Deler av løsneområdet består av en fjellrygg med noe skog iflg. flyfoto (Indeks -1). Mange adressepunkter ligger svært nær det store løsneområdet midt i kartet. Identify-feltet i nedre venstre hjørne finner i SSB-basen at 735 personer bor nærmere løsneområdet enn 300 m. Skredfarevurderingen imidlertid tilsier at 660 kan være utsatt. Det er to skoler her (men flere skolebygg) og flere kontorbygg (Indeks 4). Med svært lite nedbørfelt (Indeks -1), flere tidligere skredhendelser (Indeks 2) og ønske fra kommunen om kartlegging (Indeks 1) er totalindeksen for dette området 7, som gir prioritet 3.
Figur 5.5
GIS-resultatet fra Ål sentrum vest. løsmassene i området er ikke detaljert kartlagt, men i følge kartet dominerer morene i skråningen (grønne farger) (Indeks 2). Det renner en elv i sør-østlig retning gjennom området som munner ut i Strandafjorden nede til høyre. Dette er de dominerende landskaps-elementene i området. Det største, øvre løsneområdet ligger nært mange adressepunkter, men de færre av disse vil kunne bli utsatt for skred fordi elveløpet, som renner i en forsenkning i terrenget, vil styre skredmassene unna bebyggelsen (Indeks -1). Ved samtidig flom i elva kan erosjon i elvebredden, evt. oppdemming og endring av elveløpet skje. Det samme kan sies om de to langstrakte løsneområdene øst-vest for elven, evt. skredmasser vil bli kanalisert bort fra bebyggelsen pga. en forsenkning i terrenget. Mange adressepunkter ligger i nærheten, også to skoler, Ål folkehøgskule og Ål videregående på Brenno, men bare Brenno kan ligge i faresonen (Indeks 3). Området er skogdekt (Indeks -1) med et svært lite nedslagsfelt (Indeks -1), flere tidligere skredhendelser (Indeks 2) og ønske fra kommunen om kartlegging (Indeks 1) er totalindeksen for dette området 5, som gir prioritet 3.

5.1.9 Prioritering av områder for kartlegging av fare for jordskred
Det er utarbeidet prioriteringslister for kartlegging av jordskred. Disse er klassifisert i prioritet 1-3 (se vedlegg 3). Områdeprioriteringen er basert på vekting av skredrelevante parametre som omtalt ovenfor. Dette er en etterprøvbar prioritering der en f.eks. kan velge å vurdere inngangsparametere på en annen måte, og dermed justere prioriteringslistene.
5.1.10 Vurdering av resultatene

- Den utførte GIS-analysen viser ikke evt. løsneområder som ligger mer enn 300 meter fra bebyggelse. Det innebærer at evt. potensielle løsneområder som f.eks. ligger høyere til fjells ikke er med i analysen.
- GIS-analysen utført med DTM på 25 x 25 m dekker ikke kildeområder lavere enn 20 meter (skrener < 20 meter høideforskjell), og i en del tilfeller kan også skråninger mellom 20 og 50 m falle utenfor (www.skrednett.no). Dette er en begrensning som fremkommer på grunn av opplysningene på den landsdekkende terrengmodellen. Sannsynligvis vil en del potensielle løsneområder ha blitt "filtrert" bort pga. dette.
- Utvalget av løsmassetyper som er gjort her vil kunne ekskludere enkelte skredutsatte områder. Morenemateriale og tidligere avsatt skredmateriale er de klart mest skredutsatte jordarter, men også forvitringsmateriale, breelavsetninger, marine avsetninger og torv kan gi opphav til jordskred. Dette er det i mange tilfeller kompensert for ved den manuelle gjennomgangen fordi de kvartærgeologiske kartene har vært tilgjengelige som bakgrunnskart i GIS-analysen.
- Metoden som er benyttet krever kvartærgeologiske kart med god kvalitet med hensyn på identifisering og grensetrekking. Kart laget med utstrakt feltarbeid er nødvendig. Dette er kart i M 1:50.000 eller helst bedre (se vedlegg 1 og 2). Der det bare finnes kvartærgeologiske kart i M 1:250 000, som for en stor grad er basert på flyfototolkning og befaringer, og som dessuten benytter en forenklet inndeling av løsmassene, vil man miste store områder med tynt løsmassedekke da disse ofte vil være kartlagt som bart fjell. Tynne løsmassedekker kan også være svært skredutsatte. I slike områder er løsmasseforholdet markert som "usikkert" og medført høyere vekting.
5.2 Flomskred

Det er brukt regionale flomformler, avrenningskart for middelavrenning og terrengmodellen for å beregne feltparametre til å gi en beskrivelse av flomforholdene i nedbørsfeltet. Dette er så brukt sammen med differansen i høyde langs en elvestrekning for å kunne utpeke de strekningene med størst sannsynlighet for utløsning av flomskred. Metoden er kort beskrevet i en temaartikkel i Hydrologisk månedsskrift (NVE 2008).

Det er de fysiske forholdene som fører til flomskred sammen med informasjon om befolkningstetthet som er utgangspunktet for metoden som er utarbeidet for å identifisere områder som kan være utsatt for flomskred.

5.2.1 GIS-analyse flomskred – metode og data

Følgende datasett er benyttet i GIS-analyse:

- Høydedata fra Statens kartverk med oppløsning 25 x 25 m
- Landsdekkende kvartærgeologiske kart (løsomsedekart) fra NGU i målestokk 1:250 000 og bedre
- Elvenettverket ELVIS utarbeidet av NVE
- SSBs kart over befolkning og GAB-data for bebyggelse

Høydedata er brukt sammen med beregningsrutinen FlowAcc i ArcGIS 9.3.1 og elvenettverket ELVIS for å identifisere alle elve- og bekkestrekninger. Det er valgt å ekskludere vassdrag med nedbørsfelt større enn 30 km². Erosjons- og massetransportprosessene i større vassdrag vil være nærmere en fluvial prosess enn en skredprosess og gradienten i hovedløpet avtar med størrelse på vassdraget.

Alle innsjøområder og areal uten løsmasser ble ekskludert fra elvenettet. Alle gjenværende elvestrekninger ble så inndelt i segmenter på 500 m og det er beregnet en gjennomsnittlig hengning for hvert segment. Alle elvestrekninger med hengning mellom 40° og 5° er inkludert i analysen mens de med hengning mindre enn 5° over en strekning på 500 m er ekskludert. Alle typer løsmasser er inkludert i analysen.

For å finne områder som er potensielt utsatt for flomskred ble det til en buffer på hver side av de gjenværende elvestrekningene. Det ble også lagt til en buffer nedstrøms siste elvestrekning. Dette ble gjort for å inkludere utløpsområder (<5°). Bredden og lengden på bufferet er avhengig av størrelsen på nedbørsfeltet.
Tabell 5.7

Bredden og lengden på buffer på hver side av vurderte elvestrekninger er tallfestet ut fra nedbørfeltstorrelse.

<table>
<thead>
<tr>
<th>Nedbørfeltstorrelse</th>
<th>Tilsvarende antall flowacc celler</th>
<th>Bredd på buffer</th>
<th>Lengde på buffer nedstrøms</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 km²</td>
<td>< 8000</td>
<td>25 m</td>
<td>250 m</td>
</tr>
<tr>
<td>5 – 12 km²</td>
<td>8000 – 19199</td>
<td>50 m</td>
<td>500 m</td>
</tr>
<tr>
<td>12 – 20 km²</td>
<td>19200 – 31999</td>
<td>75 m</td>
<td>750 m</td>
</tr>
<tr>
<td>20 – 30 km²</td>
<td>32000 – 48000</td>
<td>100 m</td>
<td>1000 m</td>
</tr>
</tbody>
</table>

Denne første kartleggingen danner grunnlag for en analyse av skadepotensialet.

5.2.2 Metode for prioritering av områder

SSBs datasett for befolkning og GAB-data er brukt for å estimere hvor mange mennesker som oppholder seg i et fareområde. Det er brukt samme metode for klasifisering av områder basert på antall mennesker i fareområdet som i kartleggingen av andre skredtyper. Dette gir 250 x 250 m celler som er gitt en verdi ut fra hvor mange mennesker som oppholder seg her.

Tabell 5.8

Områder identifisert med fare for flomskred er inndelt i klasse 1 til 4 avhengig av antall mennesker som er potensielt utsatt for flomskred i hvert område.

<table>
<thead>
<tr>
<th>Klasse 1</th>
<th>Klasse 2</th>
<th>Klasse 3</th>
<th>Klasse 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>>25</td>
<td>6 – 25</td>
<td>1 – 6</td>
<td>0 – 1</td>
</tr>
</tbody>
</table>

Der hvor flere 250 x 250 celler grenser til hverandre er disse slått sammen til ett utsatt område. På denne måten er til sammen 389 områder identifisert i klasse 1 og 304 områder identifisert i klasse 2 i Møre og Romsdal.

Tabell 5.9

Listen viser antall områder i Møre og Romsdal som er klasifisert i klasse 1 til 4. I tillegg vises også total antall utsatte personer pr. kommune.

<table>
<thead>
<tr>
<th>Kommune</th>
<th>Antall områder klasse 1</th>
<th>Antall områder klasse 2</th>
<th>Antall områder klasse 3</th>
<th>Antall områder klasse 4</th>
<th>Antall utsatte personer pr. kommune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surnadal</td>
<td>14</td>
<td>23</td>
<td>37</td>
<td>26</td>
<td>5124</td>
</tr>
<tr>
<td>Molde</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>16</td>
<td>5064</td>
</tr>
<tr>
<td>Stranda</td>
<td>15</td>
<td>15</td>
<td>30</td>
<td>14</td>
<td>4532</td>
</tr>
<tr>
<td>Ørsta</td>
<td>17</td>
<td>24</td>
<td>36</td>
<td>26</td>
<td>4402</td>
</tr>
<tr>
<td>Volda</td>
<td>14</td>
<td>14</td>
<td>21</td>
<td>15</td>
<td>3946</td>
</tr>
<tr>
<td>Sunndal</td>
<td>14</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>3164</td>
</tr>
<tr>
<td>Raum</td>
<td>20</td>
<td>17</td>
<td>27</td>
<td>27</td>
<td>2817</td>
</tr>
<tr>
<td>Nesset</td>
<td>14</td>
<td>13</td>
<td>19</td>
<td>17</td>
<td>2387</td>
</tr>
<tr>
<td>Vestnes</td>
<td>9</td>
<td>11</td>
<td>15</td>
<td>22</td>
<td>2167</td>
</tr>
<tr>
<td>Norddal</td>
<td>13</td>
<td>12</td>
<td>18</td>
<td>12</td>
<td>2091</td>
</tr>
<tr>
<td>Aure</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>2058</td>
</tr>
<tr>
<td>Sykkylven</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>9</td>
<td>1834</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>5</td>
<td>14</td>
<td>15</td>
<td>1613</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Gjennes</td>
<td>4</td>
<td>9</td>
<td>25</td>
<td>10</td>
<td>1512</td>
</tr>
<tr>
<td>Vanylven</td>
<td>7</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>1478</td>
</tr>
<tr>
<td>Kristiansund</td>
<td>8</td>
<td>5</td>
<td>12</td>
<td>9</td>
<td>1445</td>
</tr>
<tr>
<td>Rindal</td>
<td>6</td>
<td>6</td>
<td>13</td>
<td>14</td>
<td>1368</td>
</tr>
<tr>
<td>Ulstein</td>
<td>6</td>
<td>9</td>
<td>11</td>
<td>3</td>
<td>1330</td>
</tr>
<tr>
<td>Herøy</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td>3</td>
<td>1189</td>
</tr>
<tr>
<td>Sande</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1170</td>
</tr>
<tr>
<td>Ålesund</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>1170</td>
</tr>
<tr>
<td>Hareid</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>1162</td>
</tr>
<tr>
<td>Haram</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>5</td>
<td>1025</td>
</tr>
<tr>
<td>Halsa</td>
<td>5</td>
<td>4</td>
<td>15</td>
<td>13</td>
<td>791</td>
</tr>
<tr>
<td>Skodje</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>711</td>
</tr>
<tr>
<td>Ørskog</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>663</td>
</tr>
<tr>
<td>Averøy</td>
<td>2</td>
<td>2</td>
<td>12</td>
<td>8</td>
<td>629</td>
</tr>
<tr>
<td>Eide</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>551</td>
</tr>
<tr>
<td>Fræna</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>471</td>
</tr>
<tr>
<td>Sula</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>471</td>
</tr>
<tr>
<td>Stordal</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>470</td>
</tr>
<tr>
<td>Aukra</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>458</td>
</tr>
<tr>
<td>Midsund</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>234</td>
</tr>
<tr>
<td>Giske</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>Smøla</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sandøy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUMMER</td>
<td>389</td>
<td>304</td>
<td>463</td>
<td>333</td>
<td>59522</td>
</tr>
</tbody>
</table>
5.2.3 Vurdering av resultatene

Det ser ut til at vi med denne metoden for identifisering av utsatte områder treffer nedbørsfelt og strekninger langs bekker og elver som er utsatt for flomskred, (se figur 5.6). Det ser imidlertid også ut til vi tar med noen områder som ikke åpenbart er utsatt for flomskred. Et eksempel på dette finner en på figur 5.7 der et område i den flate Malmedalen nord for Molde er markert som utsatt. Dette er antagelig fordi nedbørsfeltet er stort. Det har dermed fått et langt utløpsområde.

Metoden skiller heller ikke mellom områder langt opp i nedbørsfeltet som trolig har mindre fare for flomskred og områder i de nedre delene av nedbørsfeltet som er mere utsatt.

Det vil si at denne metoden heller overestimerer enn underestimerer antall utsatte områder. Det bør foretas en manuell vurdering av resultatene. Først der en plukker ut de åpenbart feilaktige utpekte områdene og deretter får noen som er kjent i aktuell kommune/region til å foreta vurderingen.

Metoden er først og fremst egnet for en eventuell videreutvikling for til å foreta prioritering av kartleggingsinsats. Metoden er antagelig for grov og tar med for mange utsatte områder til at det vil kunne brukes som del av et aktsomhetskart.

Figur 5.6.
Utsnitt av kart for Ørsta og Volda. Kartet viser kartlagte bekker og elver og 250 x 250 m celler klassifisert etter antall utsatte mennesker (kun klasse 1) og som ligger innenfor kartlagt område.
Figur 5.7 Utsnitt av kart for Molde. Kartet viser kartlagte bekker og elver og 250 x 250 m celler klassifisert etter antall utsatte mennesker (kun klasse 1) og som ligger innenfor kartlagt område.

Uten bedre kvalitetssikring av resultatene for Møre og Romsdal er det vurdert at det ikke er tilstrekkelig grunnlag for å utarbeide prioriteringsliste for farekartlegging av flomskred i versjon 1.0 av kartleggingsplanen.
6 Anbefalinger

- Klassifikasjon: Vi foreslår å benytte begrepene jordskred og flomskred med evt. supplerende/deskriptive adjektiver som synonymer til de engelske betegnelsene: debris slide, debris flow og debris flood. De primære forskjeller mellom jordskred og flomskred er knyttet til ulike løsneforhold, løsnemekanismer, bevegelsesmekanismer og avsetningsformen.

- Det er nødvendig med kvartærgeologiske kart minimum i målestokk 1:50.000 i områder som skal skredfarekartlegges. Ideelt bør kartene ha en detaljeringsgrad som tilsvårer en målestokk på 1:10.000 eller 1:5000.

- Det må utvikles en standard/veileder med beskrivelse av metode for faresonekartlegging av jordskred som aksepteres i skredmiljøet.

- Metodeutvikling faresonekartlegging: Gjennomføre pilotprosjekt i en kommune med høy prioritet. Fellesprosjekt med kartlegging av steinsprang, snøskred, jordskred og flomskred.

- Metodeutvikling aktsomhetskartlegging jord- og flomskred: Samordne metodeutvikling for jordskred og flomskred.

- En her foreslått metode for påvisning av flomskred testet i Møre og Romsdal kan videreutvikles.
7 Litteratur

GeoExtreme 2009: www.geoextreme.no.

NGU (Norges geologiske undersøkelse): www.ngu.no

Vedlegg 1

Oversikt over Kvartærgeologiske kart i M 1:50 000 fra NGU, à jour pr. 10. 2010 (Kilde: NGU).
Oversikt over Kvartærgeologiske kart fra NGU: M 1-80.000-1:250.000 (kommunekart), og detaljcart i M 1:20.000 eller større basert på ØK, à jour pr. 10. 2010 (Kilde: NGU).
Vedlegg 3

TABELL:
Prioriteringsliste for kartlegging av faresonekart jordskred

<table>
<thead>
<tr>
<th>KOMMUNE</th>
<th>FYLKE</th>
<th>LOKALITETER</th>
<th>PRIORITET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bremanger</td>
<td>Sogn og Fjordane</td>
<td>Bremanger sentrum</td>
<td>1</td>
</tr>
<tr>
<td>Balsfjord</td>
<td>Troms</td>
<td>Langs E6-E8</td>
<td>1</td>
</tr>
<tr>
<td>Høyanger</td>
<td>Sogn og Fjordane</td>
<td>Høyanger sentrum</td>
<td>1</td>
</tr>
<tr>
<td>Vågsøy</td>
<td>Sogn og Fjordane</td>
<td>Måløy sentrum</td>
<td>1</td>
</tr>
<tr>
<td>Ørsta</td>
<td>Møre og Romsdal</td>
<td>Ørsta sentrum</td>
<td>1</td>
</tr>
<tr>
<td>Aurland</td>
<td>Sogn og Fjordane</td>
<td>Aurlandsvangen</td>
<td>1</td>
</tr>
<tr>
<td>Herøy</td>
<td>Møre og Romsdal</td>
<td>Remøy</td>
<td>1</td>
</tr>
<tr>
<td>Ullensvang</td>
<td>Hordaland</td>
<td>Vikebygd</td>
<td>1</td>
</tr>
<tr>
<td>Høyanger</td>
<td>Sogn og Fjordane</td>
<td>Kvammen (Lavik)</td>
<td>1</td>
</tr>
<tr>
<td>Tromsø</td>
<td>Troms</td>
<td>Kvalsøsletta</td>
<td>1</td>
</tr>
<tr>
<td>Høyanger</td>
<td>Sogn og Fjordane</td>
<td>Austreim</td>
<td>1</td>
</tr>
<tr>
<td>Aurland</td>
<td>Sogn og Fjordane</td>
<td>Flåm og enkeltbygder</td>
<td>1</td>
</tr>
<tr>
<td>Sogndal</td>
<td>Sogn og Fjordane</td>
<td>Sogndal sentrum N+S</td>
<td>1</td>
</tr>
<tr>
<td>Sykkylven</td>
<td>Møre og Romsdal</td>
<td>Sykkylven sentrum: S-Under Aurenakken</td>
<td>1</td>
</tr>
<tr>
<td>Balestrand</td>
<td>Sogn og Fjordane</td>
<td>Balestrand sentrum N</td>
<td>1</td>
</tr>
<tr>
<td>Gol</td>
<td>Buskerud</td>
<td>Gol sentrum Ø, V</td>
<td>1</td>
</tr>
<tr>
<td>Narvik</td>
<td>Nordland</td>
<td>Fagernesskrenten-Kvitsandøyra</td>
<td>1</td>
</tr>
<tr>
<td>Tromsø</td>
<td>Troms</td>
<td>Tomasjorda</td>
<td>1</td>
</tr>
<tr>
<td>Ullensvang</td>
<td>Hordaland</td>
<td>Børve</td>
<td>1</td>
</tr>
<tr>
<td>Norddal</td>
<td>Møre og Romsdal</td>
<td>Sylte Ø+V</td>
<td>1</td>
</tr>
<tr>
<td>Stryn</td>
<td>Sogn og Fjordane</td>
<td>Stryn sentrum N: Bø</td>
<td>1</td>
</tr>
<tr>
<td>Kvinnherad</td>
<td>Hordaland</td>
<td>Uskedalen-Korsnes</td>
<td>1</td>
</tr>
<tr>
<td>Meøy</td>
<td>Nordland</td>
<td>Glomfjord</td>
<td>1</td>
</tr>
<tr>
<td>Sel</td>
<td>Oppland</td>
<td>Otta sentrum V: Dale,</td>
<td>1</td>
</tr>
<tr>
<td>Øs</td>
<td>Hordaland</td>
<td>OseyoV</td>
<td>1</td>
</tr>
<tr>
<td>Giske</td>
<td>Møre og Romsdal</td>
<td>Valderøya Ø, Godøya NØ (Støbakk)</td>
<td>1</td>
</tr>
<tr>
<td>Bremanger</td>
<td>Sogn og Fjordane</td>
<td>Svelgen N</td>
<td>1</td>
</tr>
<tr>
<td>Luster</td>
<td>Sogn og Fjordane</td>
<td>Gaupne</td>
<td>1</td>
</tr>
<tr>
<td>Sel</td>
<td>Oppland</td>
<td>Otta sentrum NV</td>
<td>1</td>
</tr>
<tr>
<td>Odda</td>
<td>Hordaland</td>
<td>Odda sentrum, Eitrheim</td>
<td>1</td>
</tr>
<tr>
<td>Norddal</td>
<td>Møre og Romsdal</td>
<td>Eidsdal</td>
<td>1</td>
</tr>
<tr>
<td>Vindafjord</td>
<td>Rogaland</td>
<td>Sandeid</td>
<td>1</td>
</tr>
<tr>
<td>Odda</td>
<td>Hordaland</td>
<td>Odda sentrum, Freim</td>
<td>1</td>
</tr>
<tr>
<td>Meøy</td>
<td>Nordland</td>
<td>Neverdalen N</td>
<td>1</td>
</tr>
<tr>
<td>Sel</td>
<td>Oppland</td>
<td>Otta sentrum Ø</td>
<td>1</td>
</tr>
<tr>
<td>Hemsedal</td>
<td>Buskerud</td>
<td>Hemsedal sentrum, Grøndalen</td>
<td>1</td>
</tr>
<tr>
<td>Hornindal</td>
<td>Sogn og Fjordane</td>
<td>Hornindal sentrum</td>
<td>1</td>
</tr>
<tr>
<td>Voss</td>
<td>Hordaland</td>
<td>Draugsvoll</td>
<td>1</td>
</tr>
<tr>
<td>Narvik</td>
<td>Nordland</td>
<td>Elvegard</td>
<td>1</td>
</tr>
<tr>
<td>Ullensvang</td>
<td>Hordaland</td>
<td>Legene boligfelt</td>
<td>1</td>
</tr>
<tr>
<td>Norddal</td>
<td>Møre og Romsdal</td>
<td>Fjøra</td>
<td>1</td>
</tr>
<tr>
<td>Nord-Aurdal</td>
<td>Oppland</td>
<td>Fagernes-Leira</td>
<td>2</td>
</tr>
<tr>
<td>Haram</td>
<td>Møre og Romsdal</td>
<td>Hamnsund-Eidsvik</td>
<td>2</td>
</tr>
<tr>
<td>Volda</td>
<td>Møre og Romsdal</td>
<td>Volda sentrum N</td>
<td>2</td>
</tr>
<tr>
<td>Tromsø</td>
<td>Troms</td>
<td>Tromsdalen SV</td>
<td>2</td>
</tr>
<tr>
<td>Vestnes</td>
<td>Møre og Romsdal</td>
<td>Tomrefjorden Ø</td>
<td>2</td>
</tr>
<tr>
<td>Vågsøy</td>
<td>Sogn og Fjordane</td>
<td>Raudeberg</td>
<td>2</td>
</tr>
<tr>
<td>Haram</td>
<td>Møre og Romsdal</td>
<td>Vatne</td>
<td>2</td>
</tr>
<tr>
<td>Førde</td>
<td>Sogn og Fjordane</td>
<td>Førde sentrum NØ</td>
<td>2</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ullensvang</td>
<td>Hordaland</td>
<td>Markasta</td>
<td>2</td>
</tr>
<tr>
<td>Norddal</td>
<td>Møre og Romsdal</td>
<td>Norddal sentrum</td>
<td>2</td>
</tr>
<tr>
<td>Lillehammer</td>
<td>Opland</td>
<td>Fåberg</td>
<td>2</td>
</tr>
<tr>
<td>Sognndal</td>
<td>Sogn og Fjordane</td>
<td>Kaupanger: Bjørk</td>
<td>2</td>
</tr>
<tr>
<td>Førde</td>
<td>Sogn og Fjordane</td>
<td>Førde sentrum N</td>
<td>2</td>
</tr>
<tr>
<td>Herøy</td>
<td>Møre og Romsdal</td>
<td>Kvalsund-Koparstad</td>
<td>2</td>
</tr>
<tr>
<td>Nes</td>
<td>Buskerud</td>
<td>Nesbyen øst</td>
<td>2</td>
</tr>
<tr>
<td>Midtre Gauldal</td>
<td>Sør-Trøndelag</td>
<td>Frøset</td>
<td>2</td>
</tr>
<tr>
<td>Vågøy</td>
<td>Sogn og Fjordane</td>
<td>Tennebø</td>
<td>2</td>
</tr>
<tr>
<td>Sel</td>
<td>Opland</td>
<td>Otta sentrum SV</td>
<td>2</td>
</tr>
<tr>
<td>Fusa</td>
<td>Hordaland</td>
<td>Eikelandsosen S (Leira)</td>
<td>2</td>
</tr>
<tr>
<td>Førde</td>
<td>Sogn og Fjordane</td>
<td>Førde sentrum NNØ</td>
<td>2</td>
</tr>
<tr>
<td>Sør-Fron</td>
<td>Opland</td>
<td>Harpefoss</td>
<td>2</td>
</tr>
<tr>
<td>Midtre Gauldal</td>
<td>Sør-Trøndelag</td>
<td>Støren sentrum V</td>
<td>2</td>
</tr>
<tr>
<td>Os</td>
<td>Hordaland</td>
<td>Hegglandsdalen</td>
<td>2</td>
</tr>
<tr>
<td>Vindafjord</td>
<td>Rogaland</td>
<td>Vønheim</td>
<td>2</td>
</tr>
<tr>
<td>Stryn</td>
<td>Sogn og Fjordane</td>
<td>Stryn sentrum S: Visnes</td>
<td>2</td>
</tr>
<tr>
<td>Vindafjord</td>
<td>Rogaland</td>
<td>Vikedal</td>
<td>2</td>
</tr>
<tr>
<td>Kvinnerød</td>
<td>Hordaland</td>
<td>Løfalsstrand: Vågsnes-Røyneholm</td>
<td>2</td>
</tr>
<tr>
<td>Stranda</td>
<td>Møre og Romsdal</td>
<td>Hellesylt</td>
<td>2</td>
</tr>
<tr>
<td>Vågå</td>
<td>Opland</td>
<td>Vågå sentrum</td>
<td>2</td>
</tr>
<tr>
<td>Kvam</td>
<td>Hordaland</td>
<td>Øystese Ø</td>
<td>2</td>
</tr>
<tr>
<td>Nore og Uvdal</td>
<td>Buskerud</td>
<td>Rødberg</td>
<td>2</td>
</tr>
<tr>
<td>Sykkylven</td>
<td>Møre og Romsdal</td>
<td>Straumgjerde</td>
<td>2</td>
</tr>
<tr>
<td>Voss</td>
<td>Hordaland</td>
<td>Trodo</td>
<td>2</td>
</tr>
<tr>
<td>Førde</td>
<td>Sogn og Fjordane</td>
<td>Førde sentrum NNV</td>
<td>2</td>
</tr>
<tr>
<td>Granvin</td>
<td>Hordaland</td>
<td>Granvin sentrum, Folkedal</td>
<td>2</td>
</tr>
<tr>
<td>Vaksdal</td>
<td>Hordaland</td>
<td>Dalseiddalen</td>
<td>2</td>
</tr>
<tr>
<td>Ålesund</td>
<td>Møre og Romsdal</td>
<td>Heissa</td>
<td>2</td>
</tr>
<tr>
<td>Seljord</td>
<td>Telemark</td>
<td>Seljord sentrum V</td>
<td>2</td>
</tr>
<tr>
<td>Vaksdal</td>
<td>Hordaland</td>
<td>Dale SØ</td>
<td>2</td>
</tr>
<tr>
<td>Sel</td>
<td>Opland</td>
<td>Nord-Sel: Steinkyrkja</td>
<td>2</td>
</tr>
<tr>
<td>Notodden</td>
<td>Telemark</td>
<td>Notodden sentrum Ø+V</td>
<td>2</td>
</tr>
<tr>
<td>Luster</td>
<td>Sogn og Fjordane</td>
<td>Luster</td>
<td>2</td>
</tr>
<tr>
<td>Ringerike</td>
<td>Buskerud</td>
<td>Grøndokka (Sundvollen)</td>
<td>2</td>
</tr>
<tr>
<td>Nord-Fron</td>
<td>Opland</td>
<td>Vinstra</td>
<td>2</td>
</tr>
<tr>
<td>Stryn</td>
<td>Sogn og Fjordane</td>
<td>Innvik: Hildestranda</td>
<td>2</td>
</tr>
<tr>
<td>Kvam</td>
<td>Hordaland</td>
<td>Norheimsund</td>
<td>2</td>
</tr>
<tr>
<td>Os</td>
<td>Hordaland</td>
<td>Ulven NV</td>
<td>2</td>
</tr>
<tr>
<td>Sondre Land</td>
<td>Opland</td>
<td>Odnes-Louisenlund</td>
<td>2</td>
</tr>
<tr>
<td>Stryn</td>
<td>Sogn og Fjordane</td>
<td>Olden: Muristranda</td>
<td>2</td>
</tr>
<tr>
<td>Rauma</td>
<td>Møre og Romsdal</td>
<td>Åndalsnes Ø: Neshagen-Hestebakken</td>
<td>2</td>
</tr>
<tr>
<td>Skodje</td>
<td>Møre og Romsdal</td>
<td>Rumpa, spredt beb.</td>
<td>2</td>
</tr>
<tr>
<td>Ullensvang</td>
<td>Hordaland</td>
<td>Prestahagen m.v.</td>
<td>2</td>
</tr>
<tr>
<td>Vanylven</td>
<td>Møre og Romsdal</td>
<td>Syvden</td>
<td>2</td>
</tr>
<tr>
<td>Modalen</td>
<td>Hordaland</td>
<td>Øvre Helland</td>
<td>2</td>
</tr>
<tr>
<td>Kristiansand</td>
<td>Vest-Agder</td>
<td>Sentrum N - nordover</td>
<td>3</td>
</tr>
<tr>
<td>Molde</td>
<td>Møre og Romsdal</td>
<td>Molde sentrum: Ø Bjørset</td>
<td>3</td>
</tr>
<tr>
<td>Ål</td>
<td>Buskerud</td>
<td>Ål sentrum N: Sundre</td>
<td>3</td>
</tr>
<tr>
<td>Førde</td>
<td>Sogn og Fjordane</td>
<td>Førde sentrum V</td>
<td>3</td>
</tr>
<tr>
<td>Stordal</td>
<td>Møre og Romsdal</td>
<td>Stordal sentrum N</td>
<td>3</td>
</tr>
<tr>
<td>Haram</td>
<td>Møre og Romsdal</td>
<td>Brattvåg V</td>
<td>3</td>
</tr>
<tr>
<td>Molde</td>
<td>Møre og Romsdal</td>
<td>Molde sentrum V: Mek-Kvam</td>
<td>3</td>
</tr>
<tr>
<td>Meløy</td>
<td>Nordland</td>
<td>Ørnes</td>
<td>3</td>
</tr>
<tr>
<td>Sauda</td>
<td>Rogaland</td>
<td>Sauda sentrum: Brekke</td>
<td>3</td>
</tr>
<tr>
<td>Sauda</td>
<td>Rogaland</td>
<td>Sauda sentrum: Trøgstad</td>
<td>3</td>
</tr>
<tr>
<td>Sula</td>
<td>Møre og Romsdal</td>
<td>Langevåg sentrum: Legene-Molvær</td>
<td>3</td>
</tr>
<tr>
<td>Sauda</td>
<td>Rogaland</td>
<td>Sauda sentrum: Saudasjøen</td>
<td>3</td>
</tr>
<tr>
<td>Odda</td>
<td>Hordaland</td>
<td>Røldal</td>
<td>3</td>
</tr>
<tr>
<td>Kommune</td>
<td>Fylke</td>
<td>Bydel/Konty</td>
<td>Kontrakt</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sunndal</td>
<td>Møre og Romsdal</td>
<td>Grøa</td>
<td>3</td>
</tr>
<tr>
<td>Narvik</td>
<td>Nordland</td>
<td>Kleiva</td>
<td>3</td>
</tr>
<tr>
<td>Selje</td>
<td>Sogn og Fjordane</td>
<td>Flatrakett</td>
<td>3</td>
</tr>
<tr>
<td>Etne</td>
<td>Hordaland</td>
<td>Skånevik sentrum V (flere løsneomr)</td>
<td>3</td>
</tr>
<tr>
<td>Rauma</td>
<td>Møre og Romsdal</td>
<td>Vågstranda</td>
<td>3</td>
</tr>
<tr>
<td>Sande</td>
<td>Møre og Romsdal</td>
<td>Gurskøya - Midtre Sætre</td>
<td>3</td>
</tr>
<tr>
<td>Nord-Fron</td>
<td>Oppland</td>
<td>Kvam: Brendevegen</td>
<td>3</td>
</tr>
<tr>
<td>Søndre Land</td>
<td>Oppland</td>
<td>Svingvoll-Bekk</td>
<td>3</td>
</tr>
<tr>
<td>Eidjord</td>
<td>Hordaland</td>
<td>Eidjord sentrum Ø: Leirvikaneset</td>
<td>3</td>
</tr>
<tr>
<td>Voss</td>
<td>Hordaland</td>
<td>Tøn-Osgjerd</td>
<td>3</td>
</tr>
<tr>
<td>Rauma</td>
<td>Møre og Romsdal</td>
<td>Kylling</td>
<td>3</td>
</tr>
<tr>
<td>Strand</td>
<td>Møre og Romsdal</td>
<td>Stranda S</td>
<td>3</td>
</tr>
<tr>
<td>Vanylven</td>
<td>Møre og Romsdal</td>
<td>Åheim sentrum</td>
<td>3</td>
</tr>
<tr>
<td>Rauma</td>
<td>Møre og Romsdal</td>
<td>Åndalsnes Ø: Skjertneset</td>
<td>3</td>
</tr>
<tr>
<td>Hareid</td>
<td>Møre og Romsdal</td>
<td>Hareid</td>
<td>3</td>
</tr>
<tr>
<td>Flekkefjord</td>
<td>Vest-Agder</td>
<td>Omkring Flekkefjord sentrum</td>
<td>3</td>
</tr>
<tr>
<td>Lindesnes</td>
<td>Vest-Agder</td>
<td>Vigeland</td>
<td>3</td>
</tr>
<tr>
<td>Oslo</td>
<td>Oslo</td>
<td>Kjelsås Ø</td>
<td>3</td>
</tr>
<tr>
<td>Sykkylven</td>
<td>Møre og Romsdal</td>
<td>Sykkylven sentrum: N</td>
<td>3</td>
</tr>
<tr>
<td>Selje</td>
<td>Sogn og Fjordane</td>
<td>Selje sentrum</td>
<td>3</td>
</tr>
<tr>
<td>Nordre Land</td>
<td>Oppland</td>
<td>Dokka Ø</td>
<td>3</td>
</tr>
<tr>
<td>Lillehammer</td>
<td>Oppland</td>
<td>Vingnes: Rise</td>
<td>3</td>
</tr>
<tr>
<td>Skodje</td>
<td>Møre og Romsdal</td>
<td>Skodje sentrum N</td>
<td>3</td>
</tr>
<tr>
<td>Harstad</td>
<td>Troms</td>
<td>Kulseng V, Bergsla</td>
<td>3</td>
</tr>
<tr>
<td>Hareid</td>
<td>Møre og Romsdal</td>
<td>Branddal</td>
<td>3</td>
</tr>
<tr>
<td>Lillehammer</td>
<td>Oppland</td>
<td>Langbakken</td>
<td>3</td>
</tr>
<tr>
<td>Giske</td>
<td>Møre og Romsdal</td>
<td>Godøy NØ (Støbakk)</td>
<td>3</td>
</tr>
<tr>
<td>Sunndal</td>
<td>Møre og Romsdal</td>
<td>Ålvundeid</td>
<td>3</td>
</tr>
<tr>
<td>Surnadal</td>
<td>Møre og Romsdal</td>
<td>Rønnigsveg</td>
<td>3</td>
</tr>
<tr>
<td>Tysnes</td>
<td>Hordaland</td>
<td>Uggdalseidet</td>
<td>3</td>
</tr>
<tr>
<td>Samnanger</td>
<td>Hordaland</td>
<td>Hisdalen, Tysse-Steinsland</td>
<td>3</td>
</tr>
<tr>
<td>Lyngdal</td>
<td>Vest-Agder</td>
<td>Lyngdal sentrum</td>
<td>3</td>
</tr>
<tr>
<td>Kvinneherad</td>
<td>Hordaland</td>
<td>Husnes, Kaldestadåsen</td>
<td>3</td>
</tr>
<tr>
<td>Strand</td>
<td>Rogaland</td>
<td>Barkaneset</td>
<td>3</td>
</tr>
<tr>
<td>Askvoll</td>
<td>Sogn og Fjordane</td>
<td>Askvoll sentrum</td>
<td>3</td>
</tr>
<tr>
<td>Oslo</td>
<td>Oslo</td>
<td>Grorud N</td>
<td>3</td>
</tr>
<tr>
<td>Ål</td>
<td>Buskerud</td>
<td>Ål sentrum NV: Tveito-Brenno</td>
<td>3</td>
</tr>
<tr>
<td>Strand</td>
<td>Rogaland</td>
<td>Tau NV: Kvednaneset</td>
<td>3</td>
</tr>
</tbody>
</table>
Prioritering av områder for kartlegging av jordskredfare

Troms fylke

1. prioritet
2. prioritet
Fylkesgrense
Kommunegrense
Veg
Prioritering av områder for kartlegging av jordskredfare

Nordland fylke
Prioritering av områder for kartlegging av jordskredfare

Møre og Romsdal fylke
Prioritering av områder for kartlegging av jordskredfare

Sogn og Fjordane fylke
Prioritering av områder for kartlegging av jordskredfare

Hordaland fylke
Prioritering av områder for kartlegging av jordskredfare

Rogaland fylke
Prioritering av områder for kartlegging av jordskredfare

Telemark fylke
Prioritering av områder for kartlegging av jordskredfare

Buskerud fylke
Prioritering av områder for kartlegging av jordskredfare

Oppland fylke
Denne serien utgis av Norges vassdrags- og energidirektorat (NVE)

Utgitt i Rapportserien i 2011

Nr. 1 Samkøyring av vind- og vasskraft. Betre utnytting av nett og plass til meir vindkraft (42 s.)

Nr. 2 Årsrapport for tilsyn 2010. Svein Olav Arnesen, Jan Henning L’Abée-Lund, Anne Rogstad (36 s.)

Nr. 3 Kvartalsrapport for kraftmarknaden. 4. kvartal 2010. Tor Arnt Johnsen (red.)

Nr. 4 Evaluering av NVE sitt snøstasjonsnettverk. Bjørg Lirhus Ree, Hilde Landrø, Elise Trondsen, Knut Møen (105 s.)

Nr. 5 Landsomfattende mark- og grunnvannsnett. Drift og formidling 2010. Jonatan Haga, Hervé Colleuille (41 s.)

Nr. 6 Lynstudien. Klimaændringenes betydning for forekomsten av lyn og tilpasningsbehov i kraftforsyningen. (29 s.)

Nr. 7 Kvartalsrapport for kraftmarknaden. 1. kvartal 2011. Tor Arnt Johnsen (red.) (69 s.)

Nr. 8 Fornyelse av NVE hydrologiske simuleringssystemer (22 s.)

Nr. 9 Energiforum. Energiforum i Fastlands-Norge (59 s.)

Nr. 10 Økt installasjon i eksisterende vannkraftverk (91 s.)

Nr. 11 Kraftsituasjonen vinteren 2010/2011 (70 s.)

Nr. 12 Utvikling av regional snøskredvarsling. Rapport fra det første året. Rune Engeset (red.) (76 s.)

Nr. 13 Energiforum. Energiforum i Fastlands-Noreg (59 s.)

Nr. 14 Plan for skredfarekartlegging. Status og prioriteringer innen oversiktskartlegging og detaljert skredfarekartlegging i NVEs regi

Nr. 15 Plan for skredfarekartlegging - delrapport Steinsprang, steinskred og fjellskred

Nr. 16 Plan for skredfarekartlegging – delrapport jordskred og flomskred