Kvartalsrapport
for kraftmarkedet
1. kvartal 2010
Tor Arnt Johnsen (red.)
Kvartalsrapport for kraftmarkedet 1. kvartal 2010

Norges vassdrags- og energidirektorat
2010
Rapport nr. 10
Kvartalsrapport for kraftmarkedet

Utgitt av: Norges vassdrags- og energidirektorat
Redaktør: Tor Arnt Johnsen
Forfattere: Hege Bøhler, Erik Holmqvist, Per Tore Jensen Lund, Ingrid Magnusen, Finn Erik Ljåstad Pettersen, Mats Øivind Willumsen, Kristian Rasmussen, Javier Ernesto Auris Chàvez, Kjerstin Dahl Viggen, og Tor Arnt Johnsen.

Trykk: NVEs hstrykkeri
Opplag: 20
Forsidefoto:
ISBN: 978-82-410-0715-6
ISSN: 1501-2832

Sammendrag: Første kvartal 2010 var preget av langvarig kaldt og tørt vær. Totalt kom det 19 TWh nedbørenæring, 13 TWh mindre enn normalt. Ved utgangen av kvartalet var snømagasinene ca. 35 prosent under normalt. Det nyttrbare tilsiget var 5,7 TWh, 3,2 TWh mindre enn normalt. Det norske kraftforbruket var 40,2 TWh. Det er 6,9 TWh mer enn i samme kvartal i fjor og nær 1 TWh høyere enn den tidligere rekorden. Den norske kraft-produksjonen var 38,2 TWh, en nedgang på 1,3 prosent fra samme kvartal i fjor. Nedgangen har sammenheng med magasinfylling under normalt ved inngangen til kvartalet, lavere tilsig gjennom kvartalet, samt nedbør under normalt. Det kalde været og den knappe presssituationen bidro til en markant prisøkning fra foregående kvartal. Kraftprisen ved kraftbørsen Nord Pool økte for de ulike områdene med mellom 47 og 87 prosent fra fjerde kvartal i fjor. Vinterens høye kraftpriser drøftes i temaartikkelen i rapportens kapittel 2, som gjengir NVEs rapport til Olje- og energidepartementet om vinterens kraftsituation.

Emneord: elektrisk kraft, kraftproduksjon, kraftmarked, tilsig, magasinfylling, kraftandel, kraftforbruk, strømpriser
Innhold

Kvartalsrapport for kraftmarkedet 1. kvartal 2010.............................i
Forord...v
Sammendrag...vi

1 Kraftmarkedet i første kvartal 2010 ...1
 1.1 Ressursgrunnlaget... 5
 1.2 Magasinutviklingen ... 13
 1.3 Produksjon... 16
 1.3.1 Norge – nedgang i produksjonen 18
 1.3.2 Kraftproduksjonen i de andre nordiske landene 19
 1.4 Forbruk .. 23
 1.4.1 Norge - Rekordhøyt forbruk i første kvartal 24
 1.4.2 Kraftforbruket i de andre nordiske landene 28
 1.5 Andre energibærere i Norge .. 30
 1.6 Kraftutveksling .. 33
 Andre nordiske land .. 37
 1.7 Kraftpriser i engrosmarkedet .. 38
 1.7.1 Spotmarkedet.. 38
 1.7.2 Terminmarkedet... 41
 1.8 Sluttbrukermarkedet... 47
 1.8.1 Priser og prisutvikling .. 47
 1.8.2 Leverandørskiljer .. 54
 1.8.3 Kontraktsvalg .. 59
 1.8.4 Husholdningenes samlede utgifter til elektrisk kraft 62

2 Temaartikkel: Vinterens kraftsituasjon - 2009/201064
 Sammendrag .. 64
 2.1 Innledning .. 65
 2.2 Utgangspunktet ved inngangen til vinteren 66
 2.3 Kraftsituasjonen desember 2009 til mars 2010 67
 2.3.1 Værforholdene vinteren 2009/2010 67
 2.3.2 Forbruksutvikling i Norge og Norden 70
 2.3.3 Produksjonsutvikling i Norge og Norden 73
 2.3.4 Kraftutveksling og nettkapasitet.................................. 76
 Anmeldingsområder og overføringskapasiteter...................... 82
 2.3.5 Spesialregulering ... 83
 Midt-Norge ... 83
 Vestlandet ... 84
 Andre områder .. 85
 2.3.6 Prisutvikling i engrosmarkedet 86
 2.3.7 Prisutvikling i sluttbrukermarkedet 90
 Prisutviklingen vinteren 2009/2010 91
 Totale kostnader for en husholdning 92
 Tjenesteyting og industri ... 94
 2.4 Spesielt om pristoppene i desember, januar og februar 97
2.4.1 Torsdag 17. desember 2009 (uke 51/2009).............................. 98
2.4.2 Fredag 8. januar 2010 (uke 1/2010)................................. 99
2.4.3 Mandag 22. februar 2010 (uke 8/2010)............................. 100
2.4.4 Nærmere om prissattsettelsen 101
2.4.5 Regulerkraftmarkedet.. 102
2.5 Driftsforhold og forsyningssikkerhet vinteren 2009/2010..... 105
 2.5.1 Vurdering av kraftsituasjonen 105
 2.5.2 Utkoblbart forbruk .. 107
 2.5.3 Tilgjengelig vintereffekt ... 107
 Effektbalansen i vinter .. 108
 2.5.4 Kraftsituasjonen i Midt-Norge 109
 Revisjon av linjen Nea - Järpstrømmen 109
 2.5.5 Bergensområdet og opprettelsen av anmeldingsområdet NO5110
 Radiell drift av sentralnett på Vestlandet 111
 Nytt prismåle NO5 ... 112
 2.5.6 Østlandet og opprettelse av prismålene NO1 og NO2... 113
 Prisområdet på Sør-vestlandet 113
 2.5.7 Andre regionale utfordringer vinteren 2009/2010 114
2.6 Reserver i kraftsystemene i Norden 115
 2.6.1 Norge .. 115
 2.6.2 Sverige, Finland og Danmark 115
 Regelverket knyttet til bruk av effektreserver i Elspot 115
 Benyttelse av effektreservene vinteren 2009/2010 117
2.7 Spesielle tiltak i det norske kraftsystemet for å håndtere svært anstrengte
 kraftsituasjoner .. 118
 2.7.1 Energiopsjoner (ENOP) ... 118
 ENOP sesongen 2009/2010 ... 118
 Oppsummering og fremtidig bruk av ENOP 119
 2.7.2 Reservekraftverk ... 120
 Bakgrunn for restriksjoner på bruk av reservekraftverkene ... 120
 Dispensasjon til bruk av reservekraftverkene ved anstrengte driftsituasjoner ... 121
 Videre vurderinger av reservekraftordningen 122
2.8 Videre utredninger og tiltak som bør vurderes 124
 2.8.1 Prisfølsomhet – store forbrukere og kraftleverandører .. 124
 2.8.2 Markedsmeldinger og revisjonsplanlegging 124
 2.8.3 Flaskehalshåndtering og bruk av flere priser for maksimal utnyttelse av eksisterende kapasitet og utjevning av priser 125
 2.8.4 Krav til forsyningssikkerhet og vurdering av fremtidige nettinvesteringer 125
3 Vedlegg .. 127
Forord

Arbeidet med denne kvartalsrapporten er utført av medarbeidere ved Energiavdelingen og Hydrologisk avdeling. Redaksjonen for denne utgaven har bestått av Hege Bohler, Javier Ernesto Auris Chávez, Erik Holmqvist, Per Tore Jensen Lund, Ingrid Magnussen, Kjerstin Dahl Viggen, Finn Erik Ljåstad Pettersen, Mats Øivind Willumsen, Kristian Rasmussen og Tor Arnt Johnsen, som også har ledet arbeidet.

Oslo, 10. juni 2010

Marit L. Fossdal
avdelingsdirektør
Sammendrag

Første kvartal 2010 var i store deler av Norden preget av langvarig kaldt og tørt vær. I Norge var gjennomsnittstemperaturen henholdsvis 3 og 3,6 grader under normalt i januar og februar, mens mars hadde temperaturer omtrent som normalt. For landet som helhet var desember, januar og februar de tørreste tre månedene på drøyt 100 år. Totalt kom det 19 TWh nedbørenenergi i årets første kvartal, og det er 13 TWh mindre enn normalt. Ved utgangen av første kvartal var snømagasinene omtrent 35 prosent under normalt. Det nyttbare tilsiget var i første kvartal 5,7 TWh, og det er 3,2 TWh mindre enn normalt. Ikke siden 1996 har det vært mindre tilsig i første kvartal. Fyllingsgraden i norske vannmagasiner sank betydelig gjennom første kvartal, og var ved utgangen av kvartalet 26,8 prosent. Det er 12,7 prosentpoeng under det normale for årstiden.

I årets første kvartal var det norske kraftforbruket 40,2 TWh, mot 37,9 TWh i samme kvartal i fjor. Dette er det høyeste forbruket i første kvartal noensinne, nær 1 TWh høyere enn den tidligere rekorden fra 2001. Korrigeret til normale temperaturer var forbruket i første kvartal 39 TWh. Også i de øvrige nordiske landene var det økt kraftforbruk, og til sammen ble det i årets første kvartal forbrukt 118,2 TWh elektrisk kraft i Norden. Det er 6,9 TWh mer enn i samme kvartal i fjor. Kraftproduksjonen i Norge var 38,2 TWh i årets første kvartal, en nedgang på 1,3 prosent fra tilsvarende kvartal i fjor. Nedgangen har sammenheng med magasinfylling under normalt ved inngangen til kvartalet og lavere tilsig gjennom kvartalet. Snømagasinene er godt under normalt for årstiden, og det kan også ha bidratt til lavere produksjon. I årets første kvartal ble det produsert 112,1 TWh elektrisk kraft i Norden, og det er 0,4 TWh mer enn i tilsvarende periode i fjor.

Det kalde været og den knappe ressurssituasjonen bidro til en markant prisøkning fra foregående kvartal. I snitt endte børsprisen på elektrisk kraft på henholdsvis 50,8, 42,8, 60,1, 58,4 og 42,9 øre/kWh i Øst-, Sørvest-, Midt-, Nord- og Vest-Norge. Dette er en økning på mellom 47 og 87 prosent fra fjerde kvartal i fjor. Nedgangen har sammenheng med magasinfylling under normalt ved inngangen til kvartalet og lavere tilsig gjennom kvartalet. Snømagasinene er godt under normalt for årstiden, og det kan også ha bidratt til lavere produksjon. I årets første kvartal ble det produsert 112,1 TWh elektrisk kraft i Norden, og det er 0,4 TWh mer enn i tilsvarende periode i fjor.

Det kalde været og den knappe ressurssituasjonen bidro til en markant prisøkning fra foregående kvartal. I snitt endte børsprisen på elektrisk kraft på henholdsvis 50,8, 42,8, 60,1, 58,4 og 42,9 øre/kWh i Øst-, Sørvest-, Midt-, Nord- og Vest-Norge. Dette er en økning på mellom 47 og 87 prosent fra fjerde kvartal i fjor. Nedgangen har sammenheng med magasinfylling under normalt ved inngangen til kvartalet og lavere tilsig gjennom kvartalet. Snømagasinene er godt under normalt for årstiden, og det kan også ha bidratt til lavere produksjon. I årets første kvartal ble det produsert 112,1 TWh elektrisk kraft i Norden, og det er 0,4 TWh mer enn i tilsvarende periode i fjor.

Det kalde været og den knappe ressurssituasjonen bidro til en markant prisøkning fra foregående kvartal. I snitt endte børsprisen på elektrisk kraft på henholdsvis 50,8, 42,8, 60,1, 58,4 og 42,9 øre/kWh i Øst-, Sørvest-, Midt-, Nord- og Vest-Norge. Dette er en økning på mellom 47 og 87 prosent fra fjerde kvartal i fjor. Nedgangen har sammenheng med magasinfylling under normalt ved inngangen til kvartalet og lavere tilsig gjennom kvartalet. Snømagasinene er godt under normalt for årstiden, og det kan også ha bidratt til lavere produksjon. I årets første kvartal ble det produsert 112,1 TWh elektrisk kraft i Norden, og det er 0,4 TWh mer enn i tilsvarende periode i fjor.

Det kalde været og den knappe ressurssituasjonen bidro til en markant prisøkning fra foregående kvartal. I snitt endte børsprisen på elektrisk kraft på henholdsvis 50,8, 42,8, 60,1, 58,4 og 42,9 øre/kWh i Øst-, Sørvest-, Midt-, Nord- og Vest-Norge. Dette er en økning på mellom 47 og 87 prosent fra fjerde kvartal i fjor. Nedgangen har sammenheng med magasinfylling under normalt ved inngangen til kvartalet og lavere tilsig gjennom kvartalet. Snømagasinene er godt under normalt for årstiden, og det kan også ha bidratt til lavere produksjon. I årets første kvartal ble det produsert 112,1 TWh elektrisk kraft i Norden, og det er 0,4 TWh mer enn i tilsvarende periode i fjor.

I første kvartal 2010 var fastpriskontrakt den billigste kontraktsformen. Den 3-årige kontrakten kostet i snitt 51,8 øre/kWh, mens den 1-årige kostet 53,9 øre/kWh. Gjennomsnittsprisen på en markedspriskontrakt var 81,8 og 79,6 i Midt- og Nord-Norge. I de sørlige elspotområdene var prisen lavere. Sammenlignet med forrige kvartal og tilsvarende kvartal i fjor økte prisen i alle landets elspotområder, og mest i Midt-Norge. Også prisen på standard variabel kontrakt økte fra forrige og tilsvarende kvartal i fjor. Prisen hos landsdekkende leverandører var i gjennomsnitt 57,2 øre/kWh og hos dominerende leverandører 65,5 øre/kWh.
1 Kraftmarkedet i første kvartal 2010

I første kvartal 2010 var det nyttbare tilsiget i Norge 5,7 TWh. Det er 3,2 TWh mindre enn normalt og 3 TWh mindre enn i første kvartal i fjor. Ikke siden 1996 har det vært mindre tilsig i første kvartal. De siste 12 månedene har det nyttbare tilsiget vært 122,4 TWh, eller som normalt.

Betydelig kaldere enn normalt.

Kulda som kom midt i desember i fjor, fortsatte i januar og februar i store deler av landet. Januar var særlig kald i Sør-Norge, og temperaturen var i snitt ca. 3 grader under normalt for landet som helhet. I februar ble det også kaldere i Nord-Norge, slik at snitt-temperaturen for Norge ble 3,6 grader under normalt. I mars var temperaturene omtrent som normalt.

Betydelig nedbørssvikt i starten av kvartalet.

Desember, januar og februar var de tørreste vintermånedene på vestlandet, og det var lite nedbør også i Midt- og Nord-Norge. For landet som helhet var dette de tørreste tre månedene på drøyt 100 år. I mars kom det imidlertid mer nedbør enn normalt på deler av Vestlandet og i store deler av Midt- og Nord-Norge, mens de øvrige delene av Norge fikk mindre nedbør enn normalt. Totalt kom det 19 TWh nedbørenerei i årets første kvartal, og det er 13 TWh mindre enn normalt.

Snømagasiner godt under normalt.

I både sør, vest og nord har lite nedbør gitt lite snø i mange fjellområder, og det er spesielt lite snø i fjellet på Vestlandet. På Østlandet og i lavlandet på Vestlandet har det imidlertid vært områder med snømagasiner over normalt. Snømagasinene var ved utgangen av første kvartal omkring 35 prosent under normalt.

Rask nedtapping av magasinene, og fyllingsgrad god under normalt for årstiden.

Ved starten av 1. kvartal var fyllingsgraden under det normale for årstiden og litt under fjorårets nivå. En uvanlig kald vindet med lite tilsig og forholdsvis høy vannkraftproduksjon førte til sterkere tapping av magasinene enn normalt fram mot våren. Ved utgangen av kvartalet var fyllingsgraden 26,8 prosent, eller 12,7 prosentpoeng under det normale for årstiden.
Sverige startet året med magasinfylling under normalt, og hadde på grunn av kaldt vær, lite tilsig og lav kjernekraftproduksjon også høy vannkraftproduksjon. Ved utgangen av kvartalet var den svenske magasinfyllingen 13,4 prosent. Det er 14,2 prosentpoeng under normalt.

Den lagrede vannmengden i Norden var ved utgangen av årets første kvartal 28,6 TWh, som er 5,5 TWh mindre enn til samme tid i 2009.

Høyt kraftforbruk har gitt høyere nordisk kraftproduksjon, på tross av lavere vann- og kjernekraftproduksjon.

I årets første kvartal ble det produsert 112,1 TWh elektrisk kraft i Norden, og det er 0,4 TWh mer enn i tilsvarende periode i fjor. Økningen har sammenheng med økt termisk kraftproduksjon, mens den nordiske vannkraft- og kjernekraftproduksjonen har blitt redusert sammenlignet med tilsvarende periode i fjor.

Det samlede nordiske kraftforbruket var 118,2 TWh i første kvartal – en økning på 6,9 TWh fra samme kvartal i fjor. Økningen er blitt tilført vedvarende kaldt vær i store deler av Norden. Med denne økningen har det de siste 52 ukene blitt forbrukt 381,2 TWh elektrisk kraft i Norden. Det er 2,1 prosent mindre enn de foregående 52 uker. Lavere kraftetspørsel som følge av finanskrisen har bidratt til dette.

Kraftproduksjonen i Norge var 38,2 TWh i årets første kvartal, og det er en nedgang på 1,3 prosent sammenlignet med tilsvarende kvartal i fjor. Nedgangen har sammenheng med magasinfylling under normalt ved inngangen til kvartalet, samt lavere tilsig gjennom kvartalet. Likevel er dette den sjette høyeste produksjonen i dette kvartalet noensinne. De siste 12 månedene er det produsert 132,3 TWh elektrisk kraft i Norge, mot 141,2 TWh i tilsvarende periode i fjor.

I årets første kvartal var det norske kraftforbruket 40,2 TWh, mot 37,9 TWh i samme kvartal i 2009. Dette er det høyeste forbruket i første kvartal noensinne, netten 1 TWh høyere enn den tidligere rekorden fra 2001. Det høye forbruket har sammenheng med den uvanlig kalde vinteren. De siste 12 månedene har elektrisitetsforbruket vært 126,1 TWh, mot 129,0 TWh i samme periode ett år tidligere.

Det var rekordhøy nordisk nettoimport i første kvartal i år. Samlet utgjorde den nordiske nettoimporten 6,2 TWh i første kvartal. Det er 6,9 TWh mer enn i samme kvartal i fjor. Høyt forbruk som følge av vedvarende kaldt vær, lite tilsig til de nordiske vannmagasinene, og lav svensk kjernekraftproduksjon forklarer den høye nordiske
Rekordhøy nordisk nettoimport i første kvartal 2010.

Norge hadde 2,0 TWh i nettoimport i første kvartal 2010. Det er første kvartal med norsk nettoimport siden fjerde kvartal 2006. Det var norsk nettoimport fra alle landene vi har forbindelser til. I første kvartal i fjor var det 0,9 TWh norsk nettoeksport.

Fra fjerde kvartal i fjor til første kvartal i år økte den gjennomsnittlige elspotprisen betydelig i alle norske elspotområder. Økningen var 74, 47, 87, 82 og 47 prosent i henholdsvis Øst-, Sørvest-, Midt-, Nord- og Vest-Norge. I gjennomsnitt ende prisen i disse områdene på henholdsvis 50,8, 42,8, 60,1, 58,4 og 42,9 øre/kWh. Medvirkende årsaker til prisstigningen er tilsig godt under normalt, kaldt vek og lav produksjon ved de svenske kjernekraftverkene. I Midt- og Nord-Norge oppsto det den 8. og 22. januar priser på henholdsvis 8 og 11 kr/kWh enkelte timer.

På tross av den siste tidens prisøkning var gjennomsnittsprisen de siste 12 månedene i alle de norske elspotområdene. Det er mellom 0 og 12 prosent lavere enn foregående 12-månedsperiode.

I første kvartal 2010 var fastpriskontrakt den billigste kontraktstypen for husholdninger i Norge. Blant fastpriskontrakter var den 3-årige kontrakten den billigste med en gjennomsnittspris på 51,8 øre/kWh, mens den 1-årige kontrakten hadde en gjennomsnittspris på 53,9 øre/kWh. Det er henholdsvis 12,6 og 7,7 øre høyere enn i...
Fastpriskontrakt den billigste kontrakts-type i første kvartal 2010.

Blant markedspriskontrakter var det betydelige prisforskjeller i landets elspotområder. Gjennomsnittsprisen var høyest i Midt-Norge med 81,8 øre/kWh, etterfulgt av prisen i Nord-Norge med 79,6 øre/kWh. I de sørlige elspotområdene var prisen lavere. Sammenlignet med forrige kvartal og tilsvarende kvartal i fjor økte prisen i alle landets elspotområder betydelig, og mest i Midt-Norge. Også prisen på standard variabel kontrakt økte fra forrige og tilsvarende kvartal i fjor. Prisen hos landsdekkende leverandører var i gjennomsnitt 57,2 øre/kWh og hos dominerende leverandører 65,5 øre/kWh.
1.1 Ressursgrunnlaget

Lite tilsig i første kvartal

I første kvartal 2010 var det nyttbare tilsiget 5,7 TWh som er 3,2 TWh mindre enn normalt og 3 TWh mindre enn i første kvartal 2009. Vi må tilbake til 1996 for å finne mindre tilsig i første kvartal. Da var det kun 2,7 TWh.

De siste 12 månedene har det nyttbare tilsiget vært 122,4 TWh, eller som normalt. De siste 24 månedene har tilsiget vært 249 TWh eller 4 TWh mer enn normalt.

Fordelingen av tilsiget gjennom året er vist i figur 1.1.1. En kald vinter i hele landet ga tilsig under normalt i både januar og februar. Mildere vær i mars ga imidlertid tilsig omtrent som normalt mot slutten av første kvartal.

Tilsig i Sverige

Tilsiget av vann til svenske kraftmagasiner var 4,3 TWh i første kvartal 2010, eller 0,5 TWh mindre enn normalt. Det er også 0,5 TWh mindre enn i samme periode i 2009.

De siste 12 månedene har tilsiget til de svenske kraftmagasinene vært 67,2 TWh. Det er 5 TWh mer enn normalt og nesten 8 TWh mer enn i tilsvarende periode ett år tidligere. De siste 24 månedene har tilsiget vært i underkant av 127 TWh. Det er 2 TWh mer enn normalt.

Temperatur

I februar ble det kaldere også i Nord-Norge, slik at månedsmiddeltemperaturen for Norge ble 3,6 grader under normalt. Dette var den niende kaldeste februar siden 1900. Lavest månedsmiddeltemperatur var det på Finnmarksvidda med nærmere -20 ºC.

I mars ble det mildere i hele landet, selv om det fortsatt var temperaturer under normalt i Nord-Norge. For landet som helhet var temperaturen i mars omtrent som normalt.
Figur 1.1.3 Temperatur, avvik i ºC fra normalt (1971-2000) i januar, februar og mars 2010. Kilde: NVE og met.no

Nedbør

I januar og februar kom det mye mindre nedbør enn normalt på Vestlandet. Det var lite nedbør også i Midt- og Nord-Norge. Også slutten av fjoråret var uvanlig tørr i mange av disse områdene. I følge statistikk fra met.no var månedene desember, januar og februar de tørreste vintermånedene noensinne på Vestlandet. For hele landet var disse månedene de nest tørreste i løpet av drøyt 100 år. For landet som helhet var det kun vinteren (desember – februar) 1899/1900 som var tørrere. For eksempel kom det i Bergen i perioden desember – februar snaut 150 mm eller ca. 25 prosent av normalt. Minst nedbør disse tre månedene fikk Lærdal i Sogn og Fjordane med kun 10 med mer, eller 8 prosent av normalt.

I mars kom det imidlertid mer nedbør enn normalt på deler av Vestlandet og i store deler av Midt- og Nord-Norge. Sørlige deler av Vestlandet, Sørlandet og store deler av Østlandet fikk mindre nedbør enn normalt. For eksempel kom det i Bergen noe over 200 mm, mens det normale for mars er omkring 170 mm.
I første kvartal 2010 kom det nesten 19 TWh nedbøreneørgi. Det er omkring 13 TWh eller 40 prosent mindre enn normalt. Det er også 13 TWh mindre enn i tilsvarende periode i fjor og 23 TWh mindre enn i første kvartal i 2008. De siste 12 månedene har det kommet 107 TWh eller nesten 16 TWh mindre enn normalt.

Snø
Snøsituasjonen ved utgangen av første kvartal 2009 og 2010 er illustrert i figur 1.1.5. Årets snøkart oppsummerer på mange måter værforholdene de siste månedene. Lite nedbør i både sør, vest og nord, har gitt svært lite snø i mange fjellområder. Det er spesielt lite snø i fjellet på Vestlandet. Samtidig har det vært så kaldt at nedbøren stort sett har kommet som snø også langs kysten, slik at snømagasinet her er større enn normalt.

På Østlandet er det en sone som i grove trekk ligger mellom 800 – 1200 moh hvor det er mer snø enn normalt. Dette skyldes blant annet at det i oktober var kaldt, og at snøen mange steder la seg tidligere enn normalt. Mildvær i november smeltet mye av snøen under 800 moh, mens snøen høyere i terrenget i stor grad ble liggende. Det har ikke vært uvanlig mye nedbør i disse områdene gjennom vinteren, men en lang vinter har gitt områder med mer snø enn normalt. For flere detaljer om årets snøsituasjon se: www.seNorge.no.

Med tanke på snø tilgjengelig for kraftproduksjon har vi per 1. april vesentlig mindre snø enn for et år siden. Snømagasinet er omkring 35 prosent under normalt på denne tida, mens det i fjor på samme tid var snaut 10 prosent under normalt. For to år siden hadde vi et snømagasin som var omkring 20 prosent over normalt.

Figur 1.1.6 Snømengde 1. april 2009 (venstre) og 2010 (høyre) i prosent av median for perioden 1971-2000
Kilde NVE og met.no

Grunn- og markvann

En tidlig og kald vinter førte til svært lave grunnvannstander mange steder fra Vest-Agder til Nordland. Det ga seg utslag i vannmangel flere steder. Mildvær og nedbør i mars var starten på en normalisering av situasjonen i lavlandet. I enkelte områder i vestlige, høyereiggende strøk i Sør-Norge er det fortsatt lavere grunnvannstand og større markvannsunderskudd enn normalt. Samtidig er det mindre snø enn normalt, og både målinger og modellsimuleringer tyder på lite tele i disse områdene. Det antas derfor at det meste av smeltevannet her vil infiltreres i jorda. Dette kan medføre en viss tidsforsinkelse av tilsiget til vassdragene, samt at en større andel av smeltevannet enn normalt vil holdes tilbake i jordas vannlager.

Kartene i figur 1.1.7 viser grunnvannstand per 1. april 2009 og 2010. Fargene i kartet er basert på beregningene med vannbalansemodellen HBV. På kartene er også observasjoner av grunnvannstand markert med sirkler. Disse viser at HBV-modellen underestimerer grunnvannsnivået på deler av Østlandet. Kartene viser og at det i år er lavere grunnvannstand i store deler av Norge enn det var for ett år siden. For landet sett under ett er det grunn til å tro at en større andel enn normalt av smeltevannet fra årets snømagasin vil gå til oppfylling av grunn- og markvannsmagasinene.

Forventet tilsig våren/ sommeren 2010.
En viktig parameter for å vurdere tilsiget til kraftmagasinene gjennom våren og sommeren er
størrelsen på snømagasinet i starten av smeltesesongen. Det er utført en korrelasjonsanalyse
mellom beregnet snømagasin per 1. april og nyttbart tilsig for uke 14 til og med uke 30 (april –
juli) for alle år fra 1971 til 2009. Snømagasinet er basert på verdier utledet fra snøkartet slik de
er fremstilt i figur 1.1.6. Analysen gir en korrelasjonskoeffisient på ca. 0,8. Det er altså rimelig
god sammenheng mellom beregnet snømagasin i begynnelsen av april og beregnet tilsig fra
begynnelsen av april og ut smeltesesongen (slutten av juli).

For uke 14 – 30 er midlere nyttbart tilsig drøyt 68 TWh. I år med lite snø ventes naturlig nok
mindre flomtap enn i år med mye snø. Det er en medvirkende årsak til at det nyttbare tilsiget
ventes å variere noe mindre enn snømagasinet. For eksempel antyder analysene at et
snømagasin som er 20 prosent over/under normalt vil gi et tilsig i løpet av sommeren som er
omkring 10 prosent over/under normalt.

Årets snømagasin er ca. 35 prosent under normalt. Basert på korrelasjonsanalysen, slik den er
beskrevet over, gir årets smeltesesong et forventet nyttbart tilsig på 55 TWh. Det er vel 13 TWh
eller omkring 20 prosent mindre enn normalt.

Det er viktig å huske at det også er andre faktorer som påvirker tilsiget fremover, som
markfuktighet og grunnvannstand og ikke minst værutfviklingen videre utover sommeren. Som
nevnt tidligere, er det flere steder lavere grunnvannstand og større markvannsunderskudd enn
normalt. Dette tilsier at tilsigunderskuddet sannsynligvis blir større enn angitt ovenfor. Et grovt
anslag tilsier et tilsigunderskudd på omkring 15-20 TWh frem til utgangen av juli.

Værutfiklingen videre kjener vi ikke. Vi må derfor anta at det er et slingringsmonn på ca ± 10
TWh i beregningen over.
1.2 Magasinutviklingen

Godt under normal magasinfylling

Året startet med fyllingsgrader under det normale\(^1\) for årstiden og litt under fjorårets nivå. En uvanlig kald vinter med lite tilsig og forholdsvis høy vannkraftproduksjon førte til sterkere tapping av magasinene enn normalt frem mot våren. Ved utgangen av kvartalet var fyllingsgraden 26,8 prosent, eller 12,7 prosentpoeng under det normale for årstiden. Fyllingen ved utgangen av 1. kvartal 2010 var 5,4 prosentpoeng lavere enn til samme tid i 2009. Det tilsvarer en energimengde på 4,6 TWh.

<table>
<thead>
<tr>
<th>Magasinfylling</th>
<th>Fyllingsgrad ved utgangen av 1. kvartal (prosent)</th>
<th>Magasin-kapasitet TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010</td>
<td>2009</td>
</tr>
<tr>
<td>Norge</td>
<td>26,8</td>
<td>32,2</td>
</tr>
<tr>
<td>Sverige</td>
<td>13,4</td>
<td>13,0</td>
</tr>
<tr>
<td>Finland</td>
<td>26,0</td>
<td>45,1</td>
</tr>
</tbody>
</table>

\(^1\) Median for perioden 1990-2007
Magasinutviklingen i Sverige og Finland

I Sverige startet 2010 med magasinfylling godt under medianverdien og omtrent på fjarårets nivå. Ved utgangen av kvartalet var magasinfyllingen 13,4 prosent, eller 14,2 prosentpoeng under medianverdien til samme tidspunkt. Fyllingen ved utgangen av første kvartal 2010 var 0,4 prosentpoeng høyere enn til samme tid i 2009. Det tilsvarer en energimengde på 0,1 TWh.

Figur 1.2.2 Fyllingsgrad for svenske magasiner (100 prosent = 33,8 TWh) i 2008, 2009 og 2010, prosent.
Kilde: Svensk Energi

![Diagram av fyllingsgrad for svenske magasiner i 2008, 2009 og 2010](grafik)

I Finland startet 2010 med magasinfylling godt under både medianverdien og fjarårets nivå. Ved utgangen av kvartalet var fyllingsgraden 26,0 prosent, eller 6,9 prosentpoeng under medianverdien til samme tidspunkt for perioden 1978-2001. Fyllingen ved utgangen av første kvartal 2010 var 19,1 prosentpoeng lavere enn til samme tid i 2009, og det tilsvarer en energimengde på 1,0 TWh.
I sum er det dermed lagret 0,9 TWh mindre energi i svenske og finske vannmagasiner enn ved utgangen av første kvartal i fjor. Den lagrede vannmengden i Norden var ved utgangen av første kvartal i år 28,6 TWh, eller 5,5 TWh mindre enn til samme tid i 2009. Total magasinkapasitet for norske, svenske og finske vannmagasiner er 123,6 TWh.
1.3 Produksjon

I årets første kvartal ble det produsert 112,1 TWh elektrisk kraft i Norden, som er 0,4 TWh mer enn i tilsvarende periode i fjor. Produksjonen økte samlet på tross av redusert nordisk vann- og kjernekraftproduksjon. Lite tilsig bidro til lavere vannkraftproduksjon, og flere utfall og forlengede revisjoner blant svenske kjernekraftverk forklarer lavere kjernekraftproduksjon. Dette bidro, sammen med høy etterspørsel etter elektrisk kraft og relativt lave brenselspriser, til en økning i den øvrige nordiske kraftproduksjonen.

<table>
<thead>
<tr>
<th>TWh</th>
<th>1.kv. 2010</th>
<th>Endring fra 1.kv. 2009</th>
<th>Siste 52 uker</th>
<th>Foregående 52 uker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norge</td>
<td>38,2</td>
<td>-1,3 %</td>
<td>132,3</td>
<td>-6,3 %</td>
</tr>
<tr>
<td>Sverige</td>
<td>39,4</td>
<td>-4,9 %</td>
<td>130,1</td>
<td>-5,0 %</td>
</tr>
<tr>
<td>Finland</td>
<td>23,0</td>
<td>10,8 %</td>
<td>71,2</td>
<td>-1,4 %</td>
</tr>
<tr>
<td>Danmark</td>
<td>11,5</td>
<td>5,6 %</td>
<td>34,5</td>
<td>0 %</td>
</tr>
<tr>
<td>Norden</td>
<td>112,1</td>
<td>0,3 %</td>
<td>368,1</td>
<td>-4,4 %</td>
</tr>
</tbody>
</table>

Mens produksjonen i Norge er dominert av vannkraft, utgjør vann- og kjernekraft en betydelig andel av kraftproduksjonen i Sverige. Figur 1.3.2 viser nordisk kraftproduksjon i sum for de siste 52 ukene fordelt på teknologier. Totalt har det de siste 52 ukene blitt produsert 200,7 TWh vannkraft i Norden. Det er 18,2 TWh lavere enn i foregående 52-ukersperiode. Også kjernekraftproduksjonen var betydelig lavere i 2009 enn året før, og nedgangen har fortsatt i 2010. Samlet har den nordiske kjernekraftproduksjonen de siste 52 ukene vært 68,8 TWh, en nedgang på 12,5 TWh fra foregående 52-ukersperiode. Nedgangen fant sted i svensk kjernekraftproduksjon, mens finsk kjernekraftproduksjon økte noe.

Lavere vann- og kjernekraftproduksjon bidro til økt etterspørsel rettet mot termisk kraftproduksjon. Den øvrige nordiske kraftproduksjonen økte med 7,1 TWh i tilsvarende
periode, til 95,7 TWh. Av dette utgjorde nordisk vindkraftproduksjon 10,6 TWh og nordisk termisk kraftproduksjon 85,1 TWh.

Figur 1.3.2 Nordisk kraftproduksjon fordelt på teknologi, 2005 – 2010, sum for de siste 52 ukene, TWh. Kilde: Nord Pool Spot

Figur 1.3.3 viser kraftproduksjonen i sum for de siste 52 ukene fordelt på land. Vannkraften utgjør nesten all kraftproduksjon i Norge, og svingningene i den norske produksjonen følger således i stor grad svingningene i vannkraftproduksjonen i figur 1.3.2. Nedgangen i både vann- og kjernekraftproduksjonen det siste året viser seg i den fallende kurven for Sveriges produksjon de siste 52 ukene.

I Danmark og Finland er termisk kraftproduksjon dominerende. Denne produksjonen er mer stabil over tid. Siden kraftprisene typisk vil øke i perioder ved lave tilsig og lav vannkraftproduksjon, vil den termiske produksjonen gjerne øke litt samtidig. I figur 1.3.3 ser vi for eksempel at kraftproduksjonen falt noe i Danmark og Finland i 2008 og starten av 2009, da det var høy produksjon i Norge og Sverige. Denne trenden har imidlertid snudd den siste tiden, med økt kraftproduksjon i Finland og Danmark som et resultat av redusert produksjon av vannkraft og svensk kjernekraft.
1.3.1 Norge – nedgang i produksjonen

Elektrisitetsproduksjonen i Norge var 38,2 TWh i første kvartal 2010. Det er den sjueste høyeste produksjonen i dette kvartalet noensinne. Høyest var 2006 med 41,7 TWh. I forhold til produksjonen i første kvartal 2009 er det en nedgang på 1,3 prosent. Nedgangen i produksjonen henger sammen med mindre tilsig i første kvartal 2010 enn i samme kvartal i fjor og magasinfylling godt under normalt.
De siste 12 månedene er det produsert 132,3 TWh elektrisk kraft i Norge mot 141,2 TWh i tilsvarende periode året før. Det er en nedgang på 6,3 prosent. Produksjonen de siste 12 månedene er vel 11 TWh lavere enn høyeste produksjon for en 12-månedersperiode (143,7 TWh), men 1,6 TWh høyere enn midlere årsproduksjon for det norske kraftsystemet (vann-, varme- og vindkraft) som er beregnet til i underkant av 131 TWh ved utgangen av 2009. Det var først og fremst mindre tilsig enn i tilsvarende 12-månedersperiode ett år tidligere som førte til nedgangen i kraftproduksjonen de siste 12 månedene.

Figur 1.3.7 Kraftproduksjon i Norge, sum for de siste 12-måneder, 1995-2010. TWh. Kilde: NVE

1.3.2 Kraftproduksjonen i de andre nordiske landene

I første kvartal ble det produsert 39,4 TWh elektrisk kraft i Sverige. Det er en reduksjon på 2 TWh fra tilsvarende kvartal i fjor. Mens landets vannkraftproduksjon var nær uendret og den termiske kraftproduksjonen økte med nær 1,4 TWh, ble kjernekraftproduksjonen redusert med 3,2 TWh fra tilsvarende kvartal i fjor.

De siste 52 ukene har det blitt produsert 130,1 TWh elektrisk kraft i Sverige, noe som er 6,8 TWh lavere enn i foregående 52-ukersperiode. Fallet har sammenheng med lavere kjernekraftproduksjon, men også lavere vannkraftproduksjon. De siste 52 ukene har den svenske kjernekraftproduksjonen vært 46,3 TWh, som er 13,0 TWh lavere enn foregående 52-ukersperiode. Nedgangen skyldes særlig at flere store kjernekraftverk ikke kom tilbake i drift til planlagt tid etter årlig vedlikeholdsstans i 2009. Også i den svenske vannkraftproduksjonen har det vært en reduksjon. De siste 52 ukene har produksjonen vært 64,8 TWh, noe som er 0,8 TWh lavere enn i foregående 52-ukersperiode. Som et resultat av denne reduksjonen har termisk kraftproduksjon i Sverige hatt en økning.

Figur 1.3.7 viser ukentlig produksjon fra svenske kjernekraftverk de siste fem årene. Kapasiteten er normalt sett relativt høy ved inngangen til sommermånedene. Kapasiteten går så noe ned om sommeren på grunn av vedlikeholdsarbeid, for så å øke igjen utover høsten når kraftverkene kommer tilbake i drift. Figuren viser at etter sommeren 2009 har produksjonskapasiteten forblitt lav. Dette skyldes forsinket oppstart etter revisjon samt tekniske problem som har ført til at anlegg er blitt tatt ut av drift. For eksempel skyldes utsatt idriftsettelse ved Ringhals 1 at den svenske Strålskyddsmyndigheten ikke godkjente anlegget etter den opprinnelige vedlikeholdsperioden.

Figur 1.3.7 Ukentlig svensk kjernekraftproduksjon, GWh. Kilde: Svensk Energi
I årets første kvartal utgjorde den finske kraftproduksjonen 23,0 TWh, som er en økning på 2,2 TWh fra tilsvarende periode i fjor. Kjernekraftproduksjonen var uendret og vannkraftproduksjonen ble redusert med i overkant av 1 TWh. Det har imidlertid vært en markant økning i den termiske kraftproduksjonen, som i første kvartal 2010 var 14,2 TWh. Det er 3,2 TWh mer enn i tilsvarende kvartal i 2009. Höye kraftpriser som følge av tørt og kaldt vær, samt redusert svensk kjernekraftproduksjon, har bidratt til økningen i termisk kraftproduksjon.

De siste 52 ukene har det blitt produsert 71,2 TWh elektrisk kraft i Finland, som er en reduksjon på 1 TWh fra foregående 52-ukersperiode. I tilsvarende periode har den finske vannkraftproduksjonen vært 11,4 TWh, som er en reduksjon på 4,7 TWh fra foregående 52-ukersperiode. Dette har delvis vært kompensert for av økt termisk- og kjernekraftproduksjon. De siste 52 ukene ble det produsert 22,5 TWh kjernekraft i Finland, en økning på 0,5 TWh fra de foregående 52 ukene, mens den termiske kraftproduksjonen økte med knappe 1,4 TWh til 36,9 TWh i tilsvarende periode.

I Danmark ble det produsert 11,5 TWh i årets første kvartal, som er en økning på 0,6 TWh fra samme kvartal i fjor. Den danske vindkraftproduksjonen var 2,0 TWh i årets første kvartal, en økning på 0,4 TWh fra tilsvarende kvartal i fjor, mens den termiske kraftproduksjonen i samme periode var 9,5 TWh – en økning på 0,2 TWh fra tilsvarende kvartal i fjor.

De siste 52 ukene har det vært produsert 34,5 TWh elektrisk kraft i Danmark, som er det samme som de foregående 52 uker. Det ble produsert 7,1 TWh vindkraft i Danmark de siste 52 ukene, en økning på 2,3 TWh fra foregående 52-ukersperiode. Den termiske kraftproduksjonen var i tilsvarende periode 27,4 TWh, som er en reduksjon på 5,3 TWh fra foregående 52-ukersperiode.

I Danmark er termisk kraftproduksjon i stor grad et biprodukt av varmeproduksjon i kraftvarmeanlegg, og vil derfor svinge med behovet for oppvarming. Økt vindkraftproduksjon har også bidratt til å dempe etterspørselen etter dansk termisk kraftproduksjon.
1.4 Forbruk

I første kvartal 2010 var det samlede nordiske kraftforbruket 118,2 TWh, noe som er en økning på 6,9 TWh fra samme kvartal i fjor. Ikke siden 2006 har forbruket vært så høyt i første kvartal. Det er særlig et vedvarende kaldt vær som har bidratt til det økte nordiske forbruket.

På tross av den siste tidens forbruksøkning har det nordiske kraftforbruket de siste 52 ukene vært 8,1 TWh lavere enn foregående 52-ukersperiode. Finanskrisen, som rammet verdensøkonomien mot slutten av tredje kvartal i 2008 og trakk i retning av lavere kraftforbruk, har vært en medvirkende faktor til denne nedgangen. Den siste tiden har imidlertid det nordiske kraftforbruket vist tegn til å ta seg opp igjen. Eksempelvis har det temperaturkorrigerte forbruket i Norge og Sverige økt med henholdsvis 0,7 og 0,3 TWh fra 1. kvartal i fjor til 1. kvartal i år.

<table>
<thead>
<tr>
<th>Land</th>
<th>TWh 1.kv. 2010</th>
<th>Endring fra 1.kv. 2009</th>
<th>Siste 52 uker</th>
<th>Endring fra foregående 52 uker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norge</td>
<td>40,2</td>
<td>6,2 %</td>
<td>126,1</td>
<td>-2,2 %</td>
</tr>
<tr>
<td>Sverige</td>
<td>43,4</td>
<td>6,3 %</td>
<td>138,0</td>
<td>-2,1 %</td>
</tr>
<tr>
<td>Finland</td>
<td>25,0</td>
<td>7,9 %</td>
<td>82,5</td>
<td>-1,4 %</td>
</tr>
<tr>
<td>Danmark</td>
<td>9,7</td>
<td>1,7 %</td>
<td>34,6</td>
<td>-2,9 %</td>
</tr>
<tr>
<td>Norden</td>
<td>118,2</td>
<td>6,3 %</td>
<td>381,2</td>
<td>-2,1 %</td>
</tr>
</tbody>
</table>

Figur 1.4.2 viser det nordiske kraftforbruket i sum for de siste 52 ukene, fordelt på land. Med unntak av Danmark går en stor andel av kraftforbruket i de nordiske landene til oppvarming, og det danske forbruket er derfor mindre temperaturavhengig. Lavere kraftetterspørsel som følge av finanskrisen vises på figuren som fallende forbruk i Norden fra fjerde kvartal 2008, en trend som den siste tiden har snudd.

1.4.1 Norge - Rekordhøyt forbruk i første kvartal

Det innenlandske elektrisitetsforbruket var i første kvartal 40,2 TWh mot 37,9 TWh i samme kvartal i 2009. Det er en økning på 6,2 prosent. Forbruket i første kvartal i år er det høyeste noensinne, nesten 1 TWh høyere enn den tidligere rekorden fra 2001 på 39,3 TWh. Det høye forbruket har sammenheng med den uvanlig kalde vinteren 2009/2010.

De siste 12 månedene har elektrisitetsforbruket vært 126,1 TWh mot 129,0 TWh i samme periode ett år tidligere. Det er en nedgang på 2,2 prosent. Forbruket de siste 12 månedene er dermed nesten 3,5 TWh lavere enn det høyeste forbruket for en 12-månedersperiode (129,5 TWh) og ca 4,5 TWh mindre enn midlere årsproduksjon.

Forbruket i alminnelig forsyning var 31,7 TWh i første kvartal i år mot 29,1 TWh i tilsvarende kvartal i 2009. Det er en økning på 9,0 prosent. For siste 12-månedersperiode var det en økning på 3,4 prosent.

Første kvartal var atskillig kaldere enn samme kvartal 2009 og også betydelig kaldere enn normalt. Korrigert til normale temperaturforhold ble det alminnelige forbruket 30,5 TWh i
første kvartal mot 29,6 TWh i tilsvarende kvartal 2009, en økning på 2,8 prosent. For siste 12-
månedersperiode var det en økning på 1,3 prosent.

Figur 1.3.14 Forbruk i alminnelig forsyning, temperaturkorrigert, første kvartal 1995-2010. TWh. Kilde: NVE

Figuren viser at det temperaturkorrigerte forbruket i alminnelig forsyning i første kvartal stort sett har økt jevnt i hele perioden 2003-2010, bortsett fra 2009 hvor vi ser en utflating i forbruket. Utflatingen i 2009 kan ha sammenheng med lavere økonomisk vekst den siste tiden. Det temperaturkorrigerte forbruket i alminnelig forsyning i første kvartal 2010 er det høyeste som er blitt registrert i dette kvartalet, noe høyere enn i samme kvartal i fjar.

Figur 1.3.15 Forbruk i alminnelig forsyning, med og uten temperaturkorrigering, sum for de siste 12-måneder, 1995-2010. TWh. Kilde: NVE

Figur 1.3.15 viser at det temperaturkorrigerte forbruket i alminnelig forsyning de siste 12 måneder er i ferd med å stige igjen etter en utflating fra august 2008 til november 2009.

Kraftforbruket i kraftintensiv industri har siden høsten 2005 falt på grunn av blant annet redusert aktivitet og nedleggelser for deler av industrien. Årsaken til dette er høye kraftpriser og lave produktpriser. Fra høsten 2007 er det igjen økning i denne forbrukssektoren, mens vi i 2009
ser enn sterk nedgang. En viktig forklaring på nedgangen finner vi i lave produktpriser grunnet det kraftige fallet i verdensøkonomien. I 2010 ser vi en utflating i forbruket.

Forbruket i kraftintensiv industri var i første kvartal 1,7 prosent lavere enn i samme periode i 2009.

De siste 12 månedene har forbruket i kraftintensiv industri vært 26,7 TWh referert kraftstasjon. Det er en nedgang på 16,3 prosent fra samme periode ett år før.

Figur 1.3.16 Forbruk i kraftintensiv industri, sum for de siste 12-månedere, 1995-2010. TWh. Kilde: NVE

Forbruket av kraft til elektrokjeler var i første kvartal 4,1 prosent lavere enn i tilsvarende periode i 2009. De siste 12 månedene har forbruket vært 3,9 TWh som er 7,1 prosent lavere enn i samme periode ett år tidligere. 12-månedersforbruket er om lag 65 prosent av hva det var i 1995 og 2000. I begge disse årene nådde forbruket opp i ca 6 TWh.

Figur 1.3.17 Forbruk av kraft til elektrokjeler, sum for de siste 12 månedene, 1995-2010. TWh. Kilde: NVE
Ut fra figuren ser vi at variasjonsområdet for kraft til elektrokjeler i perioden 1995-2010 er fra rundt 2,5 TWh til vel 6 TWh. Om lag 2,5 TWh av dette forbruket ser derfor ut til å kreve en høyere kraft pris for å koble ut enn det som er observert i samme periode.

1.4.2 Kraftforbruket i de andre nordiske landene

Det svenske kraftforbruket var 43,4 TWh i første kvartal, noe som er 2,6 TWh høyere enn i samme kvartal i fjor. Korrigert for temperaturer var økningen 0,3 TWh, i følge Svensk Energis temperaturkorrigerte forbrukstall. Det svenske kraftforbruket har de siste 52 ukene vært 138,0 TWh, som er 3,0 TWh lavere enn foregående 52-ukersperiode.

Kraftforbruket i Danmark var 9,7 TWh i første kvartal i år. Det er 0,2 TWh høyere enn i første kvartal i fjor. De siste 52 ukene har det danske kraftforbruket vært 34,6 TWh, som er en nedgang på 1,0 TWh sammenlignet med foregående 52-ukersperiode.

Det finske kraftforbruket var 25,0 TWh i årets første kvartal, noe som er 1,9 TWh mer enn i samme periode i fjor. Også her har lavere temperaturer trukket i retning av høyere forbruk. De
siste 52 ukene har det finske kraftforbruket vært 82,5 TWh, noe som er 1,2 TWh mindre enn i foregående 52-ukersperiode.

1.5 Andre energibærere i Norge

I tillegg til elektrisitet er olje, parafin, gass og biobrensel viktige energibærere til stasjonær sluttbruk, og fjernvarme har økende utbredelse. For andre energibærere enn elektrisitet foreligger ikke offisiell statistikk for kvartalsvis forbruk. Salgstall for petroleumsprodukter kan benyttes som en indikator på sluttbruk av petroleumsprodukter. For de andre energibærerne tar vi med tall avhengig av om slike er tilgjengelige fra interesseorganisasjoner eller SSB.

Fyringsoljer

Av petroleumsprodukter til oppvarming i stasjonær sektor benyttes i hovedsak fyringsparafin og fyringsolje. Fyringsparafin benyttes stort sett i husholdningene. Lett fyringsolje benyttes i flere sektorer, men vi fokuserer her på stasjonære formål innenfor industri, bergverk og kraftforsyning, husholdninger, næringsbyg mv. og offentlig virksomhet. Bruken av petroleumsprodukter til oppvarming avhenger i stor grad av prisforholdet mellom olje og elektrisitet, fordi mange sluttbrukere har utstyr som tillater veksling til den til enhver tid rimeligste energibæreren.

Gjennomsnittspris\(^2\) på lett fyringsolje har i første kvartal 2010 vært rundt 12 prosent høyere enn for tilsvarende periode i fjor. Grafen under viser at prisen holdt seg relativt stabilt i 2009, før den steg ved inngangen av 2010

\(^2\) Prisene er beregnet ut fra SSBs komsumprisindeks. For fyringsolje er det levering av olje med standard kvalitet fra oljeselskapene til fem ulike steder i Norge som samlles inn. Prisene er medregnet dropptillegg, kjøretillegg og gjennomsnittlig rabatt ved leveranse på 2000 liter. På grunnlag av disse prisene regnes et veid gjennomsnitt.
Figuren under viser at det i første kvartal 2010 ble solgt 205 millioner liter lett fyringsolje til de aktuelle sektorene (industri, bergverk og kraftforsyning, boliger, næringsbygg m.v., og offentlig virksomhet). Dette er en økning på hele 38 prosent fra første kvartal 2009, og 83 prosent fra første kvartal 2008. Økningen av salget skjedde innenfor boliger, næringsbygg og offentlig virksomhet.

Denne økningen kommer etter en periode med nedadgående trend, og har trolig sammenheng med en særskilt kald vinter i store deler av landet, med 2,9 og 3,6 grader under normalen i januar og februar. I tillegg var elektrisitetsprisene i samme periode relativt høye i forhold til prisene på fyringsolje.

Figur 1.5.2 Kvartalsvis salg av lett fyringsolje for kjøpegruppene industri, bergverk og kraftforsyning, boliger, næringsbygg m.v, og offentlig virksomhet, 2007-2010. Kilde: SSB, Norsk Petroleumsinstitutt

I første kvartal 2010 ble det solgt 24 millioner liter fyringsparafin mot 22 millioner liter i første kvartal 2009, og 21 millioner i første kvartal 2008. Det er en økning på 9 prosent i forhold til tilsvarende kvartal i fjor. Økningen i salget kan sees i sammenheng med den kalde vinteren i hele landet.
Ved

Annen bioenergi

Varmepumper

Fjernvarme

Gass

Se Kvartalsrapport 2/2009 for informasjon om utvikling i bruk av gass.
1.6 Kraftutveksling

Det var rekordhøy nordisk nettoimport i første kvartal i år. Totalt utgjorde den nordiske nettoimporten 6,2 TWh i første kvartal. Det er 6,9 TWh mer enn i samme kvartal i fjor. Høyt forbruk som følge av vedvarende kaldt vær, lite tilsig til de nordiske vannmagasinene samt lav svensk kjernekraftproduksjon forklarer den høye nordiske nettoimporten. Danmark var det eneste landet med nettoeksport i første kvartal. Det var først og fremst kraftflyt fra Jylland til Sverige og Sør-Norge som bidro til den dansk nettoeksporten. Sverige hadde høyest nettoimport av de øvrige nordiske landene.

Det har vært nordisk nettoimport i samtlige av de fire siste kvartalene. Totalt var den nordiske nettoimporten 13,1 TWh i de siste 52 ukene. I foregående 52-ukersperiode var det en knapp nordisk nettoeksport.

<table>
<thead>
<tr>
<th>Land</th>
<th>Utveksling (import (+)/eksport (-), TWh)</th>
<th>1.kv. 2010</th>
<th>1.kv. 2009</th>
<th>Siste 52 uker</th>
<th>Foregående 52 uker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norge</td>
<td></td>
<td>2,0</td>
<td>-0,9</td>
<td>-6,2</td>
<td>-12,2</td>
</tr>
<tr>
<td>Sverige</td>
<td></td>
<td>4,0</td>
<td>0,3</td>
<td>7,9</td>
<td>1,1</td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td>2,0</td>
<td>2,3</td>
<td>11,3</td>
<td>10,2</td>
</tr>
<tr>
<td>Danmark</td>
<td></td>
<td>-1,8</td>
<td>-1,4</td>
<td>0,1</td>
<td>0,6</td>
</tr>
<tr>
<td>Norden</td>
<td></td>
<td>6,2</td>
<td>0,4</td>
<td>13,1</td>
<td>-0,3</td>
</tr>
</tbody>
</table>
De nordiske landene importerte mer enn de eksporterte på samtlige av overføringsforbindelsene til kontinentet og Øst-Europa. Den svenske og danske nettoimporten fra Tyskland utgjorde til sammen 1,8 TWh i første kvartal. Sverige hadde ensidig import i hele kvartalet. I tilsvarende kvartal i fjor var det 2,2 TWh nordisk nettoeksport til Tyskland. NorNed-kabelen gikk ut av drift 27. januar på grunn av en teknisk feil. I de fire første ukene i år var det 1 TWh norsk nettoimport fra Nederland. Det var til sammen 3,8 TWh finsk nettoimport fra Russland og Estland. Det er 0,1 TWh mer enn i samme kvartal i fjor. Det er normalt stabil høy utnyttelse av kapasiteten på overføringsforbindelsen fra Russland til Finland.
Det kalde været har ført til høy last i enkelte områder og presset i overføringsnettet internt i markedsområdene har i perioder ført til at overføringskapasiteten mellom markedsområder er blitt redusert. Fra Sør-Norge til Sverige var det redusert kapasitet det meste av første kvartal. Det var bare i uke 13 at det var enkelte timer hvor all overføringskapasitet var tilgjengelig. Hvor mye som blir gitt i overføringskapasitet avhenger av forventet last i Oslo-området. I uke 1 og 2 var kapasiteten fra Sør-Norge til Sverige satt til null i flere timer om dagen som følge av nettbegrensinger i internt i Sør-Norge. Når været er kaldt og det er høyt forbruk av strøm i Oslo regionen oppstår det flaskehalsen fra vest i Sør-Norge og inn til Oslo-området. Disse interne flaskehalsene håndteres ved at Statnett reduserer den tilgjengelige handelskapasiteten mot Sverige. Det var også reduksjoner i kapasiteten fra Sverige til Sør-Norge som følge av interne begrensninger i det svenske nettet. Dette førte igjen til reduksjoner i overføringskapasiteten fra Sverige til Sjælland.

Det har også vært betydelig lavere overføringskapasitet enn normalt mellom Jylland og Sverige. Feil på Kontiskan-kabelen, har ført til mer enn halvert overføringskapasitet mellom disse to områdene i første kvartal.
Norge

Den samla norske nettoimporten fra Sverige utgjorde 0,6 TWh. Fra Sør-Norge til Sverige var det norsk nettoeksport i første halvdel av kvartalet, mens det var norsk nettoimport i andre halvdel av kvartalet. Variasjonen i overføringskapasiteten mellom Sør-Norge og Sverige hadde stor innvirkning på utvekslingen. Midt-Norge nettoimporterte kraft fra Sverige i alle kvartalets uker. Fra Nord-Norge var det nettoeksport til Sverige.

Andre nordiske land

Sverige hadde den høyeste nettoimporten av de nordiske landene med 4,0 TWh. Det er 3,7 TWh mer enn i samme kvartal i fjor. De siste 52 ukene har den svenske nettoimporten vært 6,8 TWh høyere enn i tilsvarende periode året før. Det er først og fremst de to siste kvartalene som har bidratt til økningen i nettoimporten. Tekniske feil og forsinket oppstart av svenske kjernekraftverk etter revisjonsperiodene sist sommer har hatt stor betydning for den svenske importen sammen med høyt forbruk som følge av kaldt vær.

Det var nær ensidig svensk import fra Danmark i samtlige uker siste kvartal. Det var svensk nettoimport fra Finland i samtlige av kvartalets uker. De siste fem ukene av kvartalet var det svensk import fra Finland i samtlige timer. Det var 0,1 TWh svensk nettoimport fra Polen siste kvartal. I samme kvartal året før var det 0,3 TWh svensk nettoeksport til Polen.

Den samlede finske nettoimporten utgjorde 2,0 TWh siste kvartal. I motsetning til i Norge og Svergie er det mindre enn for et år siden. Det skyldes økt eksport til Sverige. Den finske importen fra Russland var 3,1 TWh. Det er like mye som for ett år siden. Den finske importen fra Estland var 0,1 TWh høyere enn i samme kvartal året før, mens den finske nettoeksporten til Sverige økte med 0,7 TWh sammenlignet med tilsvarende kvartal i fjor.

Danmark var eneste land i Norden med nettoeksport. Samlet var den danske nettoeksporten 1,8 TWh. Det er 0,4 TWh mer enn samme kvartal i fjor. Jylland hadde det laveste prisnivået i Norden og eksporterte både til Sverige og Norge. Den danske importen fra Tyskland utgjorde 1,7 TWh. I tilsvarende kvartal i fjor var det 2,1 TWh dansk nettoeksport til Tyskland.
1.7 Kraftpriser i engrosmarkedet

1.7.1 Spotmarkedet

Ved inngangen til 2010 var Norge delt inn i tre markedsområder: Sør-Noreg (NO1), Midt-Noreg (NO2) og Nord-Norge (NO3). Fra 11. januar til 14. mars var Norge delt inn i fire områder. For å bedre flyten i nettet ble Sør-Norge delt i to, Sørøst- og Sørvest-Norge. Mandag 15. mars ble det ytterligere opprettet et nytt elspotområde. Deler av Vestlandet ble skilt ut som eget markedsområde for å sikre at linjene inn til området ble utnyttet best mulig. Statnett vurderte situasjonen som stram da det var svært lite vann i magasinene i området som følge av en tør og kald vinter. De fem nye områdene ble Øst- (NO1), Sørvest- (NO2), Midt- (NO3), Nord- (NO4) og Vest-Norge (NO5). Tabellen over viser priser for fem norske markedsområder. Her vil priser som var gjeldene i de aktuelle tidsrommene være regnet – for eksempel vil prisen for Vest-Norge (NO5) være den samme som prisen i Øst-Norge (NO1) i starten av kvartalet.

Prisøkningen fra siste kvartal i 2009 til det første i 2010 var også stor i resten Norden. Sverige, Finland og Sjælland hadde gjennomsnittlige priser på 583, 571 og 574 kr/MWh. Med en snitt pris på 347 kr/MWh, hadde Jylland lavest pris i første kvartal. Prisen i dette markedsområdet fulgte i større grad utviklingen i det tyske markedet, som hadde snittpriser godt under det nordiske prissnivået.
På den tyske kraftbørsen European Energy Exchange (EEX) var snittprisen i første kvartal 334 kr/MWh, en økning på 6 prosent fra kvartalet før. Til sammenligning var den tyske kraftprisene 22 prosent lavere i første kvartal 2009.

Figur 1.7.1 viser døgnSnittet for de nordiske markedsområdene for kraft og døgnprisen på den tyske kraftbørsen EEX. Fredag 8. januar var døgnSnittet i områdene Midt- og Nord-Norge, Sverige, Finland og Sjælland 2 kr/kWh. Fra time 8 til 10 denne dagen var prisen 8 kr/kWh. Mandag 22. februar var døgnSnittet i disse områdene hele 4 kr/kWh. Prisen i time 8, 9 og 10 var 11 kr/kWh i de fem markedsområdene. I tillegg hadde denne dagen fire timer med 8 kr/kWh. Det var betydelige reduksjoner i tilgjengelig importkapasitet til høyprisområdene i alle disse timene. Produksjonen var helt oppunder kapasitetsskranken for områdene samlet, inkludert import fra omkringliggende områder. I tillegg var det kaldt og etterspørselen i elspotområdet viste seg å være lite fleksibel.

Figur 1.7.1.7.1 Spotpriser i første kvartal 2010, døgngjennomsnitt, kr/MWh. Kilde: Nord Pool og EEX

Figur 1.7.1 viser oss flere døgnlige pristopper gjennom første kvartal. Midt- og Nord-Norge, Sverige, Finland og Sjælland hadde stort sett sammenfallende priser. Vi ser i figuren at gjennomsnittsprisen i Midt-Norge var noe høyere enn i de fire andre nevnte markedsområdene fra slutten av februar til begynnelsen av mars. Kraftprisen i Finland ble noe lavere i slutten av februar som følge av lavere kraftforbruk. Årsaken var streik i den finske papirindustriren.

Gjennom kvartalet hadde Øst- og Sørvest-Norge (NO1 og NO2) lavere døgnpriser enn de andre norske områdene. Spotprisen var helt klart lavest i Sørvest-Norge. Fram til 15. mars var Bergensområdet en del av Sørvest-Norge. Selv med knapphet i Bergensområdet hadde Sørvest-Norge de laveste spotprisene av de norske områdene. De relativt lave kraftprisene ga ingen
grunn til å redusere forbruket. Den 15. mars ble Vest-Norge (NO5) opprettet, og Bergensområdet ble en del av det nye markedsområdet. Det nye markedsområdet hadde noe høyere priser enn Sørvest-Norge i den første uka etter opprettelsen, for så å ha tilnærmet like priser. Varmere vær og lavere forbruk bidro til at de nordiske kraftprisene gikk noe ned mot slutten av kvartalet.

Den nordiske kraftproduksjonen er dominert av vannkraft. Denne produksjonen er billig å regulere, og følger derfor i høy grad forbruket. Figur 1.7.2 viser imidlertid at den nordiske systemprisen hadde relativ stor døgnvariasjon i første del av første kvartal 2010. Differansen på høyeste og laveste pris gjennom døgnet var størst fredag 8. januar med 2 kr/kWh.

Den tyske kraftprisen på EEX viste regelmessig stor variasjon gjennom døgnet. I det tyske kraftmarkedet dominerer termisk produksjon, men det er også et betydelig innslag av vindkraft. I et slikt system vil prisene variere mer over døgnet enn i Norden. Prisene er typisk høyere på dagtid når etterspørselen er høy og lavere om natten når etterspørselen er lav. Prisforskjellene mellom dag og natt forsterker seg dersom det blåser om natten og ikke om dagen, slik at vindkraftproduksjonen er høy når etterspørselen er lav og omvendt.

Figur 1.7.2 Nordisk og tysk døngjennomsnitt, samt prisvariasjoner over døgnet, kr/MWh. Kilde: Nord Pool og EEX

Tabell 1.7.1 viser omfanget av prisforskjeller mellom markedsområdene på Nord Pool samt EEX i første kvartal. Vi ser for eksempel at Sørvest-Norge (NO2) hadde lavere pris enn Øst-Norge (NO1) i 65,5 prosent av timene i årets første kvartal.
Tabell 1.7.1 Andel av timene i første kvartal 2010 med prisforskjeller mellom prisområdene. Kilde: Nord Pool

<table>
<thead>
<tr>
<th></th>
<th>NO1</th>
<th>NO2</th>
<th>NO3</th>
<th>NO4</th>
<th>NO5</th>
<th>Sverige</th>
<th>Finland</th>
<th>Jylland</th>
<th>Sjælland</th>
<th>EEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Høyest elspot-pris</td>
<td></td>
</tr>
<tr>
<td>NO1</td>
<td>65.5 %</td>
<td>8.7 %</td>
<td>15.8 %</td>
<td>62.1 %</td>
<td>18.1 %</td>
<td>27.0 %</td>
<td>87.7 %</td>
<td>18.4 %</td>
<td>91.7 %</td>
<td></td>
</tr>
<tr>
<td>NO2</td>
<td>0.0 %</td>
<td>7.3 %</td>
<td>12.6 %</td>
<td>0.0 %</td>
<td>13.0 %</td>
<td>21.2 %</td>
<td>72.4 %</td>
<td>15.5 %</td>
<td>80.8 %</td>
<td></td>
</tr>
<tr>
<td>NO3</td>
<td>37.8 %</td>
<td>84.4 %</td>
<td>21.1 %</td>
<td>83.4 %</td>
<td>23.3 %</td>
<td>33.1 %</td>
<td>95.2 %</td>
<td>28.6 %</td>
<td>96.1 %</td>
<td></td>
</tr>
<tr>
<td>NO4</td>
<td>19.3 %</td>
<td>75.5 %</td>
<td>0.0 %</td>
<td>72.6 %</td>
<td>4.4 %</td>
<td>19.2 %</td>
<td>93.4 %</td>
<td>11.4 %</td>
<td>95.6 %</td>
<td></td>
</tr>
<tr>
<td>NO5</td>
<td>3.4 %</td>
<td>6.6 %</td>
<td>7.5 %</td>
<td>14.3 %</td>
<td>14.8 %</td>
<td>22.2 %</td>
<td>73.9 %</td>
<td>17.2 %</td>
<td>81.3 %</td>
<td></td>
</tr>
<tr>
<td>Sverige</td>
<td>17.9 %</td>
<td>74.5 %</td>
<td>0.0 %</td>
<td>71.2 %</td>
<td>15.1 %</td>
<td>92.6 %</td>
<td>9.2 %</td>
<td>95.7 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>17.9 %</td>
<td>69.4 %</td>
<td>0.0 %</td>
<td>66.4 %</td>
<td>0.0 %</td>
<td>89.9 %</td>
<td>7.6 %</td>
<td>93.4 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jylland</td>
<td>18.2 %</td>
<td>73.9 %</td>
<td>1.2 %</td>
<td>1.8 %</td>
<td>70.6 %</td>
<td>1.3 %</td>
<td>15.1 %</td>
<td>88.1 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sjælland</td>
<td>8.3 %</td>
<td>19.2 %</td>
<td>3.9 %</td>
<td>4.4 %</td>
<td>18.7 %</td>
<td>4.3 %</td>
<td>6.6 %</td>
<td>32.9 %</td>
<td>5.7 %</td>
<td></td>
</tr>
<tr>
<td>EEX</td>
<td>8.3 %</td>
<td>19.2 %</td>
<td>3.9 %</td>
<td>4.4 %</td>
<td>18.7 %</td>
<td>4.3 %</td>
<td>6.6 %</td>
<td>32.9 %</td>
<td>5.7 %</td>
<td></td>
</tr>
</tbody>
</table>

1.7.2 Terminmarkedet

Første kvartal 2010 var preget av lite tilsig, relativt lite vann i magasinene og om lag 30 prosent mindre snø i fjellet enn normalt. Gjennom kvartalet var det fremdeles en del usikkerhet rundt svensk kjernekraftproduksjon. Tørt og kaldt vær førte til høyt forbruk, og det nordiske terminmarkedet reagerte på værvarsler og markedsmeldinger vedrørende svensk kjernekraft.

Fra midten av 2008 falt prisen på utslippsretter for CO₂ relativt jevnt fra omkring 30 euro/tonn til omkring 8 euro/tonn i midten av februar i 2009. Dette har sammenheng med lavere kraftforbruk og -produksjon som følge av finanskrisen. Deretter steg prisen i løpet av våren til i overkant av 15 euro, hvor den holdt seg mer eller mindre stabil ut året. Prisen på CO₂ påvirker prisen på elektrisk kraft da utslippsrettene er en del av kostnadene i termisk kraftproduksjon.

I første kvartal 2010 lå gasspisene omtrent på samme nivå som i andre kvartal 2009. Snittprisen på NBP for første kvartal var 98 øre/Sm³, 16 øre lavere enn i kvartalet før.

Tar man utgangspunkt i et kraftverk i Storbritannia med en virkningsgrad på 55 prosent, ville brenselskostnadene for gass handlet på spotmarkedet (eksklusiv rørtariff innenlands) i første kvartal i 2010 vært i snitt 177 kr/MWh. Dette er en reduksjon på 27 kr/MWh i forhold til fjerde kvartal 2009. Til sammenligning var brenselskostnaden i første kvartal 2009 i snitt 256 kr/MWh.

Figur 1.7.7 viser utviklingen i prisen på kontrakten for nærmeste kvartal (Front Quarter) på gass levert i Storbritannia (NBP), Belgia (Zeebrugge) og Nederland (TTF) fra 2006 og ut 2009.
I snitt var prisen på kull omtrent uendret fra fjerde kvartal 2009 til første kvartal 2010. I den første uka i 2010 ble kontrakten for det nærmeste kvartalet (Front Quarter) handlet for 94 dollar/tonn. Ved utgangen av kvartalet var prisen 76 dollar/tonn. Snittprisen i første kvartal ende på 79 dollar/tonn, 1 dollar høyere enn i kvartalet før.

Med en kullpris på 79 dollar/tonn ville brenselkostnaden (eksklusiv transport fra Antwerpen/Rotterdam/Amsterdam til kraftverket) i et kullkraftverk som benytter importert kull med 40 prosent virkningsgrad vært 149 kr/MWh, 6 kroner mer enn i fjerde kvartal 2009. Til sammenligning var denne kostnaden 154 kr/MWh i første kvartal 2009.

Figur 1.7.8 viser kullprisen fra 2006 til og med første kvartal 2010. API2 er en indeks for prisutvikling på kull der frakt- og forsikringskostnader er inkludert. API2 måler priser for kull levert til Antwerpen, Amsterdam og Rotterdam.
Figur 1.7.8 Kullpris (API2), dollar/tonn, Europa. Kilde: Syspower og Spectron Group Limited
1.8 Sluttbrukermarkedet

1.8.1 Priser og prisutvikling

I første kvartal 2010 har fastpriskontrakt vært den mest lønnsomme kontrakttypen for husholdninger i Norge. Blant fastpriskontrakter har den 3-årige kontrakten vært den billigste med en gjennomsnittspris på 51,8 øre/kWh, mens den 1-årige kontrakten hadde en gjennomsnittspris på 53,9 øre/kWh. Sammenlignet med både sist kvartal og tilsvarende kvartal i fjor har den 1-årige kontrakten økt mest, med en økning på henholdsvis 12,6 og 7,7 øre/kWh.

Blant markedspriskontrakter har det vært betydelige prisforskjeller i landets spotområder. Gjennomsnittsprisen har vært høyest i Midt-Norge (NO3) med 81,8 øre/kWh, etterfulgt av prisen i Nord-Norge (NO4) med 79,6 øre/kWh. I Sør - Øst Norge (NO1) og Sør - Vest Norge (NO2) har gjennomsnittsprisen vært henholdsvis 66,9 og 55,9 øre/kWh. Sammenlignet med forrige kvartal og tilsvarende kvartal i fjor har prisen i alle landsets spotområder økt betydelig. Størst økning fant sted i Midt – Norge (NO3).

Av tilbyderne av standard variabel kontrakt var det de landsdekkende leverandører som tilbydde den mest lønnsomme kontrakten. Disse hadde en gjennomsnittspris på 57,2 øre/kWh, mens de dominerende leverandører hadde en gjennomsnittspris (volumveid) på 65,5 øre/kWh. Også for denne kontrakttypen har det vært betydelige økninger i prisen sammenlignet med sist og tilsvarende kvartal i fjor. Eksempelvis økte prisen fra de dominerende leverandørene med 28,9 øre fra forrige kvartal, mens sammenlignet med 1. kvartal 2009 økten prisen med 13,2 øre.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Markedspriskontrakt (spot):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Øst Norge (NO1)</td>
<td>66.9</td>
<td>+28.2</td>
<td>+22.1</td>
</tr>
<tr>
<td>Sørvest Norge (NO2)</td>
<td>55.9</td>
<td>+17.3</td>
<td>+11.1</td>
</tr>
<tr>
<td>Midt-Norge (NO3)</td>
<td>81.8</td>
<td>+39.3</td>
<td>+36.4</td>
</tr>
<tr>
<td>Nord-Norge (NO4)</td>
<td>79.6</td>
<td>+37.3</td>
<td>+34.2</td>
</tr>
<tr>
<td>Vest-Norge (NO5)</td>
<td>52.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard variabel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominerende leverandører</td>
<td>65.5</td>
<td>+28.9</td>
<td>+13.2</td>
</tr>
<tr>
<td>Landsdekkende leverandører</td>
<td>57.2</td>
<td>+25.3</td>
<td>+6.5</td>
</tr>
<tr>
<td>Fastpriskontrakt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- år</td>
<td>53.9</td>
<td>+12.6</td>
<td>+7.7</td>
</tr>
<tr>
<td>3- år</td>
<td>51.8</td>
<td>+6.1</td>
<td>+4.0</td>
</tr>
<tr>
<td>Kontraktsvalg (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markedspris/spot</td>
<td>53.9</td>
<td>-3.0</td>
<td>+4.5</td>
</tr>
<tr>
<td>Fastpris</td>
<td>4.2</td>
<td>-1.7</td>
<td>-2.2</td>
</tr>
<tr>
<td>Standard variabel:</td>
<td>41.9</td>
<td>+4.7</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

3 Spotområdet Vest – Norge (NO5) ble opprettet den 13. mars 2010. Området består av de vestlige delene av tidligere Sør – Øst Norge (NO1) og Sør – Vest Norge (NO2). Da det ikke finnes historikk på dette området vil kolonnene som sammenligner det aktuelle kvartalet med sist og tilsvarende kvartal i fjor stå tomme.
4 Volumveid gjennomsnitt av de dominerende leverandørenes priser fra de 22 største nettområdene.
5 Aritmetisk gjennomsnitt av leverandørenes priser
6 Kilde: SSB – kvartalsvis energistatistikk.
Figur 1.8.1 sammenligner snittprisen (inkl. mva) for standard variabel kraftpris for de dominerende leverandører med spotpriskontrakt for Sør - Øst Norge (NO1) pluss 1,9 øre/kWh påslag for perioden 2001 til og med første kvartal 2010.

Hvert nettområde som rapporterer til NVE har en dominerende leverandør som tilbyr standard variabel kontrakt. I figuren er det gjennomsnittsprisen fra de dominerende leverandørene som brukes. Hver pris er vektet med det totale forbruket i nettområdet.

En spotpriskontrakt er en kontrakt som tar utgangspunkt i den månedlige områdeprisen på Nordpool Spot. I tillegg til prisen kommer som regel et påslag. Påslaget kan være oppgitt som et tillegg per kWh eller/og som et månedlig eller årlig kronebeløp. Hva hver kraftleverandør tar i påslag i tillegg til innkjøpsprisen varierer mellom leverandører og over tid. I figur 1.8.1 er det brutt et anslått gjennomsnittlig påslag på 1,9 øre/kWh.

Differansen mellom kraftprisen tilbudt til husholdninger og innkjøpsprisen på Nordpool Spot representerer den bruttomarginen som leverandøren ville fått ved å kjøpe inn all kraft på spotmarkedet. Denne marginen skal dekke risikoen knyttet til volum, pris og andre driftskostnader.
Kraftleverandører som kjøper kraft på spotmarkedet og selger kraften til en høyere pris til husholdninger, vil ha en positiv bruttomargin mens en som selger til en lavere pris enn innkjøpsprisen vil ha en negativ bruttomargin.

Figur 1.8.1 gjenspeiler noen viktige konkurransemessige forhold for tilbydere av spotpriskontrakter og standard variabel kontrakt i sluttbrukermarkedet. Det ene er at spotpriskontrakt har en mer volatil utvikling som følge av at den er direkte knyttet til svingningene i spotmarkedet. Det andre forholdet er at prisjusteringen av standard variabel kontrakt er forsinket i forhold til spotpriskontrakt, noe som skyldes at leverandører av denne kontrakten må bestemme prisen to uker før den faktiske kraftleveransen. Avviket til prisen i spotmarkedet medfører dermed et potensielt tap for leverandører av standard variabel kontrakt uten prissikring. Dersom forsinkelsene er lengre når det er snakk om å sette ned prisen, enn for å sette den opp, vil dette helle i retning av at standard variabel kontrakt kan være mindre gunstig enn en spotpriskontrakt alt annet likt. Av figuren kan vi se en tendens til at prisen på standard variabel kontrakt holdes på et høyere prisnivå enn spotpriskontrakten når denne begynner å falle i pris, som oftest etter vinterperioder. På denne måten kompenserer leverandørene av standard variabel kontrakt for det tapet de påføres i vinterperioder.

Den volumvektede gjennomsnittsprisen i utvalget av dominerende leverandører av standard variabel kontrakt var på 65,5 øre/kWh for første kvartal 2010. Dette er 29,1 øre høyere enn kvartalet før og 13,2 øre høyere enn kvartalet før og 13,2 øre høyere enn tilsvarende kvartal i fjor.

Gjennomsnittsprisen for en spotpriskontrakt i Øst Norge (NO1), var til sammenlikning 66,9 øre/kWh inkl. påslag på 1,9 øre/kWh.

Figur 1.8.2 Kostnader ved ulike produkter forbruksveid etter justert innmatingsprofil (eksl. Mva)\(^7\)

\(^7\) Justert innmatingsprofil (JIP) er en måte å fordele forbruket til alle innbyggerne i et nettområde på. Etter at det timemålte forbruket og nettapet i nettområdet er trukket fra totalt forbruket i nettet, sitter man igjen med en mengde forbrukt strøm som ikke er målt. Dette gir grunnlaget til en fordelingsnøkkel. I figur 1.8.2 er det lagt til grunn en husholdningskunde med et forbruk på 20 000 kWh /år.
Som forbruker er man gjerne interessert i å finne ut hva som totalt sett blir den billigste kontraktsformen for seg selv ved valg av ulike type kontrakter. Selv om en type kontrakt kan ha de laveste prisene i gjennomsnitt over kvartalet, er det ikke sikkert at det er denne typen kontrakt som gir forbrukeren lavest kostnad. Det at en kontraktsstype har lavest gjennomsnittspris, betyr ikke nødvendigvis at kostnaden ved å ha denne kontraktsformen alltid er lavest, bare at den i snitt har hatt en lavere pris enn andre kontraktsyper. Sett at denne kontrakten alltid er dyrest i de periodene man forbruker mest (f eks kalde perioder) og bare billigst i de periodene man forbruker lite, kan dette føre til at kostnaden til forbrukeren allikevel bli høyest med denne kontrakten. Sett at denne kontrakten alltid er dyrest i de periodene man forbruker mest (f eks kalde perioder) og bare billigst i de periodene man forbruker lite, kan dette føre til at kostnaden til forbrukeren allikevel bli høyest med denne kontrakten. I figur 1.8.2 har vi fordelt forbruket til en husholdningskunde med et forbruk på 20 000 kWh i året etter et normalt forbruksmønster som kalles justert innmatingsprofil. Ved å veie ukesprisene med denne profilen får vi et anslag på kostnadene ved de ulike kontraktsypene for første kvartal 2010. Prisene er ikke inkludert merverdibigift.

Påslag på spotpriskontrakt

Figur 1.8.3 viser en oversikt over påslagene på spotpriskontrakt for hver leverandør på Konkurranstilsynets prisoversikt i uke 13. Siden noen leverandører oppgir at de har et påslag per kWh mens andre oppgir at de har et fast beløp per måned, år eller begge deler, kan det av og til være vanskelig å sammenligne de forskjellige tilbudene. I figuren er alle sommer regnet om til påslag i øre/kWh for en bedre sammenligning\(^8\). I snitt var påslaget på 2,05 øre/kWh.

Figur 1.8.3 viser at det kan være store forskjeller i påslag mellom leverandørene. Alle leverandørene i oversikten vises i figuren, men ikke alle leverandører tilbyr kraft i flere nettområder. Av leverandørene i figuren under, er det kun 17 som er landsdekkende.

\(^8\) Det er brukt 20 000 kWh som et årlig gjennomsnittsforbruk i utregningene. Om en har et påslag på 50 kr i måneden vil dette utgjøre 3 øre/kWh for en forbruker av 20 000 kWh per år. Dersom man har et forbruk på f eks 10 000 kWh per år, vil det månedlige påslaget på 50 kr utgjøre 6 øre/kWh.
Figuren viser at det kan være store forskjeller i påslag mellom leverandørene. Alle leverandørene i oversikten vises i figuren, men ikke alle leverandører tilbyr kraft i flere nettområder. Av leverandørene i figuren under, er det kun 17 som er landsdekkende.

Figur 1.8.3 Påslag på spotpriskontrakt per kWh. Påslaget er regnet ut etter antatt årlig snittforbruk på 20 000 kWh. Oversikten er fra uke 13. Kilde: Konkurransetilsynet.

Figur 1.8.4 gir et bilde av prisspredningen i husholdningsmarkedet i de siste fire kvartalene. Prisene som er brukt er månedlige gjennomsnittspriser på standard variabel kontrakt for dominerende leverandør i 18 nettområder. Prisene er hentet fra prisoversikten til Konkurransetilsynet og er vektet med totalt volum levert til husholdninger i nettområdet.

Figuren viser at prisspredningen er større i første kvartal i år enn de foregående kvartalene. Man kan også se at om lag 35 prosent av volumet ble omsatt til 70 øre/kWh i første kvartal 2010. Den volumvektede gjennomsnittsprisen var 65,5 øre/kWh for første kvartal 2010.
Figur 1.8.4 Prisspredning i de siste fire kvartalene. Kilde: Konkurransetilsynet og NVE.

Figur 1.8.5 Standard variabel kraftpris for dominerende og landsdekkende leverandører og spotpriskontrakt (NO1, NO2, NO3, NO4 og NO5) med påslag, 1,9 øre/kWh inkl. mva. Kilde: Konkurransetilsynet og NVE

I figur 1.8.5 sammenlignes standard variabel kraftpris for dominerende leverandører med spotpriskontrakt med 1,9 øre/kWh påslag i prisområdene Sør - Øst Norge (NO1), Sør - Vest Norge (NO2), Midt-Norge (NO3), Nord-Norge (NO4) og Vest-Norge (NO5).
Norge (NO2), Midt-Norge (NO3), Nord-Norge (NO4) og Vest-Norge (NO5). Fra og med 11. januar (uke 2) opphørte det gamle spotområdet Sør-Norge, og ble delt i Sør - Øst Norge (NO1) og Sør - Vest Norge (NO2). Den 13. mars (uke 10) ble de vestlige deler av Sør - Øst Norge (NO1) og Sør - Vest Norge (NO2) skilt ut til et eget elspotområde, Vest-Norge (NO5).

Standard variabel kontrakt levert av både dominerende og landsdekkende leverandører hadde et stabilt og økende utviklingsmønster i 1. kvartal 2010. I løpet av kvartalet varierte prisen til de dominerende leverandørene i intervallet 41.5 til 97.2 øre/kWh, mens prisen fra de landsdekkende leverandører lå i intervallet 34.1 – 82.8 øre/kWh.

Av de 12 landsdekkene leverandører som tilbydde landsdekkende leveranse av standard variabel kontrakt var det kun én leverandør som hadde høyere gjennomsnittspris enn gjennomsnittsprisen for dominerende leverandører (65,5 øre/kWh) i 1. kvartal 2010. Sammenlignet med en markedspriskontrakt i Sør - Øst Norge (NO1) inkl. 1,9 øre/kWh i påslag har alle de 12 landsdekkende leverandører hatt lavere gjennomsnittspriser i dette kvartalet. Det har også vært betydelige prisforskjeller blant de forskjellige landsdekkende leverandører i dette kvartalet, med gjennomsnittspriser i intervallet 36,7 – 65,9 øre/kWh

Figur 1.8.6 Aritmetisk snitt for 12 landsdekkende leverandører sammenlignet med gjennomsnittspris for utvalget av dominerende leverandører, begge standard variabel kontrakt, og spotpriskontrakt med påslag 1,9 øre/kWh, priser inkl. mva, øre/kWh. Kilde: Konkurransetilsynet og NVE

9 Utvalget av landsdekkende leverandører er hentet konkurransetilsynets kraftprisoversikt. Antall landsdekkende leverandører i utvalget medfører derfor ikke nødvendigvis det totale antallet landsdekkende leverandører i det norske sluttbrukemarkedet.
Figur 1.8.7 viser prisutviklingen for 1- og 3-årige fastpriskontrakter for 2009 og 1. kvartal 2010. Gjennomsnittsprisen for både den 1- og 3-årige kontrakten nådde makspris i uke 8 med henholdsvis 61,1 og 56,4 øre/kWh. Sammenlignet med tilsvarende kvartal i 2009 har fastpriskontraktene i dette kvartalet hatt motsatt utviklingsmønster, med økende priser ved inngangen til kvartalet og fallende priser mot slutten av kvartalet.

1.8.2 Leverandørskifter

Som et ledd i arbeidet med å undersøke om kraftmarkedet fungerer tilfredsstillende, har Norges vassdrags- og energidirektorat (NVE) siden 1997 gjort kvartalsvise undersøkelser om leverandørskifte og prisutvikling. Fra og med 1999 ble undersøkelsen utvidet fra å omfatte bare husholdninger, til også å inkludere næringskunder. Fra og med fjerde kvartal 2004 er nettelskapene også bedt om å rapportere om markedsandel for de fem største leverandørene i nærings – og husholdningsmarkedet. NVE kontakter hvert kvartal nettelskap i 28 av de største distribusjonsnettene i Norge.\(^\text{10}\)

De 28 nettområdene omfatter dette kvartalet 91 prosent av husholdningsmarkedet. Fra første kvartal 2008 frem til dags dato, er antall abonnement knyttet til husholdning og

\(^{10}\) Utvalget er per i dag fra de 28 største nettområdene i Norge. Utvalget er ikke nødvendigvis statistisk representativt. Utvalget er gjort ut i fra den vurderingen at mindre nettelskapene har begrensete ressurser til å drive denne type rapportering. Dersom det er slik at kunder i mindre nettområder er mer lojale mot en lokal leverandør, vil de skalerte tallene i undersøkelsen gi for høye estimat, men dersom det er motsatt vil estimatene bli for lave.
hytter/fritidsboliger 2 398 200. Nøkkeltallene er derfor skalert opp med 1,1 for å representere hele landet.

Liberaliseringen av det norske kraftmarkedet

Sammenhengen mellom leverandørskifte og prisutvikling

Figur 1.8.8 gir en oversikt over antall leverandørskifter og prisdifferanser mellom den dyreste dominerende leverandøren av standard variabel kontrakt og den billigste av de landsdekkende leverandørene av samme type kontrakt.

Ser vi på leverandørskiftetall de siste årene er det ikke en klar sammenheng mellom antallet leverandørskifter og differansen i pris mellom dyreste og billigste leverandør av standard variabel kontrakt. Dette kan være fordi det normalt sett ikke har vært store forskjeller i pris mellom leverandørene. Historisk sett har antall leverandørskifter vært høyere i perioder med store prisforskjeller. Fra 2004 til i dag har antallet kunder på standard variabel kontrakt (som brukes i figur 1.8.8) sunket gradvis, og det er per i dag omtrent like mange husholdningskunder som har spotpriskontrakt som standard variabel kontrakt. Kunder med spotpriskontrakt vil ikke være rammet av prisforskjellene mellom leverandører av standard variabel kontrakt.

11 Fra fjerde kvartal 2004 til og med fjerde kvartal 2007 er antallet leverandørskifter skalert opp med utgangspunkt i 2,3 millioner husholdningsabonnement.
1.8.8 Prisspredning og antall leverandørskifter. Kilde: Konkurransetilsynet og NVE

Leverandørskifter i næringsmarkedet

For næringsmarkedet var det om lag 10 280 kunder som skiftet leverandør. Det er en økning med 77 prosent fra forrige kvartal da bare 5 820 skiftet leverandør. Sammenliknet med første kvartal i fjor (9 780) er det kun en økning med 5 prosent. I figur 1.8.12 vil en se en årlig tendens til at antallet leverandørskifter for næringskunder er betydelig høyere i første kvartal enn for resten av året. En mulig årsak til dette kan være at kontraktene revideres ved årsskiftet.

Første kvartal 2010

Noe av årsaken til det økte antallet leverandørskifter første kvartal i år, er trolig at det var høyere priser enn normalt for årstiden og ekstremt høye priser visse dager i januar og februar. Større oppmerksomhet i media rundt pris på strøm kan ha bidratt til at folk har hatt mer fokus på energisparingstiltak og muligheter for leverandørsbytte.

Markedsandel

Både i husholdningsmarkedet og i næringsmarkedet har de fleste leverandører en vesentlig markedsandel i bare ett nettområde, gjerne i sitt eget og eventuelt noen få tilgrensende. Mange av leverandørene med markedsandel bare i ett nettområde er store næringskunder som gjerne kjøper kraft på Nord Pool Spot via en meglere. Megleren står selv som leverandør, til tross for at det er flere som bruker det samme meglerselskapet. Det høye antallet leverandører med stor markedsandel i næringsmarkedet er derfor noe misvisende.

1.8.10. **Gjennomsnittlig markedsandel for de fem dominerende leverandørene. Kilde: NVE**

![Diagram](image)

Figur 1.8.10 viser hvor stor andel av kunder og forbruk de fem største leverandørene har i snitt innenfor ”sitt” nettområde. Tallene er for både husholdningskunder og for næringskunder første kvartal 2010. Antall husholdningskunder som har den lokale dominerende leverandøren er dette kvartalet på over 70 prosent.

Andeler i husholdningsmarkedet

Figur 1.8.11 viser antallet leverandørskifter over tid og utviklingen i andelen av husholdningskunder som er tilknyttet den dominerende leverandøren i sitt nettområde. Figuren viser at det har vært enfallende tendens i markedsandelen hos den dominerende leverandøren.

\(^\text{12}\) Leveringsplikt, eller ventetariff, er en pålagt plikt alle nettselskap har til å levere strøm til kundene i nettområdet som er uten kraftleverandør, f eks pga flytting eller når kraftleverandøren ikke kan levere strøm pga konkurs eller at de avslutter sin virksomhet på annen måte.
Dette kan skyldes økt konkurranse mellom strømleverandører og at stadig flere husholdningskunder har blitt bevisste at de fritt har muligheten til å velge strømleverandør.

Når det gjelder størrelsen på markedsandene finner vi relativt stor spreding mellom de ulike nettområdene. Den laveste markedsandelen for en strømleverandør til husholdninger i første kvartal 2010 var på 27,5 prosent, mens den høyeste markedsandelen var på 90,6 prosent. Gjennomsnittlig markedsandel i husholdningsmarkedet var 72,8 prosent, noe som er 0,7 prosentpoeng lavere enn forrige kvartal (73,5 prosent).

1.8.11 Antall leverandørskifter og markedsandeler for dominerende leverandør for husholdningskunder. Kilde: NVE

Andeler i næringsmarkedet

For næringsmarkedet dekker de innrapporterte områdene 92 prosent av markedet. Nøkkeltallene er derfor skalert opp med 1,08 for å representere hele landet. Høyeste markedsandel for en leverandør til næringskunder i første kvartal 2010 var 90,6 prosent, mens laveste markedsandel var på 27,5 prosent. I snitt var markedsandelen 65,2 prosent, som er 0,7 prosentpoeng høyere enn forrige kvartal (64,5 prosent).

1.8.12 Antall leverandørskifter og markedsandeler for dominerende leverandør for næringskunder. Kilde: NVE

13 Fra og med første kvartal 2008 var det 314 800 abonnement innenfor næringsmarkedet i Norge.
1.8.3 Kontraktsvalg

Oversikten over hvilke typer kontrakter husholdningene velger er hentet fra en utvalgsundersøkelse gjennomført av Statistisk Sentralbyrå (SSB), basert på informasjon fra 50 av selskapene som opererer innenfor sluttbrukermarkedet. Det korrigeres ikke for manglede innrapportering, og det er derfor grunn til å være noe forsiktig med å legge for mye vekt på den kvartalsvise utviklingen i undersøkelsen.

Undersøkelsen kan allikevel gi god informasjon om hvordan valget av kontrakt har utviklet seg i et lengre tidperspektiv og kan også si noe om den underliggende tenden. Vi har derfor valgt å se på et glidende gjennomsnitt over utviklingen i kontraktsvalg, der hver søyle representerer snittet av de fire siste kvartalene.

Kraftkontrakter – husholdningskunder

Standard variabel kontrakt har tradisjonelt vært den mest vanlige kontraktstypen for husholdningskunder i Norge. 73,5 prosent av kundene hadde denne kontrakten i snitt i 2003, mens kun 41,3 prosent hadde slik kontrakt i snitt over de siste fire kvartalene (3. kv. 2009-1. kv. 2010). 53,2 prosent av husholdningskundene har nå en kontrakt knyttet til spotprisen, mens bare 5,6 prosent har en form for fastpriskontrakt. Figur 1.8.13 bekrefter den langsiktige tendensen i retning av stadig flere husholdningskunder velger spotpriskontrakter på bekostning av standard variabel kontrakt.

Figur 1.8.13 Prosentvis fordeling av ulike typer kontrakter i husholdningsmarkedet. Kilde: SSB og NVE
Leveringsplikt

Noen kunder har ikke valgt en egen kraftleverandør, men får som følge av leveringsplikt levert strøm fra nettleverandørene i det området der han eller hun bor. Prisen for kunder på leveringsplikt er regulert de første seks ukene. Prisen i denne tiden skal ikke være høyere enn spotprisen i området pluss et påslag på 5 øre/kWh (eksl. mva.). Etter de første seks ukene skal nettselskapet fastsette prisen på en slik måte at kundene får insentiv til å velge en normal kraftleverandør. Leveringsplikten er ment å være en midlertidig ordning og skal derfor være dyrere enn minst en markedsbasert strømavtale i området over tid. Likevel ser man en tendens til at nettselskapene har relativt mange kunder på leveringsplikt. I snitt var det 2,2 prosent av husholdningskundene som ikke hadde kraftleverandør ved utgangen av første kvartal 2010. Dette er en nedgang på 0,2 prosent fra forrige kvartal. Største andel av antall kunder på leveringsplikt i et nettområde var på 8,5 prosent. Figuren under viser hvor mange prosent av husholdningsabonnentene som 4. april 2010 var på leveringsplikt i de 28 utvalgte nettområdene.

Figur 1.8.14 Prosentvis fordeling av husholdningskunder på leveringsplikt for 28 nettområder i Norge per 4. april 2010.
Kraftkontrakter – næringskunder

Sammenliknet med husholdningskunder har næringskunder, utenom industrien, i større grad valgt spotpriskontrakt. I figur 1.8.15 kan en se at antallet kunder med spotpriskontrakt har hatt en noe fallende tendens. I den siste firekvartalsperioden økte antallet noe igjen til 69,6 prosent.

Andelen kunder med standard variabel kontrakt i næringsmarkedet var på 24,8 prosent i den siste firekvartalsperioden.

Figur 1.8.15 Prosentvis fordeling av ulike typer kontrakter i næringsmarkedet. Kilde: SSB og NVE.
1.8.4 Husholdningenes samlede utgifter til elektrisk kraft

Totalprisen på elektrisitet for en forbruker er satt sammen av kraftpris, nettleie og avgifter. Den totale utgiften til elektrisk kraft for en husholdningskunde med et forbruk på 20 000 kWh var 7 422 kroner ved standard variabel kontrakt og 7 523 kroner ved spotpriskontrakt i Sør - Øst Norge i første kvartal 2010. Sammenlignet med samme kvartal i 2009 er dette en økning på 2 prosent for standard variabel kontrakt, mens for spotpriskontrakt er det en økning på 15 prosent.

Den totale regningen for en forbruker med markedspriskontrakt var i første kvartal 2010 satt sammen av følgende kostnader; 47 prosent kraftpris, 22 prosent nettleie og 31 prosent avgifter. Tilsvarende tall for tilsvarende kvartal i 2009 var; 39 prosent i kraftpris, 28 prosent i nettleie og 33 prosent i avgifter.
1.8.16 Totalkostnad i første kvartal til kraft, nettleie, og offentlige avgifter i kroner ved et årlig forbruk på 20 000 kWh. Kilde: Konkurransetilsynet og NVE

Figur 1.8.1.8.17 Kraftpris (standard variabel, volumveid), nettleie og avgifter, gjennomsnitt for kvartalet, øre/kWh. Kilde: Konkurransetilsynet, SSB og NVE
2 Temaartikkel: Vinterens kraftsituasjon - 2009/2010

Av: Thor Erik Grammeltvedt, Tor Arnt Johnsen, Anne Sofie Ravndal Risnes, Finn Erik Ljåstad Pettersen og Mats Øivind Willumsen, Energiavdelingen, NVE.

I brev av 12. mars 2010 ba Olje- og energidepartementet (OED) NVE utarbeide en rapport om vinterens kraftsituasjon. Denne temaartikkelen gjengir NVEs rapport til OED.

Sammendrag

Det norske og nordiske kraftmarkedet er i store trekk velfungerende. Spesielt kaldt vær og lav svensk kjernekraftproduksjon satte likevel kraftsystemet og markedet på flere store prøver siste vinter. Nær full utnyttelse av produksjonsapparatet i Midt- og Nord-Norge, Sverige, Finland og Sjælland resulterte i svært høye priser i Nord Pools døgnmarked i noen timer i løpet av vinteren.

Det er etter NVEs vurdering først og fremst en svært stiv etterspørselsside i Nord Pools elspotmarked som gjorde at prisene kunne bli så høye. Økt prisfølsomhet fra forbrukere og kraftleverandører er derfor svært viktig for å redusere muligheten for at prisene skal kunne bli så høye i fremtiden.

Etterspørselen er også nettinvesteringer nødvendige for å sikre økt fleksibilitet og tilstrekkelige marginer i drift av nettet i fremtiden. Det norske kraftsystemet har en høy grad av utnyttelse. Gjennom økt bruk av mekanismer som systemvern og utkobling, har det vært mulig å øke overføringen i systemet.

Det tar tid å realisere investeringer både i ny produksjon og nye nettanlegg. Parallel med nye investeringer vil også etterspørrelselen kunne øke og skape ny knapphet og flaskehalser. På kort sikt er det derfor først og fremst bedre utnyttelse av det til en hver tid tilgjengelige kraftsystemet og lavere forbruk som kan trygge forsyningssikkerheten.

På mange av overføringslinjene inn til områdene med høyeste pris var det i høypristimene svært store reduksjoner iuten av overføringskapasiteten. For eksempel var kapasiteten fra Sør-Norge (pris under 50 øre/kWh) til Sverige (pris 8 kr/kWh) satt til 0 i høypristimene 8. januar 2010. Det må sees nærmere på om bedre organisering av kapasitetsforsyning og prisområdeinndeling kan gi bedre utnyttelse av denne type overføringslinjer.

Høye priser fører til lavere forbruk, og det er viktig at prisene tillates å gå høyt i områder og tidsperioder med stor knapphet. Samtidig er det viktig at prisene ikke blir høyere enn nødvendig i de områdene som ikke opplever så stor knapphet.

Driftserfaringene fra vinteren viser at det i mange områder var stor knapphet og at eventuelle utfall av kraftsystemet ville kunne føre til konsekvenser i form av strømbrudd i de kaldeste periodene. For folkerike områder som Bergen, Oslo og Stavanger var driften slik at forbruk ville måtte kobles ut ved utfall av nettanlegg eller produksjon. På samme tid hadde disse områdene de laveste kraftprisene i Norden. NVE anbefaler at det sees nærmere på alternativ markedsergberisier eller prisforskjellene brukes mer aktivt til å dempe forbruket og trygge forsyningssikkerheten i påvente av større nettinvesteringer.
De mobile reservekraftverkene i Midt-Norge er i utgangspunktet et virkemiddel for å unngå energiknapphet, men kan også være et virkemiddel mot effektknapphet. Det ble i vinter gitt midlertidig dispensasjon til drift av de mobile reservekraftverkene i anstrengte driftssituasjoner med fare for utkobling av forbruk. NVE vil se nærmere på om dispensasjonen bør gjøres permanent. Det bør også utredes hvorvidt alternative lokaliseringer bør klargjøres for bruk av de mobile reservekraftverkene.

Forbruk med utkobbar tariff ble i perioder med spesielt høy last koblet ut, og dette var viktige bidrag for å sikre driften av systemet. Alternativet ville i vinter vært redusert driftssikkerhet med flyt i kritiske snitt utover det som normalt kan tillates. Erfaringene viser derfor at det er behov for å sikre at systemansvarlig har virkemidler som kan benyttes i spesielle driftssituasjoner.

Det er behov for en større vurdering av hvilke nivå som er samfunnsmessig rasjonelt for forsyningssikkerheten i kraftsystemet. NVE vil høsten 2010 utarbeide en rapport om forsyningssikkerhet i kraftsystemet og vurdere kriterier for prioritering av sikker drift og forutsetninger for langsiktig planlegging av samfunnsmessig rasjonelle løsninger for nettinvesteringer.

2.1 Innledning

NVE ser svært alvorlig på at kraftprisene kunne gå så høyt som siste vinter. Værforhold og fysiske forhold i kraftsektoren var ekstreme, og kan forklare at knappheten på elektrisk kraft ble stor. De høye prisene skyldes først og fremst at store forbrukere og leverandører i sum faktisk var villige til å betale så høye priser. Det er likevel grunn til å spørre om bedre informasjon og risikohåndtering spesielt på etterspørreelsetiden ville gi høyere prisfølsomhet i døgnmarkedet. I tillegg er NVE åpen for at bedre markedsdesign, spesielt med hensyn til flaskehalshåndtering, ville kunne gi lavere priser i høyprisområdene og færre/mindre høyprisområder.

OED har i brev av 12. mars 2010 bedt NVE om en rapport som beskriver kraftsituasjonen og de høye prisene vinteren 2009/2010. Spesielt bes det om vurderinger knyttet til reservekraftverkene i Midt-Norge. Hvervende rapport er NVEs svar på OEDs forespørsel.

Resten av denne rapporten er disponert som følger: I kapittel 2.2 redegjøres det for kraftsystemet og -markedets utgangspunkt for vinteren ved månedsskiftet november/desember. Kapittel 2.3 inneholder drøfting av værforhold, kraftforbruk, produksjon, kraftsystem og –nett samt prisutvikling i engros- og sluttbrukermarkedene fra desember 2009 til mars 2010. I kapittel 2.4 drøftes de tre periodene med svært høye kraftpriser. I kapittel 2.5 drøftes spesielle forhold knyttet til drift og forsyningssikkerhet i vinter. Kapittel 2.6 dreier seg om reserver i det nordiske kraftsystemet med hensyn til regelverk og praktisering siste vinter. Kapittel 2.7 tar for seg spesielle tiltak for å håndtere svært anstrengte kraftsituasjoner, herunder energiopsjoner og reservekraftverk. Til slutt - i kapittel 2.8 - skisseres temaer for videre arbeid med sikte på å legge til rette for et kraftmarked som fungerer slik at sannsynligheten for igjen å oppleve perioder med like høye kraftpriser er redusert.
2.2 Utgangspunktet ved inngangen til vinteren

Tabell 2.0 Kraftpriser og magasinfylling ved inngangen til desember. Kilde: Nord Pool og NVE

<table>
<thead>
<tr>
<th>Kraftpriser (kr/MWh)</th>
<th>Magasinfyllingsgrad (prosent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Døgnmarkedspriser Nord Pool Spot:</td>
<td>Faktisk</td>
</tr>
<tr>
<td>Sør-Norge (NO1)</td>
<td>302</td>
</tr>
<tr>
<td>Midt-Norge (NO2)</td>
<td>306</td>
</tr>
<tr>
<td>Nord-Norge (NO3)</td>
<td>306</td>
</tr>
<tr>
<td>Sverige</td>
<td>306</td>
</tr>
<tr>
<td>Finland</td>
<td>306</td>
</tr>
<tr>
<td>Jylland (DK1)</td>
<td>337</td>
</tr>
<tr>
<td>Sjælland (DK2)</td>
<td>390</td>
</tr>
<tr>
<td>Finansielle kraftpriser Nord Pool:</td>
<td></td>
</tr>
<tr>
<td>Terminus 1 kvartal 2010</td>
<td>315</td>
</tr>
<tr>
<td>Terminus 2 kvartal 2010</td>
<td>274</td>
</tr>
</tbody>
</table>

Magasinfyllingen var ved inngangen til desember litt under normalt for landet som helhet. I følge Statnetts prognose den første uken i desember var det forventet at magasinfyllingen skulle falle til rundt 30 prosent ved vårkulminasjonen i uke 18. Det er fire prosentpoeng under normalt. Midt-Norge hadde høyest magasinfylling i begynnelsen av desember. Den svenske magasinfyllingen lå mer enn 10 prosentpoeng under den norske fyllingsgraden. Forsinket oppstart i de svenske kjernekraftverkene etter sommerens revisjoner har medvirket til at vannkraftprodusentene har måtte produsere mer for å dekke etterspørselen. I begynnelsen av desember var fem svenske kjernekraftreaktorer ute av drift (Oskarshamn 2 og 3, Ringhals 1 og 2, Forsmark 2). Til sammen utgjorde disse i underkant av 50 prosent av den totale installerte kapasiteten i svenske kjernekraftverk. Det hadde vært flere meldinger om forsinket oppstart, og per 1. desember var kraftverkene ventet tilbake i drift i løpet av desember og januar. Alle meldingene om utsettelsler skapte usikkerhet i markedet. Ingen av verkenes kom tilbake i drift som forespeilt.

I begynnelsen av desember var fem svensk kjernekraftverkene ventet tilbake i drift i løpet av desember og januar. Alle meldingene om utsettelsler skapte usikkerhet i markedet. Ingen av verkenes kom tilbake i drift som forespeilt.

Vannkraftprodusentenes verdsetting av magasinvannet avhenger sterkt av forventet markedsutvikling. Utsiktene til lave priser kan ha gitt lavere verdsetting av vannet og dermed høyere vannkraftproduksjon enn om det var den faktiske markedsutviklingen som var forventet. Dette kan igjen ha forsterket knappheten i produksjonskapasiteten som gjorde seg gjeldende i perioder med kaldt vær og høy etterspørrelse i vinteren.

Figur 2.3.2 Nedbør desember 2009 til mars 2010, prosent av normal

Tilsiget til norske vannmagasin utgjorde 8,4 TWh fra desember til mars. Det er 4,2 TWh mindre enn normalt.
Det har også kommet betydelig mindre snø enn normalt. Snømagasinet var omtrent som normalt i begynnelsen av desember. Ved utgangen av uke 12 i år var det cirka 40 prosent mindre snø enn normalt.

Figur 2.3.4 Sneøns energiinnhold, prosent av normal kulminasjon
2.3.2 Forbruksutvikling i Norge og Norden

Det kalde været har bidratt til at vi har hatt rekordhøyt nordisk kraftforbruk i vinter til tross for at finanskrisen har bidratt til lavere økonomisk aktivitetsnivå. Ut fra Figur 2.3.7 ser vi at det først og fremst er innenfor alminnelig forsyning at det norske kraftforbruket har økt sammenlignet med fjoråret, mens det har vært en reduksjon i forbruket til kraftkrevende industri. I denne kategorien var kraftforbruket fra uke 49/2009 til uke 12/2010 8,7 TWh, mot 9,2 TWh i samme periode i fjor.

Figur 2.3.5 Forbruk i de nordiske landene for uke 49 til 12 (uke 53 er utelatt), TWh

Figur 2.3.6 Utvikling i forbruket for de nordiske landene fra uke 49 2009 til uke 12 2010, GWh
Temperatur forklarer mesteparten av økningen i det samlede norske forbruket. Figur 2.3.8 viser utviklingen i forbruket i Midt-Norge sammen med temperaturen i Trondheim (gildende syv-dagers gjennomsnitt). Vi ser at variasjonen i forbruket i sterk grad følger svingningene i temperaturen. Forbruket nådde sitt høyeste nivå i uke 1 og det norske kraftforbruket i time 9 onsdag denne uken var det høyeste registrerte kraftforbruket i en time noensinne. Da ble det benyttet 23 994 MWh elektrisk kraft i Norge. Vedvarende kulde, ned mot under 20 minusgrader i store deler av landet, bidro til svært høyt forbruk enkelte timer.

Figur 2.3.8 Forbruk i Midt-Norge og temperatur i Trondheim representert ved gildende syv-dagers gjennomsnitt, GWh

Figur 2.3.9 Forbruk og pris i time 8 i enkelte ukedager med om lag lik temperatur for Midt- og Nord-Norge, Sverige og Finland. Kilde: SKM Syspower

Figur 2.3.9 viser forbruk og pris enkelte ukedager med om lag lik temperatur i vinter. Selv om det kan være ulike temperaturer i dagene i forveien, skulle ikke temperatur kunne forklare særlige forskjeller i forbruket for åforbruket i disse timene. Dersom forbrukere reagerer på høy pris ved å reducere forbruket sitt, skulle vi kunne observere lavere forbruk i timene med høy pris. Selv om illustrasjonen i figuren over langt fra er et tilstrekkelig grunnlag til å trekke konklusjoner, trekker den i retning av at prisfølsomheten i Nord-Norge og Finland er høyere enn i Midt-Norge og Sverige. Figurene for Finland og Nord-Norge illustrerer at forbruket faller når prisen går opp. Det er ikke tilfelle for figuren for Midt-Norge og spesielt ikke for Sverige.
2.3.3 Produksjonsutvikling i Norge og Norden

Den nordiske kraftproduksjonen i de syv første ukene av 2010 var høyere enn i samme periode de to foregående år. For Norges del gjaldt dette for de seks første ukene av 2010 (se Figur 2.3.10 og Figur 2.3.11). Dette til tross for lave tilsig til vannmagasinene.

Figur 2.3.10 Ukentlig nordisk kraftproduksjon, GWh. Kilde: Nord Pool

Figur 2.3.11 Ukentlig norsk kraftproduksjon, GWh. Kilde: Nord Pool

Figur 2.3.12 viser utviklingen i magasinfyllingen i Norge i 2009 og 2010, og median fyllingsgrad. Ved inngangen til uke 49 i 2009 var magasinfyllingen i Norge 1,9 prosentpoeng under medianen. Ved utgangen av uke 12 i år var fyllingsgraden 13,3 prosentpoeng under medianen. Dette innebærer at magasinene i disse ukene ble tappet for mer enn 9 TWh mer enn vanlig nedtapping i denne perioden.

Midt-Norge, Sørøst-Norge, og etter hvert Vest-Norge hadde betydelig lavere fyllingsgrad enn Nord-Norge og Sørvest-Norge. Mens fyllingsgraden ved utgangen av uke 12 for hele landet var 28,5 prosent, var den 16,0 prosent i Sørøst-Norge, 18,5 prosent i Midt-Norge og 25,3 prosent i Vest-Norge. I Nord-Norge var fyllingsgraden 38,1 prosent. I Sørvest-Norge var den 31,3 prosent.
Kraftsituasjonen i Midt-Norge ble av Statnett karakterisert som stram fra utgangen av uke 3. Etter hvert ble også kraftsituasjonen i Vest-Norge karakterisert som stram.

Figur 2.3.12 Fyllingsgraden til vannmagasinene i Norge. Prosent. Kapasitet=84,3 TWh. Kilde: NVE

![Diagram av fyllingsgrad til vannmagasinene i Norge](

Figur 2.3.13 Kraftproduksjon fordelt på teknologier i Norge, uke 49 – uke 12, TWh. Kilde: Nord Pool

![Diagram av vannkraft, varmekraft og vindkraft produksjon i Norge](

Figur 2.3.13 viser at vannkraftproduksjonen i Norge denne vinteren (uke 49 – uke 12) har vært nesten like høy som de to foregående år, til tross for lite tilsig til vannmagasinene. Konsekvensen har vært at magasinene har blitt tappet ned i sterkere grad enn median nedtapping. Etter hvert som fyllingsgraden har sunket sammenlignet med medianen, har det
gjenværende vannets verdi økt per enhet. Det har tvunget frem en høyere kraftpris i vinter for at produsentene skulle være villig til å produsere nok til å dekke etterspørselen.

Figur 2.3.14 Kraftproduksjon fordelt på teknologier i Norden, uke 49 – uke 12, TWh. Kilde: Nord Pool

Også for Norden som helhet var vannkraftproduksjonen noe lavere denne vinteren enn de to forgående. Mer iøynefallende er imidlertid nedgangen i kjernekraftproduksjonen de to siste årene. Vinteren for to år siden var kjernekraftproduksjonen over 5 TWh høyere enn i vinter.

Nedgangen i svensk kjernekraftproduksjon har vært enda sterkere. Mens den svenske kjernekraftproduksjonen denne vinteren var 16,0 TWh, var den i samme periode for ett år siden 20,0 TWh og ett år tidligere 23,1 TWh.

Den tilgjengelige produksjonskapasiteten ved svenske kjernekraftverk har vært lavere enn normalt siden sommeren 2009. Kapasiteten er normalt sett relativt høy ved inngangen til sommernåden. Kapasiteten går så noe ned om sommeren på grunn av vedlikeholdsarbeid, for så å øke igjen utover høsten når kraftverkene kommer tilbake i drift.

Den tilgjengelige kapasiteten ved svenske kjernekraftverk i perioden 1. desember til 1. april har vært redusert med opp til om lag 5000 MW. Det er over 50 prosent av full produksjonskapasitet.

Figur 2.3.15 viser ukentlig produksjon fra svenske kjernekraftverk de siste fem årene. I siste halvår av 2007 var den svenske kjernekraftproduksjonen 30,7 TWh. I siste halvår av 2008 var den 26,8 TWh, mens den i samme periode i fjor var 19,1 TWh (uke 27 – uke 52). Produksjonsnedgangen skyldes sikkerhetsmessige forhold. Vedlikeholdsperiodene har pågått mye lengre enn vanlig og anlegget har blitt tatt ut av drift. For eksempel skyldes utsatt idriftsettelse ved Ringhals 1 at den svenske Strålskyddsmyndigheten ikke godkjente anlegget etter den opprinnelige vedlikeholdsperioden.
En økning i øvrig termisk produksjon kompenserte for nedgangen i vann- og kjernekraftproduksjonen i Norden, slik at samlet produksjon var om lag lik produksjonen vinteren 2008/2009.

2.3.4 Kraftutveksling og nettkapasitet

Overføringskapasiteten mellom de nordiske elspotområdene fastsettes av systemoperatørene. Hvor mye av den normale overføringskapasiteten som er tilgjengelig blir bestemt på bakgrunn av den prognoserte lastsituasjonen i de ulike områdene samt tekniske forhold i nettet som utfall og revisjoner av linjer. I Figur 2.3.17 ser vi at den gjennomsnittlige overføringskapasiteten for flere av overføringsforbindelse har vært betydelig lavere enn normalt i vinter. Mellom Sverige og Sør-Norge har kapasiteten variert betydelig gjennom perioden avhengig av lastsituasjonen. På grunn av en feil på Kontiskan-kabelen mellom Jylland og Sverige, har overføringskapasiteten vært mer enn halvert mellom disse to områdene i vinter.
I timer med høye priser utgjorde elspotområdene i Midt- og Nord-Norge, Sverige, Finland og Sjælland et felles prisområde. Sør-Norge og Jylland hadde i hovedsak betydelig lavere priser. Hvor mye overføringskapasitet som var tilgjengelig inn til elspotområdene med høyest pris er således av stor betydning. Av Figur 2.3.18 ser vi at den samlede importkapasiteten inn til høyprisområdet har variert betydelig i vinter. Det skiller over 1000 MW i snittkapasitet mellom uken med laveste kapasitet i uke 1 og uken med høyest kapasitet i uke 9.

Figur 2.3.18 Samlet gjennomsnittlig importkapasitet inn til området bestående av elspotområdene Midt-og Nord-Norge, Sverige, Finland og Sjælland (MW) samt den høyeste registrerte områdeprisen i den aktuelle uken (kr/MWh) Kilde: Nord Pool

Figur 2.3.19 ser vi at i de tre døgnene med høyest priser i vinter har det vært redusert kapasitet fra Sør-Norge til Sverige. Torsdag 17. desember var det tilgjengelig betydelig mer overføringskapasitet enn 8. januar og 22. februar. Vi ser imidlertid at også 17. desember ble kapasiteten redusert i timene med pristopp sammenlignet med timene før og etter. Den 8. januar var overføringskapasiteten lik null i flere timer på dagtid. Det at kaldt vær skaper større press i nettet internt i elspotområdene, som igjen leder til redusert tilgjengelig overføringskapasitet ved områdegrensen bidrar til at mulighetene for kraftoverføring mellom områdene er minst når prisforskjellen og gevinsten ved handel er størst.
Figur 2.3.19 Overføringskapasitet fra Sør-Norge (NO1) til Sverige (MW) og prisforskjell (NOK/MWh) mellom disse områdene i uke 51 i 2009 samt uke 1 og 5 i 2010. Kilde: Nord Pool
I situasjoner hvor det er betydelige regionale forskjeller med hensyn til krafttilgang og forbruk er det særdeles viktig at det nordiske overføringsnettet blir utnyttet på en effektiv måte og at kraft blir fraktet dit den verdsettes høyest. Det er således viktig med en god markedsdesign som effektivt håndterer flaskehalser i nettet. Både inndelingen i anmeldingsområder og fastsettelsen av overføringskapasiteter har stor betydning i denne sammenheng.

Anmeldingsområder og overføringskapasiteter

På grunn av redusert overføringskapasitet på Oslofjordkabelen Rød-Hasle valgte Statnett fra 11. januar 2010 å opprette to nye prisområder i Sør-Norge (NO1 og NO2) til erstatning for det gamle prisområdet i Sør-Norge. Stor knapphet med vedvarende ubalanse mellom ønsket kjøp og salg av kraft gjorde at Statnett i tillegg valgte å opprette eget prisområde NO5 på Vestlandet 15. mars 2010. Den siste delen av vinteren har det således vært 5 prisområder i Norge.

Figur 2.3.20 Prisområder vinteren 2010. Kilde Nord Pool
2.3.5 Spesialregulering

Dersom det oppstår flaskehalser innenfor et anmeldingsområde benytter Statnett spesialregulering for å justere produksjon og/eller forbruk på begge sider av flaskehalsen slik at nettets kapasitet ikke overskrider. Om det for eksempel er flaskehals fra sør til nord inne i et elspotområde, vil Statnett benytte regulerkraftmarkedet for å få produsenter (forbrukere) i sør til å produsere (forbruke) mindre (mer) enn planlagt i elspotklareringen. Samtidig må produsenter (forbrukere) nord for flaskehalsen produsere (forbruke) mer (mindre) enn planlagt i elspotklareringen.

Spesialreguleringene griper direkte inn i vann disponeringen og "tvinger" produksjonen opp ved å betale "uvillige" produsenter en pris som er høyere enn elspotprisen. Dette prissignalet kommer ikke til syn for forbrukerne i det interne underskuddsområdet.

Midt-Norge

Vestlandet

For Bergensområdet har det vært store kostnader forbundet med spesialregulering. Ved utgangen av mars er det totalt over 37,7 MNOK i spesialreguleringskostnader som kan knyttes direkte til underskudd i BKK-området. I tillegg har det vært spesialregulert for 3,8 millioner kr ved underskudd i BKK og SFE og 1,9 millioner kroner for underskudd på Vestlandet totalt. Dette gir en samlet spesialreguleringskostnad på 43,4 millioner kroner.

Figur 2.3.22 Spesialreguleringskostnader som følge av kraftunderskudd på Vestlandet, MNOK. Kilde: Statnett (foreløpige tall)
Andre områder

Ved lite produksjon i SFE-området oppstår det spenningsproblemer ytterst i radialen på grensen mot Midt-Norge. For å forhindre dette må kraftstasjonen Åskåra produsere. Dette fører til flere tilfeller hvor Statnett må spesialregulere produksjonen opp i Åskåra. Hittil i år har spesialreguleringskostnadene for Sogn og Fjordane vært på ca 14,5 millioner kr. Disse kostnadene er redusert etter opprettelsen av NO5 og mildere vær (mer tilsig i området).

Figur 2.3.23 Spesialreguleringskostnader ved underskudd i SFE-området Kilde: Statnett (foreløpige tall)

Som nevnt ovenfor skyldes de store utgiftene til spesialregulering at det eksisterer flaskehalser i nettet internt i anmeldingsområdene i elspot. Spesialreguleringsene griper direkte inn i vanndisponeringen og "tvinger" produksjonen opp ved å betale "uvillige" produsenter en pris som er høyere enn elspotprisen. Dette prissignalet kommer ikke til syne for forbrukerne i det interne underskuddsområdet.
2.3.6 Prisutvikling i engrosmarkedet

Prisutviklingen i det nordiske engrosmarkedet bestemmes av samspillet mellom tilbud og etterspørsel og mulighetene for overføring mellom elspotområdene. På tilbudssiden er det tilgjengelig produksjonskapasitet, brenselkostnader til varmekraftverk, samt vannkraftprodusentenes verdsetting av vannet som har størst betydning. I vinter har den lave produksjonskapasiteten ved svenske kjernekraftverk samt høy verdsetting av magasinvannet som følge av lite tilsig bidratt til høye priser i store deler av Norden. På etterspørselsiden er det først og fremst de lave temperaturen som har bidratt til økt kraftetterspørsel og høyere priser. Restriksjonene i det nordiske overføringsnettet har ført til begrensede muligheter for import i områdene hvor verdsettingen av kraften har vært høyest. Per i dag er Norden delt inn i ni elspotområder. Som illustrert i Figur 2.3.24, er det Midt- og Nord-Norge, Sverige, Finland og Sjælland som har hatt det høyeste prisnivået i vinter. Sør-Norge har hatt ulike områdeinndelinger gjennom vinteren. Frem til 11. januar utgjorde Sør-Norge ett elspotområde og hadde sammen med Jylland betraktelig lavere priser enn i resten av Norden i timene med høy last i systemet. Hvor mye overføringskapasiteten som var tilgjengelig fra Sør-Norge og Jylland hadde således stor betydning for hvor høye priser som ble realisert i resten av Norden. Som beskrevet under avsnitt 2.3.4 har det vært stor variasjon i overføringskapasiteten særlig fra Sør-Norge til Sverige.

Figur 2.3.24 Oversikt over elspotområder i Norden. De røde områdene hadde høyt prisnivå vinteren 2009/10
Figur 2.3.25 viser at det først og fremst er 17. desember, 8. januar og 22. februar som utmerker seg med timer hvor prisen var spesielt høy, opp mot 12 000 kr/MWh. Disse timene forklares og drøftes nærmere i avsnitt 2.4. Figuren viser også at prisen i flere andre timer var over 2000 kr/MWh. Fem timer 4. mars var prisen i Midt-Norge betydelig høyere enn i resten av Norden. På sitt høyeste var prisen nesten 3 000 kr/MWh i Midt-Norge denne dagen.

Prisen i Sørøst-Norge har ligget noe under prisen i de nevnte fem områdene deler av vinteren, men også hatt tilnærmet lik pris i flere uker. Sørvest-Norge og Jylland har stort sett hatt lavere priser enn de andre nordiske elspotområdene.

Figur 2.3.27 sammenligner denne vinterens ukepriser i Sør- og Midt-Norge med tilsvarende priser i samme periode forrige vinter. Da var prisene høyere ved inngangen til desember, hovedsakelig som følge av høyere produksjonskostnader for termiske kraftverk. Prisene falt imidlertid gjennom vinteren som følge av lav etterspørsel og lavere kostnader for termisk produksjon.

Utviklingen denne vinteren gikk i motsatt retning, som følge av høy etterspørsel, lite vann i magasinene og lav kjernekraftproduksjon. Vannkraft ble den marginale produksjonen, og verdsettingen av vannet økte utover vinteren inntil slutten av februar.

Figur 2.3.28 Daglige sluttpriser for andre- og tredjekvartalskontrakten på Nord Pool fra og med 1. desember til og med 31. mars, NOK/MWh. Kilde: Nord Pool
2.3.7 Prisutvikling i sluttkontraktmarkedet

Av Tabell 2.3.1 ser vi at det kun er de landsdekkende leverandørene av standard variabel kontrakt som i gjennomsnitt har tilbudt en lavere pris på sine kontrakter denne vinteren. Derimot er prisen fra dominerende leverandører som tilbyr standard variabel kontrakt høyere denne vinteren enn forrige vinter.

Tabell 2.3.1. Gjennomsnittlige sluttkontraktpriser for markedspris-, standard variabel- og fastpris-kontrakt, øre/kWh

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Markedspriskontrakt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53,9</td>
</tr>
<tr>
<td>Sør-Øst Norge (NO1)</td>
<td>59,9</td>
<td>46,5</td>
<td>+13,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sør-Vest Norge (NO2)</td>
<td>52,0</td>
<td>46,5</td>
<td>+5,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midt-Norge (NO3)</td>
<td>73,4</td>
<td>47,5</td>
<td>+25,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord-Norge (NO4)</td>
<td>71,8</td>
<td>47,5</td>
<td>+24,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Variabel:</td>
<td></td>
<td></td>
<td></td>
<td>41,9</td>
<td></td>
</tr>
<tr>
<td>Dominerende leverandører</td>
<td>58,4</td>
<td>55,6</td>
<td>+2,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landsdekkende leverandører</td>
<td>50,3</td>
<td>53,2</td>
<td>-2,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastpris:</td>
<td></td>
<td></td>
<td></td>
<td>4,2</td>
<td></td>
</tr>
<tr>
<td>1- års fastpris</td>
<td>50,7</td>
<td>47,5</td>
<td>+3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3- års fastpris</td>
<td>50,2</td>
<td>48,9</td>
<td>+1,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De største prisforskjellene sammenlignet med sist vinter finner vi i kontraktstypen markedspriskontrakt, og særlig i områdene Midt-Norge (NO3) og i Nord-Norge (NO4), med henholdsvis 25,9 og 24,3 øre høyere gjennomsnittspris.

15 Prosentvis fordeling av kontraktprisværdi hentes fra SSB kvartalsvis energistatistikk: http://www.ssb.no/emner/10/08/10/elkraftpris/tab-2010-04-13-03.html

16 Volumveid gjennomsnitt av de dominerende leverandørene priser fra de 20 største nettområdene.

17 Aritmetisk gjennomsnitt av landsdekkende leverandører
Prisutviklingen vinteren 2009/2010

Bakgrunnen for dette mønsteret er at forskjellen mellom prisen på standard variabel kontrakte og spotprisen representerer et økonomisk tap for leverandørene. Et tap som de kan sikre seg mot ved for eksempel å bruke så kalte cdf’er (contracts for difference). NVE har ikke oversikt over omfanget av bruken av cdf’er i vinter, men historisk har ikke hele volumet av standard variabel kontraktytter blitt sikret på denne måten. Det er derfor grunn til å tro at en rekke leverandører av standard variabel kontraktytter har tapt penger i løpet av vinteren, spesielt i ukene med høye priser.
Figur 2.3.29 Prisutvikling for standard variabel kontrakt til dominerende og landsdekkende leverandører samt og markedspriskontrakt for nåværende elspotområder

Totale kostnader for en husholdning

Tabell 2.3.2 Forventede kostnader for en vanlig husholdning i vinter.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Markedspriskontrakt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sør-Øst Norge (NO1)</td>
<td>10 413</td>
<td>8 865</td>
<td>+1 547</td>
</tr>
<tr>
<td>Sør-Vest Norge (NO2)</td>
<td>9 627</td>
<td>8 865</td>
<td>+762</td>
</tr>
<tr>
<td>Midt-Norge (NO3)</td>
<td>11 788</td>
<td>8 999</td>
<td>+2 789</td>
</tr>
<tr>
<td>Nord-Norge (NO4)</td>
<td>11 642</td>
<td>8 999</td>
<td>+2 643</td>
</tr>
<tr>
<td>Standard Variabel:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dominerende leverandører</td>
<td>10 128</td>
<td>9 781</td>
<td>+348</td>
</tr>
<tr>
<td>Landsdekkende leverandører</td>
<td>9 362</td>
<td>9 543</td>
<td>-181</td>
</tr>
<tr>
<td>Fastpris:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- års fastpris</td>
<td>9 486</td>
<td>8 969</td>
<td>+517</td>
</tr>
<tr>
<td>3- års fastpris</td>
<td>9 456</td>
<td>9 086</td>
<td>+370</td>
</tr>
</tbody>
</table>
Utregningen i Tabell 2.3.2 er laget for å illustrere de forventede kostnader en vanlig husholdning har hatt i årets vinter for et utvalg av kontraktstyper. Vi har tatt utgangspunkt i et årlig forbruk på 20 000 kWh per husholdning. For å anslå forbruket og fordelingen av denne, har vi benyttet en justert innmatingsprofil \(^{18}\) for 2009. Prisene inkluderer tre kostnadssegmenter: Kraftpris\(^{19}\), avgifter \(^{20}\) og nettleie\(^{21}\). Samme utregning er gjort for vinteren 2008/2009.

Tabell 2.6.2 viser at husholdninger med standard variabel kontrakt levert av en landsdekkende leverandører kom best ut av årets vinter. Sammenlignet med sist vinter er også kostnaden ved denne kontrakten lavere i årets vinter.

Samtidig er det verdt å påpeke at standard variabel kontraktene vinteren 2008/2009 var vesentlig dyrere enn spotpriskontrakter.

Husholdninger med markedspriskontrakter måtte i vinter betale fra 9 627 til 11 788 kroner. Her er det tydelige forskjeller fra sist vinter. Forskjellen er størst for Midt-Norge (NO3) med en økning på om lag 2 800 kroner og minst for Sørvest-Norge (NO2) med økning på om lag 760 kroner.

Kostnadene for de forskjellige kontraktstypene er delt inn i tre kostnadskomponenter; kraftpris, avgifter og nettleie. Figur 2.3.30 viser hvordan kostnadene er fordelt i de tre komponentene for flere kontrakttyper.

\(^{18}\) Beregnet på bakgrunn av utgitt volum for 11 nettselskap i Norge

\(^{19}\) Kraftpris uten avgifter

\(^{20}\) Inkluderer forbruksavgift (10,5 øre/kWh fram til 31.12.2009, 11,01 øre/kWh fra og med 1.1.2010)

\(^{21}\) Enova-avgift på 1 øre/kWH og merverdiavgift

Nettleie hentes fra NVEs nettleiestatistikk: http://www.nve.no/no/Kraftmarked/Nettleie/Nettleiestatistikk

---2005-og-senere/
Figur 2.3.30 Gjennomsnittlig kostnad for ulike kontrakter uke 49 2009 tom uke 13 2010

Tjenesteyting og industri 22

22 Hentet fra SSB sin kvartalswise energistatistikk
Tabell 2.3.3 Prisstatistikk for tjenesteytende næring og industri. Kilde: SSB

<table>
<thead>
<tr>
<th></th>
<th>1. kv 2010</th>
<th>Endring fra 4. kv 2009</th>
<th>Endring fra 1. kv 2009</th>
<th>Prosentvis fordeling av kontraktvalg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tjenesteytende næringer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gjennomsnitt</td>
<td>52,8</td>
<td>+19,7</td>
<td>+14</td>
<td></td>
</tr>
<tr>
<td>Nye fastpriskontrakter</td>
<td>37,8</td>
<td>+6,2</td>
<td>+1,5</td>
<td>1,2</td>
</tr>
<tr>
<td>Eldre fastpriskontrakter</td>
<td>36,7</td>
<td>1,1</td>
<td>-0,9</td>
<td>3,8</td>
</tr>
<tr>
<td>Kontrakter tilknyttet elspotprisen</td>
<td>56,9</td>
<td>+24,4</td>
<td>+19,2</td>
<td>71,7</td>
</tr>
<tr>
<td>Variabel pris (ikke tilknyttet elspot)</td>
<td>43,7</td>
<td>+9,5</td>
<td>+2</td>
<td>23,3</td>
</tr>
<tr>
<td>Industri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gjennomsnitt</td>
<td>45,8</td>
<td>+16,8</td>
<td>+12,5</td>
<td></td>
</tr>
<tr>
<td>Nye fastpriskontrakter</td>
<td>36,4</td>
<td>2,9</td>
<td>-0,4</td>
<td>1,1</td>
</tr>
<tr>
<td>Eldre fastpriskontrakter</td>
<td>40,8</td>
<td>+15,5</td>
<td>+13,5</td>
<td>47,6</td>
</tr>
<tr>
<td>Kontrakter tilknyttet elspotprisen</td>
<td>51,1</td>
<td>+18</td>
<td>+13,7</td>
<td>46,7</td>
</tr>
<tr>
<td>Variabel pris (ikke tilknyttet elspot)</td>
<td>44,6</td>
<td>+8,1</td>
<td>+2,3</td>
<td>4,5</td>
</tr>
<tr>
<td>Kraftintensiv industri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gjennomsnitt</td>
<td>24,5</td>
<td>+3,4</td>
<td>+3,5</td>
<td></td>
</tr>
<tr>
<td>Eldre fastpriskontrakter (ikke markedsbestemte priser)</td>
<td>19,6</td>
<td>-0,1</td>
<td>-0,1</td>
<td>87,7</td>
</tr>
<tr>
<td>Kontrakter tilknyttet elspotprisen</td>
<td>53,3</td>
<td>+22,1</td>
<td>+18,1</td>
<td>12,3</td>
</tr>
</tbody>
</table>

Tjenesteytende næring

Tabell 2.3.3 viser at gjennomsnittlig pris på elektrisk kraft for tjenesteytende næringer i 1. kvartal 2010 var 52,8 øre/kWh eksklusive MVA og nettleie. Det er 60 prosent høyere enn i 4. kvartal 2009 og 36 prosent høyere enn i 1. kvartal 2009. Blant tjenesteytende næring er det om lag 70 prosent som har kontrakter knyttet opp til elspotprisen.

Industri

Gjennomsnittlig pris for industri unntatt kraftintensiv industri og treforedling var i gjennomsnitt 45,8 øre/kWh eksklusive merverdiavgift og nettleie. Den prosentvisse fordelen av kontrakter i denne kategorien er dominert av fastpriskontrakter og spotkontrakter, hver med andeler på om lag 45 prosent.

Kraftintensiv industri og treforedling

95
2.4 Spesielt om pristoppene i desember, januar og februar

Kraftsituasjonen var likevel noe ulik disse dagene. Torsdag 17. desember var det spesielt lav produksjonskapasitet i det svenske kjernekraftsystemet som bidro til den høye prisen. Fredag 8. januar var det svært kaldt, også i dagene før, og det var spesielt lav importkapasitet inn til høyprisområdet. Mandag 22. februar var det også kaldt. Det var lavere tilgjengelig produksjonskapasitet i svensk kjernekraft, men det var også lavere vannkraftproduksjon enn tidligere på vinteren. Lavere vannkraftproduksjon har sammenheng med lavt tilsig og mindre vann i magasinene enn tidligere på vinteren. Lavere magasinfylling gir også redusert tilgjengelig effekt i en del kraftverk.

Dersom økt etterspørsel og gitte produksjonsutfall ikke hadde gitt høye priser, ville det tyde på en betydelig overkapasitet i produksjonssystemet i disse fem områdene. De høye prisene gir produsenter incentiver til å investere i ny kapasitet, og forbrukere til å investere i forbruksfleksibilitet. Gitt at det er nødvendig med investeringer i ny produksjonskapasitet i dag, kunne uendrede priser i en slik situasjon tyde på at markedet ikke frembringer de riktige prissignalene.

I time 17 og 18 torsdag 17. desember var prisen i høyprisområdet henholdsvis 11 796 og 11 797 kr/MWh. I timene før og etter var prisen henholdsvis 3 196 og 1685 kr/MWh. Prisen i time 18 er den høyeste noen gang i Norge. I time 8-10 fredag 8. januar var prisen 8201 kr/MWh. I time 11 var prisen 6425 kr/MWh. I time 9-11 mandag 22. februar var prisen 11 321 kr/MWh. I time 8, 12, 18 og 19 samme dag var prisen 8087 kr/MWh.

Tabell 2.4.0 viser prisen i euro/MWh i timene med høyest pris, samt samlet produksjon, forbruk og import i Midt- og Nord-Norge, Sverige, Finland og Sjælland.

Tabell 2.4.0
Tabell 2.4.0 Pris, samlet produksjon, forbruk og import i de fem høyprisområdene i timene med høyest pris.
Kilde: Nord Pool

<table>
<thead>
<tr>
<th>Time - Dato</th>
<th>Pris, C/MWh</th>
<th>Produksjon, MW</th>
<th>Forbruk, MW</th>
<th>Import, MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 - 17.12.09</td>
<td>1 400</td>
<td>42 280</td>
<td>45 384</td>
<td>3 104</td>
</tr>
<tr>
<td>18 - 17.12.09</td>
<td>1 400</td>
<td>42 181</td>
<td>45 647</td>
<td>3 466</td>
</tr>
<tr>
<td>08 - 08.01.10</td>
<td>1 000</td>
<td>44 663</td>
<td>46 539</td>
<td>1 876</td>
</tr>
<tr>
<td>09 - 08.01.10</td>
<td>1 000</td>
<td>45 051</td>
<td>47 251</td>
<td>2 200</td>
</tr>
<tr>
<td>10 - 08.01.10</td>
<td>1 000</td>
<td>45 011</td>
<td>47 618</td>
<td>2 607</td>
</tr>
<tr>
<td>08 - 22.02.10</td>
<td>1 000</td>
<td>43 401</td>
<td>45 640</td>
<td>2 239</td>
</tr>
<tr>
<td>09 - 22.02.10</td>
<td>1 400</td>
<td>43 538</td>
<td>46 020</td>
<td>2 482</td>
</tr>
<tr>
<td>10 - 22.02.10</td>
<td>1 400</td>
<td>43 314</td>
<td>46 159</td>
<td>2 845</td>
</tr>
<tr>
<td>11 - 22.02.10</td>
<td>1 400</td>
<td>43 093</td>
<td>46 012</td>
<td>2 919</td>
</tr>
<tr>
<td>12 - 22.02.10</td>
<td>1 000</td>
<td>42 919</td>
<td>45 474</td>
<td>2 555</td>
</tr>
<tr>
<td>18 - 22.02.10</td>
<td>1 000</td>
<td>42 535</td>
<td>45 215</td>
<td>2 680</td>
</tr>
<tr>
<td>19 - 22.02.10</td>
<td>1 000</td>
<td>42 832</td>
<td>45 505</td>
<td>2 673</td>
</tr>
</tbody>
</table>

2.4.1 Torsdag 17. desember 2009 (uke 51/2009)
Det samlede forbruket i de nevnte fem områdene var henholdsvis 45 384 og 45 647 MW i time 17 og 18 torsdag 17. desember. Det var høyere enn i tilsvarende timer 15. og 16. desember. Forbruket i Midt-Norge var 765 MW høyere i time 18 torsdag 17. desember enn samme time dagen før. Økt forbruk i timene med veldig høy pris tyder på at fleksibiliteten i budkurven for kjøp var svært lav. Fleksibiliteten i kjøpskurven ble tatt ut til priser godt under de realiserte.

Den tilgjengelige kapasiteten ved norske kjernekraftverk var denne dagen bare på 46 prosent av normal kapasitet. Dette utgjør et kapasitetsbortfall på 5047 MW. I tillegg var tre kullkraftverk på Sjælland, med en samlet kapasitet på nesten 1 300 MW, ute av drift denne dagen. Produksjonen ved noen norske og finske vannkraftverk var redusert på grunn av isforhold. Det var også reduserte overføringskapasiteter flere steder i Norden i disse timene, og det oppsto flaskehalser fra Sør-Norge og Jylland til høyprisområdene.

Selv små økninger i tilgjengelig importkapasitet til de fem elspotområdene med høy pris ville kunne bidra til at prisøkningen ikke hadde blitt så stor. I time 17 og 18 torsdag 17. desember var det ledig tilgjengelig produksjonskapasitet i Sør-Norge, men kraftige begrensninger i eksportkapasiteten fra Sør-Norge til Sverige, jf. avsnitt 2.3.4 ovenfor. Ekspertreguleringen oppsto delvis som følge av høyt forbruk i Osloområdet og begrenset overføringskapasiteten inn til Osloområdet fra vest. Overføringsmulighetene inn til Osloområdet fra vest avhenger blant annet av produksjonsfordelingen i Sør-Norge.

Flere prisområder internt i Sør-Norge ville kunne føre til en endring i prisene som gir en gunstigere produksjons- og forbruksfordeling i Sør-Norge. Dette ville kunne gjøre det mulig å gjøre mer overføringskapasitet tilgjengelig i retning Sverige. Som beskrevet i avsnitt 2.5.6, er det imidlertid flere forhold i det fysiske overføringsnettet i Sør-Norge som gjør kapasitetsfastsettelsen utfordrende for systemoperatøren. For å unntyde gunstige virkninger av flere prisområder kan det derfor bli nødvendig også å endre organiseringen av
kapasitetsfastsettelsen. For eksempel ville en simultan fastsettelse av overføringskapasitet, flyt
og priser i markedsklareringen kunne bidra til økt utnyttelse av den fysiske nettkapasiteten mot
Sverige.

Figur 2.4.1 Pris, produksjon og forbruk i Midt- og Nord-Norge per time i uke 51. Kilde: Nord Pool

Som profitmaksimerende pristakere er det rimelig å anta at produsentene vil produsere så mye
de kan når prisen blir så høy som i time 17 og 18 denne dagen.

I time 9 fredag 18. desember ble det satt produksjonsrekord i Norge. I denne timen var prisen
863 kr/MWh i Midt- og Nord-Norge. Det er betydelig lavere enn prisen i time 17 og 18 dagen
før. Produksjonen var 2929 MW i Midt-Norge i time 9 fredag. Dette inkluderer oppregulering i
regulerkraftmarkedet på 37 MW. 17. desember var produksjonen i Midt-Norge 2735 i time 17
og 2743 MW i time 18. Det var ingen regulering i disse timene.

Figur 2.4.1 viser at produksjonen i Midt-Norge også i flere andre timer fredag 18. desember var
høyere enn i høypristimene dagen før. Dette skyldes hovedsaklig at det på fredag var mer
vindkraftproduksjon i Midt-Norge enn på torsdag. Det var også noe høyere produksjon i Nord-
Norge i noen timer fredag sammenlignet med høypristimene dagen før. På torsdag var noe av
produksjonskapasiteten i Nord-Norge utilgjengelig. Dette forklarer produksjonsoppgangen i
dette området.

2.4.2 Fredag 8. januar 2010 (uke 1/2010)
I høypristimene 8. januar var kraftsituasjonen relativt lik 17. desember, men med noen
forskjeller. Det var høyere forbruk samlet i de fem områdene enn i høypristimene 17. desember.
Det var også høyere forbruk i tilsvarende timer på døgnet 8. januar enn 17. desember. Det
skyldes enda kaldere vær, både denne dagen og i dagene før.

Forbruket i Midt-Norge var imidlertid noe lavere, til tross for lavere temperaturer enn 17.
desember. Dette har sammenheng med bortfall av prisfølsomt kraftforbruk i disse timene. Blant
annet stoppet Norske Skog Skogn en papirmaskin. Dette kan tolkes som et utrykk for en
læringseffekt fra 17. desember. De høye prisene 17. desember la grunnlag for økt prisfølsomhet 8. januar.

Prisfølsomt forbruk vil effektivt legge tak på hvor høy prisen kan bli. Høye priser gir betydelig straff til de aktører som er tvunget til å gjøre usikrede kjøp i spotmarkedet. Økt forbruksfleksibilitet i spotmarkedet spiller en nøkkelrolle med hensyn til å dempe fremtidige høye priser.

Kraftproduksjonen var betydelig høyere enn 17. desember, spesielt i Sverige. Det skyldes høyere tilgjengelig produksjonskapasitet i det svenske kjernekraftsystemet denne dagen – 69 prosent av normal kapasitet. Importkapasiteten til høyprisområdene var imidlertid vesentlig lavere 8. januar enn 17. desember, noe som fikk stor betydning for prisen. Importkapasiteten til Sverige fra Sør-Norge var satt til 0 MW i høypristimene 8. januar, som følge av det høye forbruket i Oslo-området. Som tilfellet var 17. desember, kunne flere prisområder sammen med en mer effektiv organisering av kapasitetsfastsettelsen bidra til mer kapasitet i retning Sverige.

Figur 2.4.2 Pris, produksjon og forbruk i Midt- og Nord-Norge per time i uke 1. Kilde: Nord Pool

Figur 2.4.2 viser også at produksjonen ikke var på sitt høyeste da prisen var høyest. Produksjonen var høyere både i Midt- og Nord-Norge på ettermiddagen 8. januar enn i høypristimene 8-10.

2.4.3 Mandag 22. februar 2010 (uke 8/2010)

Mandag 22. februar var det også veldig kaldt i store deler av Norden, men forbruket var likevel noe lavere samlet i høyprisområdene enn 8. januar. Hoveddelen av reduksjonen fant sted i Finland, og her var det ikke fullt så kaldt 22. februar som 8. januar. Men som 8. januar hadde det vært svært lav temperaturer i flere dager før. I Nord-Norge var det betydelig kaldere 22. februar enn 8. januar, både på dagen og i dagene før, uten at forbruket var særlig høyere. Det kan tolkes som at forbruket i sterkere grad enn i de tidligere høypristimene, reagerte på den høye prisen.
Samlet produksjon var også lavere. Dette har sammenheng med at tilgjengeligheten i det svenske kjernekraftsystemet var redusert til 60 prosent. Det var også lavere vannkraftproduksjon i Norden denne dagen. Lave tilsig og mindre vann i magasinene enn tidligere på vinteren kan ha påvirket tilgjengelig effekt i vannkraftsystemet negativt. Det var også reduksjoner i importkapasiteten denne dagen, men ikke like store reduksjoner som 8. januar.

Prisene var betydelig høyere gjennom store deler av uken enn de tidligere ukene.

Figur 2.4.3 Pris, produksjon og forbruk i Midt- og Nord-Norge per time i uke 8

Her er det tydeligere at produksjonen i Nord-Norge var høyest mandag, da prisen var høyest.

NVE og Konkurransetilsynet er i tråd med vanlig prosedyre i ferd med å vurdere priser og produksjon i Norge torsdag 17. desember, fredag 8. januar og mandag 22. februar.

2.4.4 Nærmere om prisfastsettelsen

De ekstreme prisøkningene må også sees i sammenheng med prisfastsettelsen på Nord Pool og bruk av effektreserver i Sverige og Finland. Effektreserverne består av reserver både på produksjons- og forbrukssiden og utgjør samlet om lag 2600 MW. I time 18 torsdag 17. desember, time 8, 9 og 10 fredag 8. januar og time 9, 10, og 11 mandag 22. februar var det i utgangspunktet ingen pris under €2000/MWh som ga tilbud lik etterspørsel i de fem høyprisområdene samlet, gitt de kommersielle budene og importkapasiteten. Effektreserverne i Sverige og Finland ble da aktivert. Effektreserveren kommer inn som et flatt salgsbud marginalt over siste kommersielle salgsbud. I timene med høy pris ble effektreserverne benyttet i varierende grad, inntil om lag 230 MW. En nærmere diskusjon av reserver i kraftsystemet er gitt i kapittel 6 nedenfor.
2.4.5 Regulerkraftmarkedet

Ned- og oppregulering reflekterer avvik mellom planlagt produksjon og forbruk basert på innmelding i døgnmarkedet og realisert produksjon og forbruk. Figur 2.4.4 viser tre grafer for utviklingen i regulerkraftmarkedet i de tre døgnene med de høyeste prisene for elspotområdene som utgjorde et felles prisområde. Døgnet før pristoppen er tatt med som sammenligningsgrunnlag. Vi ser at det i timene med pristopper var et betydelig volum som ble nedregulert. I timene 17 og 18 den 17. desember ble rundt 1500 MW nedregulert i hver av disse timene. Over halvparten av volumet som ble nedregulert var i Sverige. I det foregående døgnet, 16. desember, hvor spotmarkedsprisene var betydelig lavere var det hovedsakelig oppregulering i Nord-Norge. Forskjellen mellom prisen i regulerkraftmarkedet og spotmarkedet var over 11 kr/kWh i time 17 og 18 den 17. desember. Det betyr at en leverandør som har meldt inn for mye forbruk i spotmarkedet disse timene, har måttet betale over 11 kr/kWh mer i spotmarkedet enn det de fikk igjen for å redusere forbruket i regulerkraftmarkedet.

Opp- og nedreguleringer er ikke til å komme utenom, men vi vet at små endringer i etterspørsel er utslagsgivende for den økningen i pris vi så i enkelte timer i vinter. Hvis kjøpsbudene i timene med pristopper ble redusert ville dette således kunne ha redusert pristoppene i disse enkelttimene.
Figur 2.4.4 Utvikling i regulerkraftmarkedet i Midt- og Nord-Norge (NO2/NO3 og NO3/NO4) samt Sverige, Finland og Sjælland i de tre døgnene med pristopper samt døgnet før. Positive og negative verdier angir henholdsvis opp- og nedregulering målt i MWh. Regulerkraftpris og elspotpris (NOK/MWh) er representert med priser i Midt-Norge.
Figur 2.4.5 viser utviklingen i regulerkraftmarkedet i perioden desember til januar. For å få lesbare figurer er bare tall for timene 8, 9, 18 og 19 på ukedagene mandag til fredag tatt med i figuren. Vi ser at med unntak av Midt-Norge har det vært en betydelig overvekt av nedregulering i døgnmarkedet. Det er ikke bare i døgnene med pristopper at det har vært betydelig nedregulering. Nedreguleringen har til dels vært enda større i andre døgn i vinter.

Tabell 2.4.1 Antall timer med opp- og nedregulering i perioden mars til desember fordelt på dagtid (time 8 til 19) samt natt/helg

<table>
<thead>
<tr>
<th></th>
<th>Midt-Norge</th>
<th>Nord-Norge</th>
<th>Sverige</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>105</td>
<td>135</td>
<td>77</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>485</td>
<td>359</td>
<td>282</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>Totalt</td>
<td>590</td>
<td>494</td>
<td>359</td>
</tr>
</tbody>
</table>

Mulige forklaringer på ubalanser under vinterens pristopper

I Norden har oppstart av termiske reserver gitt ubalanser, noe som medfører et behov for nedregulering.

Utakpling av elkjeler kan også være en årsak til at ubalanser oppstår. Informasjonen om utkobling er ikke tilgjengelig før etter at spotmarkedet er klarert. Redusert forbruk i driftsfase medfører et behov for nedregulering.

Tabell 2.4.1 antyder en skjevhet ved at nedregulering har forekommet hyppigere enn oppregulering i vinter. Det er grunn til å studere nærmere om det er systematiske skjevhet i forekomsten av opp- og nedregulering i regulerkraftmarkedet og hva dette kan skyldes.

Ubalanser kan skyldes forhold knyttet til at temperatur og vær blir annerledes enn forventet. Det kan ikke utelukkes at det er skjevhet i prognoseringen i perioder med spesielt kaldt vær hvor aktørene har lite erfaringer fra lignende perioder tidligere.
2.5 Driftsforhold og forsyningssikkerhet vinteren 2009/2010

Vinteren 2009/2010 har medført en lang rekke knapphetsproblemer i mindre eller større områder. I kuldeperiodene og spesielt i timene med høyest kraftetterspørsel har knappheten vært så stor at feilsituasjoner ville ha gitt store konsekvenser i form av forsyningssvikt. Forsyningssvikt selv i kort tid i perioder med så lave temperaturer er svært alvorlig. I mange tilfeller har knappheten vært stor også i mindre deler av Sør-Norge som ikke har hatt spesielt høye kraftpriser (Bergen, Oslo, Stavanger osv.). Investeringer i ny produksjon og nett vil ta mange år å realisere.

2.5.1 Vurdering av kraftsituasjonen

Kraftsituasjonen i vinter har ikke vært vurdert til å være svært anstrengt. Hvis det ikke skulle inntreffe ekstraordinære hendelser anså NVE og Statnett det som lite sannsynlig at det skulle inntreffe en ”Svært anstrengt kraftsituasjon” (SAKS) denne sesongen.

Statnett har i vinter definert situasjonen som stram i to prisområder, NO3 og NO5. En stram kraftsituasjon innebærer, ifølge Statnett, at fleksibiliteten i kraftsystemet og systemets evne til å håndtere lite tilsig eller langvarige feil er begrenset.

Men selv om situasjonen av Statnett og myndigheter ikke ble vurdert som anstrengt eller svært anstrengt ble det likevel gjennomført enkelte tiltak som også vurderes i forbindelse med at sannsynligheten for SAKS vurderes som høy.
Faktaboks 2 Svært anstrengte kraftsituasjoner (SAKS)

Svært anstrengte kraftsituasjoner er kjennetegnet ved at myndighetene kan ha en rimelig tvil om at en markedsmessig kraftomsetning og eksisterende virkemidler hjemlet i dagens systemansvar ikke vil være tilstrekkelig for å unngå rasjonering.

Den langsiktige energi- og effektbalansen skal fortsatt sikres gjennom investeringer i kraftmarkedet. Statnetts hjemmel for å håndtere en svært anstrengt kraftsituasjon har derfor karakter av å være for ekstraordinære tiltak som i de aller fleste år ikke skal tas i bruk. Det er Statnett som er ansvarlig for å overvåke balansen i kraftsystemet og som kontinuerlig skal vurdere behov for å utvikle SAKS tiltak samt vurdere om situasjonen er slik at de bør søke myndighetene om å ta eksisterende virkemidler i bruk.

Virkemidlene for å håndtere SAKS utarbeides etter samfunnsøkonomiske kriterier og vurderes opp mot øvrige virkemidler som Statnett anvender i dag. Statnett har per i dag fått godkjent to SAKS tiltak; reservekraft og energiopsjoner i forbruk. For SAKS tiltakene kan søkes iverksett, har Statnett en rekke andre tiltak som skal iverksettes og vurderes.

4. Avlyse revisjoner

5. Bruk av systemvern og /eller reservetransformatorer for å øke importkapasiteten til området
 a. Systemvern var satt i drift i alle områder, men ingen reservetransformatorer ble satt inn. Statnett etablerte også nytt systemvern mot BKK-området

6. Utkobling av kjeler
 a. Utkobling ble foretatt i alle områder

7. Spesialregulere ned produksjon for å sikre full import
 a. Spesialregulering for å sikre full import ble ikke benyttet

Lista over hvilke tiltak Statnett skal iverksette ved spesielle kraftsituasjoner er beskrevet i deres ”Statnetts praktisering av systemansvaret 2010”. Den innholder ti punkter som kan iverksettes med hjemmel i forskrift om systemansvar. Under følger en oppsummering av hvilke tiltak som ble benyttet i løpet av vinteren. Mer detaljert er vurderingene oppsummert under områdevis beskrivelser av spesielle driftsituasjoner i vinter.

1. Opprette separat elspotområdet
 a. NO5 (Vest Norge) ble opprettet, NO3 (Midt Norge) var allerede et eget område

2. Innhente detaljert informasjon fra aktørene
 a. Statnett kontaktet NVE for å få tilgang på detaljert magasindata for å forbedre kraftsituationen

3. Gi mer informasjon både rettet mot aktørene i engrosmarkedet og allmennheten
 a. Statnett satt situasjonen til ”stram”, men gikk i lite grad ut med egen informasjon rettet mot allmennheten

Faktaboks 2 Svært anstrengte kraftsituasjoner

(SAKS)

Svært anstrengte kraftsituasjoner er kjennetegnet ved at myndighetene kan ha en rimelig tvil om at en markedsmessig kraftomsetning og eksisterende virkemidler hjemlet i dagens systemansvar ikke vil være tilstrekkelig for å unngå rasjonering.

Den langsiktige energi- og effektbalansen skal fortsatt sikres gjennom investeringer i kraftmarkedet. Statnetts hjemmel for å håndtere en svært anstrengt kraftsituasjon har derfor karakter av å være for ekstraordinære tiltak som i de aller fleste år ikke skal tas i bruk. Det er Statnett som er ansvarlig for å overvåke balansen i kraftsystemet og som kontinuerlig skal vurdere behov for å utvikle SAKS tiltak samt vurdere om situasjonen er slik at de bør søke myndighetene om å ta eksisterende virkemidler i bruk.

Virkemidlene for å håndtere SAKS utarbeides etter samfunnsøkonomiske kriterier og vurderes opp mot øvrige virkemidler som Statnett anvender i dag. Statnett har per i dag fått godkjent to SAKS tiltak; reservekraft og energiopsjoner i forbruk. For SAKS tiltakene kan søkes iverksett, har Statnett en rekke andre tiltak som skal iverksettes og vurderes.
8. Ut Kobling av kjeler ved nettproblemer
 a. se punkt 6

9. Spesialregulere ned produksjon for å sikre vann til kraftverk som er særlig viktige for
 stabilitet og kapasitet i nettet.
 a. Statnett sluttet å spesialregulere for å opprettholde driftskriteriene i BKK og
 SFE nettet for å unngå hastig nettapping.

10. Driftskoblinger med redusert driftssikkerhet
 a. Dette ble gjennomført i BKK og SFE-området.

Statnett har tidligere vurdert og beskrevet hvordan tiltakene på ti-punktts lista vil benyttes i
forkant av en eventuell SAKS. Her deler de blant annet tiltakene inn i to faser etter hvilke deler
av tappesesongen de ulike virkemidlene kan benyttes. I vinter har tiltak fra begge fasene vært
benyttet. Dette illustrerer hvordan en stram situasjon med effektutfordringer skiller seg fra en
mulig energiknapphet. En stram kraftsituasjon med mulige utfordringer for driften vil kunne
oppstå kjapt og det kan være behov for virkemidler fra alle fasene for å håndtere dem i
motsetning til energiknapphet som utvikler seg over tid og hvor det gradvis vil være behov for
nye virkemidler. SAKS virkemidler er nærmere beskrevet i avsnitt 2.7.

2.5.2 Ut koblbart forbruk

Ordningen med ut koblbart forbruk ble benyttet i alle områdene hvor det var anstrengte
driftssituasjoner i vinter. Dette gjelder Østlandet, Midt Norge, Bergensområdet, SFE-området
og nord for Ofoten. I tillegg ble det ut koblet en del forbruk som følge av revisjoner og feil i
nettet. Spesielt var volumet av ut koblingen 6. januar på Østlandet betydelig. Ut kobling av
forbruk var ifølge Statnett i praksis eneste virkemiddel for å unngå situasjoner med redusert
driftssikkerhet i Oslo-området. Dette er nærmere beskrevet i avsnitt 2.5.6. I de områdene som
har blitt ut Koblet, har Statnett erfarat at ut Koblet volum har ut gjort mellom 5 og 10 % av
forbruket i området. En så stor reduksjon i forbruket hjelper vesentlig til å opprettholde
tilfredsstillende driftssikkerhet i anstrengte situasjoner.

2.5.3 Tilgjengelig vintereffekt

Det må til enhver tid være momentan balanse mellom forbruk og produksjon i kraftsystemet.
Det betyr at det må være tilgjengelig effektytelse i produksjonsanlegg eller ved import.
Inkludert det som var forventet idriftsatt i fjor er det installert om lag 29 630 MW vannkraft i
det norske kraftsystemet. Dette inkluderer vannkraft uten reguleringsevne.

Det er også installert en del varmekraft. Mindre varmekraft utgjør om lag 264 MW og Kårstø
420 MW. Melkøya har 215 MW, men dette skal først og fremst benyttes til leveranse på eget
anlegg. I tillegg kommer reservekraftverkene 300 MW. Energiverk Mongstad er i prøvedrift
frem til mai 2010 og har levert til nettet fra slutten av oktober i fjor. Maksimal installasjon er
280 MW elektrisitet., men i testfasen frem til 2015 vil maksimal produksjon være 120 MW.

Tilgjengelig vintereffekt er installert vannkraft som faktisk kan nyttiggjøres i en situasjon hvor
det er høyt forbruk, og dette er hovedsakelig vannkraft med reguleringsevne og en del
elkefraftverk. Av magasinverk er det per i dag installert 23376 MW. Ca 1/3 av kapasiteten til
elkefraftverk kan også medregnes som tilgjengelig vintereffekt. Dette gir en total vintereffekt
på over 24 000 MW. Statnett opererer med en tilgjengelig vintereffekt på 26 500 MW. I Norge som helhet har vi derfor en akseptabel effektabanse, men manglende overføringskapasitet mellom enkelte lokale og regionale områder gjør at noen områder i vinter har hatt redusert forsyningssikkerhet. Eksempler på dette er Bergensområdet, Stavangerområdet, Osloområdet og nord for Ofoten.

Effektabansen i vinter

Fra onsdag 6. januar til fredag 8. januar var det nasjonale forbruket over 23 000 MW i timene 8-20, og det ble målt et maksimalt forbruk på nesten 24 000 MW. Forbruket var uventet høyt tatt i betrakting lavkonjunkturen. Utkopling av uprioriteret forbruk reduserte forbrukstoppen torsdag og fredag, ca 300 MW, og i følge Statnett var ca. 600 MW med industrilast ute. Forrige forbruksrekord fra 2001 ble slått med ca 950 MW. Registrert maksimal produksjon er 25 266 MW, den 18. desember 2009.

Sverige satte Norges importkapasitet over Haslesnittet til 0 MW i disse timene, men Norge hadde import fra Danmark, Nederland og Russland. Det var også tilstrekkelig utvekslingskapasitet mellom Sverige og Midt- og Nord-Norge til at disse anmeldingsområdene hadde samme pris. Selv om importkapasiteten fra Russland er beskjeden er denne viktig for forsyningen i Finnmark. Nord for Ofoten er det begrenset reguleringsskapasitet på vannkraftproduksjonen, og det er flaskehalsen i nettet mot bedre regulerte områder.

Det har vært tilstrekkelige reserver i RK-markedet og det har vært kjøp i RKOM-markedet i størrelsesorden 2000 MW. Deler av reservene er innesperret bak snitt vest og nord-vest for Oslo, og var således ikke tilgjengelig for Osloområdet i timene med høy belastning inn til området.

Marginene for å oppnå effektabalanse begynner å bli lave i flere områder. Marginene kan økes ved å øke produksjonsinstallasjonen, redusere forbruket eller bedre nettkapasiteten. Økt fornybar produksjon vil i liten grad hjelpe på situasjonen, siden det i hovedsak er uregulert kraft. Dermed er det i praksis redusert forbruk og bedre nettkapasitet som vil bedre situasjonen i disse områdene.

Bygging av nett er et svært langsiktig tiltak, slik at på kort sikt er redusert forbruk eneste mulighet til å ivareta en fornuftig margin. Redusert forbruk kan vanskelig oppnås uten høyt pris i problemområdene i de timene dette gjelder. Samtidig bør ikke større områder enn nødvendig rammes av høy pris. Slik sett taler hensynet til forsyningssikkerhet og akseptable effektmarginer for flere og mer dynamiske prisområder.
2.5.4 Kraftsituasjonen i Midt-Norge

Midt Norge er avhengig av import fra Sverige og Nord-Norge de fleste år. I følge Statnett er underskuddet på 7 TWh i et normalår. Importkapasiteten til Midt-Norge fra Nord-Norge kunne i vinter økes til 900 MW fordi det var en gunstig fordeling mellom produksjonen i Nord-Sverige og Nord-Norge og bruk at systemvern hos Norsk Hydro Sunndalsøra\(^{23}\). Den konsesjonsgitte linja mellom Ørskog og Fardal vil bedre situasjonen ytterligere.

Etter revisjon/ ombygging av linjen Nea – Järpstrømmen er kapasiteten fra Sverige til Midt-Norge økt fra 600 MW til 850 MW. Samtidig er det i store deler av tiden fullast på snittene, og få eller ingen oppreguleringsressurser i området.

Utkopling av uprioritert forbruk ble benyttet for å bedre effektbalansen i området. Effektreservene i området var begrensete pga lite vann i magasinene og restriksjoner på produksjon i vannveiene. Belastningsfrakobling (BFK) på Norsk Hydro Sunndalsøra (SU4) ble benyttet for å kunne høyne importkapasiteten primært for å spare vann i området.

Med lave magasiner er det lite produksjon tilgjengelig til oppregulering. Systemansvarlig har hovedsakelig to virkemidler for oppregulering i området: Utkopling av uprioritert forbruk og belastningsfrakobling (BFK) på Sunndalsøra. Statnett mente at det var for lite oppreguleringsressurser i Midt-Norge, og inngikk avtale om energiopsjoner på til sammen inntil 164 MW i februar.

På grunn av manglende oppreguleringsressurser søkte Statnett om dispensasjon fra konsesjonsvilkårene til reservekraftverkene, slik at de også kan benyttes i en anstrengt driftssituasjon hvor effektbalansen i området er truet. Dispensasjonen ble innvilget gjennom kongelig resolusjon og gjelder frem til 31.mai. Dette er nærmere beskrevet i avsnitt 2.7.2.

Revisjon av linjen Nea - Järpstrømmen

Mellom Sverige og Midt-Norge er forbindelsen Nea – Järpstrømmen en viktig importforbindelse ved kraftunderskudd i Midt-Norge. Dette er en ny linje på 420 kV. Det gjenstod imidlertid et lite stykke på svensk side før den nye forbindelsen var klar. For å oppgradere dette stykket måtte linjen ut av drift. Etter oppgraderingen kunne importen fra Sverige økes fra 600 MW til 850 MW i normal drift.

\(^{23}\) Produksjonslinje SU4 hos Norsk Hydro Sunndalsøra
2.5.5 Bergensområdet og opprettelsen av anmeldingsområdet NO5

Forbruket i Bergensområdet blir dekket gjennom lokal produksjon og import av kraft over linjene Mauranger – Samnanger og Modalen – Refsdal. Disse linjene utgjør BKK-snittet og kapasiteten på hver av linjene er på 800 MW. Om en av linjene langvarig ligger ute som følge av revisjon, vil det bare være en forsyningslinje inn til Bergen. Planlagte revisjoner legges til sommeren når belastningen er lav, men det kan i perioder være nødvendig med uforutsette og kritiske revisjoner.

Figur 2.5.1 Oversikt over kraftsystemet inn til BKK og Bergensområdet. Kilde: BKK

Det kan også oppstå driftsforstyrrelse som medfører utkobling av den ene linjen. For å begrense konsekvenser av feil er det installert systemvern. Hvis slike utkoblinger skulle forekomme ved flyt på snitt over 800 MW kobler systemvern ut deler av forbruket momentant slik at systemet forblir stabilt etter utfallet av linjen. Dette gjøres opp til 880 MW, og betyr at det kun er forbruk utover resterende overføringskapasitet som utkobles. At kun deler av forbruket faller ut ved en driftsforstyrrelse, kalles N-1/2 drift. Overføring under 800 MW på disse linjene medfører N-1 drift, og ingen utkobling av last ved feil. Overføring fra 800-880 MW medfører N-1/2 drift. Om kraftflyten inn til området overstiger 880 MW, er det fare for at hele kraftsystemet i Bergensområdet faller ut. Den konsesjonsgitte linja mellom Sima og Samnanger som har fått konsesjon fra NVE, vil bedre forsyningsituasjonen inn til BKK- og Bergensområdet betraktelig.
Fram til slutten av mars har det vært 1343 timer redusert driftssikkerhet, hvor importen til Bergensområdet har oversteget 800 MW. Det vil si 64 % av tiden hittil i år. Fram til 21. februar i år var 71 tilfeller med timeverdi over 880 MW på snittet. I denne perioden hadde Mauranger-Samnanger avbrudd 7. februar, i en time. Årsaken var brann i et tre under linjen. Feilretting medførte ingen utkobling.

Figur 2.5.2 Timer med redusert driftssikkerhet i BKK-området (N-1/2 – drift). Kilde: Stanett

I tillegg til aktivt å bruke systemvern har BKK utført termofotografering av 300 kV linjer og stasjonsanlegg. Her ble det oppdaget en defekt klemme som ble skiftet. BKK har også økt beredskapen, økt vaktstyrken på linjemontører og hos BKK Produksjon, samt varslet kommune og fylke, bl.a. om fare for utkobling.

Radiell drift av sentralnettet på Vestlandet

For å øke kapasiteten i BKK-snittet og dermed spare vann ble det bestemt at det skulle innføres radiell drift fra Aurdal og ned til Blåfalli. Hensikten med dette er å forsyne området, men begrense omfanget av en eventuell driftsforstyrrelse både med hensyn til effektmengde og gjenoppbyggingstid. Ved å innføre radiell drift hindrer en at hele belastningen blir overført på det resterende nettet ved et utfall, siden forbruket faller ut sammen med linjen.

Ved å drifte radielt kan en øke overføringen på BKK-snittet fra 880 MW til ca 1200 MW. Dette medfører også ifølge Statnett at behovet for spesialregulering i BKK området opphører nesten 100 prosent (behov for noe spesialregulering for å få fasekompensatordrift i Evanger).

Nytt prismåre NO5

Den 15. mars valgte Statnett å opprette et nytt prismåre NO5. Området som utgjør NO5 er Sogn og Fjordane Energilags (SFE) område (inklusiv indre Sogn), BKK-området og SKL-området (Vestlandet sør for Åskåra og nord for Sauda, med unntak av Aurlandsområdet og Odda). Dette prismåret skulle avhjelpe situasjonen i Bergensområdet og SFE-området, som er beskrevet nedenfor. Det var fire hovedgrunner for opprettelsen:

- Opprettelse av elspotområde er første tiltak ved muligheter for anstrengt energisituasjon. Dette tiltaket åpner for at prisen i området kan bli høyere enn i omkringliggende områder. Det kan gi lavere forbruk og tydelig importsignal.
- Redusere spesialreguleringskostnaden
- En enklere kapasitetsfastsettelse med færre usikkerhetsfaktorer
- Gi markedet informasjon om situasjonen i området

Det er også flere ulemper med denne oppdelingen. Det er ikke et forsyningsproblem i SKL-området, men siden dette er transittområde til BKK vil lavt forbruk og høy produksjon her hjelpe Bergen noe. Det nye prismåret fanger også kun delvis opp andre problematiske snitt, fordi en eller flere av linjene i snittet ligger inne i prismåret og ikke på prismårep Grensen. Disse snittene er

- Mauranger-Samnanger+Modalen-Evanger (som er hovedproblemet for forsyningen til BKK)
- Mauranger-Samnanger + Aurland-Fardal
- Saudasnittet + Modalen-Evanger

Handelskapasitetene er avhengig av produksjonsfordelingen innenfor NO5, spesielt i radiell drift. Det er stor forskjell om produksjonen kommer i SFE-området eller SKL-området, og hvordan kapasiteten mot NO1 og NO2 settes.
2.5.6 Østlandet og opprettelse av prisområdene NO1 og NO2

I kuldeperioden var "Oslolasten" opp mot 4800 MW, noe som er langt høyere enn forrige notering. Selv med 0 MW eksportkapasitet til Sverige var det nær N-0 forsyning til Oslo. Også importkapasiteten fra Sverige i de kaldeste timene er satt til 0 MW av SvK, slik at det ikke var noe effektsreserve i form av import fra Sverige. I timene før utkobling, varierte utkoblbar forbruk på Østlandet mellom 400 og 500 MW. Etter utkoblingsvarsel ble sendt, ble nær 400 MW forbruk koblet ut i Oslo-området og østover.

Transformeringskapasiteten i Oslo-området hadde få reserver, og et utfall ville betydd lastutfall på 150-500 MW. I tillegg gikk snitt inn mot Oslo fra vest nærmest fulle og kjeler ble derfor koblet ut.

Figur 2.5.3 Utvikling av Oslo lasten 2.-9. januar. Kilde: Statnett

Utvekslingskapasiteten NO2 - NO1 er avhengig av produksjonsfordelingen i NO2 og blir også påvirket av produksjonen i Hallingdal. Noe av produksjonen i Hallingdal flytter fra Sylling til Kvilldal, så videre til Rød-Hasle. For sum utveksling NO2-NO1 har dette ingen betydning, men Rød-Hasle blir fullastet ved en lavere utveksling NO2-NO1 ved høy produksjon i Hallingdal enn ved lav produksjon i Hallingdal. Elspotkapasiteten NO2-NO1 har ligget rundt 2000-2500 MW.

Prisområdet på Sør-vestlandet

Når Sør-Norge har vært et elspotområde, har det vært vanskelig å styre flyten på Rød-Hasle gjennom kapasitetsfastsettelsen NO1-SE. Det har vært nødvendig å ha sikkerhetsmarginer for å unngå overlast. Det har vært vanskelig å fastsette riktig elspot-kapasitet i Hasle da denne har vært avhengig av mange uforutsigbare faktorer (HVDC, produksjonsfordeling

24 etter havariet av Oslofjordkablene i 2008
Hallingdal/Flesaker, Oslolast, flyt i Gudbrandsdalen). Dette har medført sterkt redusert overføringskapasitet i Hasle for å styre flyten på Rød-Hasle, som igjen har medført at Hasle-kapasiteten ikke har kunnet bli utnyttet. For å bedre utnyttelsen av Hasle, har høy produksjon i Hallingdal/Østlandsområdet vært en forutsetning, mens det i praksis viste seg å være den produksjonen som bremset først ved reдуsert kapasitet i Hasle.

2.5.7 Andre regionale utfordringer vinteren 2009/2010

Området nord for Sognefjorden og sørt for Åskåra hadde før vinteren fulle magasiner. Gjennom vinteren ble magasinene tømt raskt, og i uke 13 var fyllingsgraden i dette området på 22,4 prosent. Opprettelse av eget prisområde NO5 og mer tilskjø har redusert nedtappingen, men det har i store deler av 2010 vært den laveste fyllingsgrad her på 16 år. Magasinkapasiteten er imidlertid forholdsvis liten, kun 1,4 TWh.

Fra Fardal går det en 132 kV-radial (nettet har vært delt store deler av tiden hvor det går parallelle linjer) til Åskåra, hvor nettet er delt.

Det var også anstrengte driftsforhold og effektdemmer i andre regionale og lokale områder:

- Statnett og Agder Energi Nett var bekymret for nettkapasiteten i lokale deler av Vest-Agder hvis det forble kaldt og produksjonen i Mandalsvassdraget ble redusert til et minimum. Agder Energi Nett var bekymret for at det ville gå tomt innen vårflommen. Det ble besluttet å dele opp 110 kV nettet mellom Kristiansand og Øye og drive regionalnettet på N-0-drift.

- I Stavanger-regionen var deler av området i timene med høy forbruk på N-0 – drift. Her er det nå installert kondensatorbatteri som vil hjelpe på å holde spenningen stabil i tilfelle et utfall av en av forsyningsslinjene, og dermed øke nettkapasiteten. Her forventes det i nær framtid en søknad om ny sentralnettslinje inn til området som vil bedre driftssikkerheten inn til området.

I vinter har det oppstått anstrengte driftssituasjoner i flere regionalnett som følge av for lite vann i enkelte, viktige produksjonsanlegg. Eksempler på dette er nettet under Orkdal transformerstasjon og regionalnettet i Vest-Agder. For slike tilfeller er det viktig at Statnett som systemansvarlig har god dialog med de regionale kraftsystemutredningsansvarlige slik at tiltak for å hindre at slike situasjoner oppstår blir gjennomført.

I vinter har det oppstått anstrengte driftssituasjoner i flere regionalnett som følge av for lite vann i enkelte, viktige produksjonsanlegg. Eksempler på dette er nettet under Orkdal transformerstasjon og regionalnettet i Vest-Agder. For slike tilfeller er det viktig at Statnett som systemansvarlig har god dialog med de regionale kraftsystemutredningsansvarlige slik at tiltak for å hindre at slike situasjoner oppstår blir gjennomført.
2.6 Reserver i kraftsystemene i Norden

Reserver er nødvendige i alle kraftsystemer. Siden kraftverk og linjer fra tid til annen faller ut og det til en hver tid må være eksakt balanse mellom produksjon og forbruk i kraftsystemet, er en av systemoperatorenes viktigste oppgaver å sørge for at det til en hver tid er adekvate reserver tilgjengelig.

De nordiske landene har svært ulike produksjonssystemer for elektrisk kraft, og dette er en viktig grunn til at også systemene for reserver er ulike.

2.6.1 Norge

I Norge spiller regulerkraftopsjonsmarkedet (RKOM) en viktig rolle med hensyn til å sikre reserver. Regulerkraftmarkedet (RKM) er etablert for i operativ drift (sann tid) å håndtere avvik som følge av driftsforstyrrelser samt avvik mellom den tidsvis kraftbalanse satt i Elspot og den faktiske kraftbalanse. Det må alltid i operativ drift være balanse mellom produksjon og forbruk av elektrisk kraft. I regulerkraftmarkedet anmelder aktørene kvantum og pris for å forandre produksjon eller forbruk slik at kraftsystemet kan reguleres i balanse. Behovet for regulerkraft for oppregulering er ut fra erfaring anslått til minimum ca 2000 MW. På natt og i sommerhalvåret er tilgangen på regulerkraft tilstrekkelig, men på dagtid i vinterhalvåret er ordinær tilgang begrenset.

Etter tørrværsperioden høsten og vinter 2002/2003 har Statnett tilrettelagt supplerende virkemidler til bruk i svært anstrengte kraftsituasjoner (SAKS).

2.6.2 Sverige, Finland og Danmark

Regelverket knyttet til bruk av effektreserver i Elspot

Artikkel 7 i EUs direktiv 2003/54/EC åpner for at det enkelte land avhensyn til leveringssikkerheten kan anskaffe effektreserver. Det stilles imidlertid betingelser om at disse kun skal benyttes når eksisterende produksjonskapasitet eller bruk av forbruks fleksibilitet ikke er tilstrekkelig for å ivareta leveringssikkerheten.

I Sverige og Finland har TSO-ene historisk sett anskaffet effektreserver i forkant av vintersesongen og disse har vært tilgjengelig i tillegg til reguleringsformål ved behov. Innenfor rammen av Nordisk ministerråd, det nordiske regulator samarbeidet (NordREG), samt samarbeidet mellom de Nordiske TSO’ene har det vært jobbet med fellese tretningslinjer for anskaffelse og bruk av effektreserver. Det er enighet om at anskaffelsen og bruken av slike reservere i så liten grad som mulig skal påvirke prisdannelsen i kraftmarkedet.
Det er etter vårt syn ikke behov for ytterligere harmonisering av regelverket knyttet til anskaffelse og bruk av effektreservene. NordREG arbeider imidlertid med en kartlegging av balansemarkedet i Norden som også adresserer behovet for ytterligere harmonisering av reglene knyttet til transparens og handel.

Dette arbeidet var også bakgrunnen for at NVE 22. desember 2008 godkjente endring i Nord Pool Spots (NPS) "Rulebook" knyttet til hvordan svenske og finske effektreserver skulle håndteres i Elspot. De nye prosedyrene var et resultat av et forslag fra NPS, Svenska Kraftnät og Fingrid og ble også drøftet med de øvrige TSO-ene og aktørene i kraftmarkedet.

Utgangspunktet for forslaget var at bruken av effektreservene ikke skulle påvirke prisdannelsen i kraftmarkedet, samtidig som reservene kunne bidra til at en unngikk situasjoner med avkorting til den tekniske maksimalprisen (200 EUR/MWh) og.

Bruk av reserver til administrativt fastsatte priser kan gi incentiver til strategisk adferd. NVE la i sin godkjenning vekt på at markedsovervåkningen ved NPS mente at deres markedsovervåkning i sammenheng med sanksjonsmuligheter vil gjøre den reelle muligheten for å manipulere prisene liten. Videre presiserte NVE at virkningen av de nye rutinene ville følges nøye, og at dersom ordningen fikk vesentlig betydning eller uheldig påvirkning på prisdannelsen i markedet, så vil det måtte foretas en ny vurdering av ordningen.

Ordføreren inneberater at svenske og finske effektreserver kan inkluderes ved kalkulering av pris i Elspot. Reservene vil kun aktiveres som bud i timer der man ellers ville fått avkorting på grunn av manglende priskryss i Sverige eller Finland. Ved avkorting skal prisen etter reglene i NPS settes til teknisk makspris (2000 EUR/MWh). Ved aktivering av reservene i Elspot settes prisen i markedet til høyeste kommersielle bud blant bud i Sverige og Finland med et tillegg på 0,1 EUR/MWh, dvs. samme pris for begge reserver. Prisen settes dermed slik at kommersielle bud ikke utkonkurreres. Prisen skal heller ikke settes lavere enn at den dekker de variable kostnadene ved å sette effektreserven i produksjon.

NPS’ begrunnelsen for at ikke effektreservene kan legges inn i spotmarkedet til variabel kostnad, var at det ikke er rimelig at subsidierte ressurser skal bys inn i spotmarkedet ettersom de da kan komme til å konkurrere ut kommersielle bud. Det er lagt til grunn at anleggene uten subsidi, dvs. dersom svensk og finsk TSO ikke betaler for at de skal være tilgjengelige, så ville heller ikke anleggene lenger vært åpne for produksjon. Ubenyttet effektreserve kan benyttes i regulerkraftmarkedet. Volum for effektreservene utgjør 2000 MW i Sverige og 600 MW i Finland.

Ordføreren inneberater at effektreservene kan aktiveres før NPS spør TSOene om det er mulig å øke handelskapasiteten. Dette ble av NPS begrunnet med at TSOene alltid gir maksimal kapasitet til Elspot kl. 8.30, og at forutsetningene som ligger til grunn for kapasitetsberegningen normalt ikke endres.

NPS har opplyst at det historisk sett kun har vært noen få tilfeller hvor TSOene har gitt markedet mer kapasitet i avkortingsituasjoner. I de siste årene har imidlertid slike situasjoner blitt løst ved frivillig konvertering av blokkbud, dvs. at NPS ikke har hatt behov for å spørre om ekstra kapasitet.
Benyttelse av effektreservene vinteren 2009/2010

I time 18 den 17. desember 2009 ble det benyttet 40,5 MW av de svenske Effektreservene og 16,5 MW av de finske effektreservene. Også i timen før (time 17) var prisen høy, men i denne timen ble effektreservene ikke tatt i bruk.

Effektreservene ble også tatt i bruk ved priseregning i Elspot 8. januar 2010 i timene mellom klokken 7:00 og 10:00. I time 8 ble det benyttet 20,5 MW i Finland og 143,1 MW i Sverige, i time 9 henholdsvis 45,4 MW og 145,4 MW og i time 10 henholdsvis 35,3 MW og 86,9 MW effektreserver.

<table>
<thead>
<tr>
<th></th>
<th>Time 7</th>
<th>Time 8</th>
<th>Time 9</th>
<th>Time 10</th>
<th>Time 11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>107,5</td>
<td>1000,01</td>
<td>1000,01</td>
<td>1000,01</td>
<td>783,46</td>
</tr>
</tbody>
</table>

Effektreserven ble også benyttet 22. februar 2010 i timene mellom kl. 8:00 og 11:00. I time 9 ble det benyttet 57,5 MW i Finland og 172,1 MW i Sverige, i time 10 henholdsvis 57,7 MW og 130,0 MW og i time 11 henholdsvis 12,7 MW og 28,7 MW.

<table>
<thead>
<tr>
<th></th>
<th>Time 8</th>
<th>Time 9</th>
<th>Time 10</th>
<th>Time 11</th>
<th>Time 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1000,08</td>
<td>1400,11</td>
<td>1400,11</td>
<td>1400,11</td>
<td>1000,07</td>
</tr>
</tbody>
</table>

Nord Pool Spots markedsovervåkning har foretatt undersøkelser med spesielt fokus på de budene som har blitt avgjørende for prisene på effektreservene, og har pågående undersøkelser og vurderinger knyttet til den 17. desember og 22. februar.

I timene som effektreserven er benyttet ville man uten effektreserven fått avkorting og teknisk makspris på 2000 EUR/MWh, forutsatt at TSOene ikke hadde kunnet øke handelskapasiteten dersom NPS hadde bedt om dette. Hva prisen hadde blitt dersom TSOene hadde økt kapasiteten ville avhenge av størrelsen på kapasitetsøkningen og hvilke bud som da hadde fått tilslaget. Det er verdt å merke seg at det ble oppnådd pris kryss ved å benytte relativt små volumer av de svenske og finske effektreservene.
2.7 Spesielle tiltak i det norske kraftsystemet for å håndtere svært anstrengte kraftsituasjoner

Som tidligere beskrevet, har Finland og Sverige egne reservekraftordninger som er ment for å sikre effektbalansen i kraftsystemet. Norge har et energidimensjonert kraftsystem og vi har historisk derfor vært mer opptatt med å sikre energibalansen i tiørrar enn effektbalansen. Det har vært de potensielt store sesongmessige utslagene av tilsig som har vært en risiko som bransjen og myndighetene har utviklet spesielle virkemidler for å sikre seg mot.. Med bakgrunn i denne risikovurderingen har Statnett siden 2003 utviklet et eget sett med verktøy for å håndtere svært anstrengte kraftsituasjoner (SAKS). Dette er hjemlet i forskrift om systemansvaret § 22a. Virkemidlene er videre vurdert eller godkjent av NVE.

SAKS tiltakene energiopsjoner i forbruk og reservekraftverk kommer i tillegg til tiltakene på Statnetts ti-punkts-liste, som beskrevet i kapittel 2.5. Energiopsjoner skal innløses før reservekraftverk kan igangsettes. Dette er stadfestet i OEDs vedtak om reservekraftanleggene datert 18.01.2008 samt i kraftverkenes utslippstillatelse.

2.7.1 Energiopsjoner (ENOP)

Statnett har som et SAKS-tiltak utviklet et produkt og en handelsprosess for energiopsjoner i forbruk. Ordringen har vært utprøvd i de fire forutgående vintersesongene. Ordningen inneberer at Statnett ber om bud på opsjoner for utkobling av forbruk for en gitt tidsperiode for kommende vintersesong. Dette blir gjort på bakgrunn av Statnetts vurdering av behov og en strategi for innkjøp av opsjoner.

Energiopsjoner i forbruk er oppdelt i to forskjellige produkter. Primærproduktet, som Statnett benevner Standardproduktet, har en varslingstid på en uke og en varighet av nedreguleringen på minst to uker. Det er også definert et tilleggsprodukt der varslingstiden er tre uker og varigheten av nedreguleringen åtte uker.

Både opsjonspremien og innløsningsprisen bys inn av budgiver. Innløsning av opsjonen sikrer nedregulering av forbruk, målt i GWh/uke. Innløsning kan først skje etter at Statnett har fått godkjenning fra NVE om å ta i bruk tiltaket. Energiopsjonene har ikke vært søkt innløst i noen av sesongene Statnett har hatt dem til rådighet.

ENOP sesongen 2009/2010

ekstraordinære budrunden ble det inngått avtaler som kunne gi en maksimal nedregulering på 164 MW.

Ifølge Statnetts evalueringsrapport, var det stort sett de samme aktørene som var med i budrunden på høsten som også kom med bud i den ekstraordinære budrunden. Samtidig er det verd å merke seg at det samlede tilbudet både med hensyn til maks effekt og varighet var til dels betydelig redusert sammenlignet med den ordinære budrunden. Innløsningsprisen og opsjonspremien var økt for de fleste bud.

Oppsummering og fremtidig bruk av ENOP

I forbindelse med evalueringen av ENOP ordningen denne sesongen påpeker Statnett at den vurderingen som ble gjort i forbindelse med den ordinære budrunden, hvor det ikke ble inngått noen avtaler om innkjøp av energiopsjoner, viste seg å være feil. Vurderingen var imidlertid basert på den aktuelle situasjonen i november 2009, hvor alle relevante faktorer pekte i en positiv retning, og beslutningen var ut fra dette perspektivet korrekt fattet. Den helt unormale utviklingen som kom i etterkant av dette, illustrerer hvor vanskelig det kan være å basere ordningen på den en konkret vurdering av den aktuelle situasjonen ved kontraktsinngåelsen og at det forsikringsmessige aspektet bør være det rådende kriteriet for ordningen. Etter Statnetts vurdering er det ikke hansiktmessig å vente med ENOP utlysning og kontraktsinngåelse til behovet er vurdert.

- I motsetning til det som er gjennomført tidligere år, hvor budgiving og innkjøp har vært gjennomført på høsten, legges det for kommende sesong opp til å foreta innkjøp av opsjoner før sommeren. Det vektlegges her at opsjonene skal være en forsikringsordning som er uavhengig av konkrete subjektive vurderinger av magasinsituasjon m.v.

- Ordningen skal være nasjonal

- Det åpnes for gjensidig ekskluderende bud fra enkeltaktører

Selv om ENOP er designet for å redusere energiforbruket i svært anstrengte kraftsituasjoner så vil de også ha en gunstig effekt på effektforholdene i anstrengte energisituasjoner. Energiknapphet vil gi effektproblemer og vanskeligheter med å få momentan balanse i systemet.
2.7.2 Reservekraftverk

Reservekraftverkene er mobile i den forstand at de fra en sesong til neste kan flyttes til en annen lokalitet der det er god tilgang på bl.a. gass, kraftoverføring og ferskvann. Lokaliteten må være tilrettelagt for kraftverket.

Reservekraftverkene er gassturbinverk som er forutsatt å kunne produsere ca 1000 GWh energi over en 5 måneders periode fra nyttår til ut mai. Med dette kan de bidra til å redusere sjansen for rasjonering i perioder og områder med liten krafttilgang sett mot forbruket og overføringskapasiteten.

Bakgrunn for restriksjoner på bruk av reservekraftverkene

CO2-utslippene pr kWh er ca det dobbelte av et vanlig kombigaskraftverk og reservekraftverkene bør derfor ikke utnyttes mer enn det som er samfunnsmessig nødvendig.

Bruk av reservekraft kan også påvirke tilpasningen innen annen produksjon og forbruk. Analyser viser at både eksistensen og bruken av reservekraft i prinsippet vil påvirke vann disposeringen innenfor perioden med knappt. I en situasjon hvor magasinfillingen i utgangspunktet er lav og det forberedes for reservekraftproduksjon, må det forventes at vannkraftprodusentene vil fremskynde produksjonen noe. Det skyldes at ordningen på kort sikt vil gi redusert risiko for vårknipe og forventningsmessig lavere priser i de tørrestesenarioene. Effekten av dette vil kunne bli en mer usikker balanse mot sluttet av en

Faktaboks 3 Systemansvarliges virkemidler i anstrengte driftsituasjoner

Systemansvarlig kan i vanskelige driftsituasjoner rekvire effekttilgang ved å kreve at all tilgjengelig regulerytelse innenfor produksjon og forbruk anmeldes i regulerkraftmarkedet, etter at prisen i elspotmarkedet er satt.

Systemansvarlig kan ved driftsforstyrrelser kreve å få benytte all tilgjengelig regulær effekt i produksjonsapparatet til å gjenopprette normal drift. Ikke anmeldt produksjon prissettes til elspotområdets regulerkraftpris, dersom ikke annet er avtalt.

Systemansvarlig kan ved effektnapphet i kraftsystemet pålegge konsesjonær å foreta kortvarig tvangsmessig utkobling av forbruk. Systemansvarlig kan også under større driftsforstyrrelser pålegge konsesjonær å foreta kortvarig tvangsmessig utkobling av forbruk.

Systemansvarlig kan ikke pålegge konsesjonær langvarig tvangsmessig utkobling. For større, langvarige utkoblinger er det snakk om kraftrasjonering og NVE er da ansvarlig myndighet.

Kraftrasjonering er et tiltak som er utviklet for å håndtere ekstreme situasjoner der alle andre markedsmessige og frivillige ordninger er benyttet men ikke har hatt ønsket virkning. Dette betyr at det ikke er nok energi igjen til å forsyne markedet. Dermed må rasjonering benyttes for å utnytte den energien som jenstår på en best mulig måte. En rasjonerings situasjon vil derfor ikke kunne sammenlignes med en situasjon hvor det er høy pris, men tilgjengelig kraft i markedet. En rasjonerings situasjon vil være en unntakstilstand hvor det kan bli problemer med å skaffe kraft til viktige deler av samfunnet i det området hvor situasjonen oppstår.
knapphetsperiode, men det kan også føre til at endringen i vannkraftproduksjon bidrar til en jevne fordeling av et ekstra energitilskuddet som reservekraftverket representerer. Dermed kan unødvendig drift svekke virkningen av reservekapasitet som et tiltak i en SAKS.

Det er en forutsetning for at reservekraftverkene skal virke effektivt at området det er lokalisert i er en eget prisområde med flaskehals til andre prisområder. Analyser gjennomført i vinter viste at i timer hvor det ikke var flaskehals mellom Midt-Norge og Sverige ville reservekraftverkene redusert importen fra Sverige omtrent like mye som kraftverkene produserer, og derfor er faren for rasjonerende forbruk med eller uten igangsetting av reservekraftverkene.

Igangsetting av reservekraftverkene med et lavt bud i kraftmarkedet på hele produksjonen kan gi uønskede effekter med hensyn til produksjon og forbruk. Det kan for eksempel være at det er termisk kraft i Sverige som ligger på marginalen. Dermed er det mulig at reservekraftverkene kun vil føre til redusert kraftproduksjon i de termiske kraftverk i Sverige. Et annet alternativ er at det kan føre til økt forbruk i Midt-Norge eller Sverige som følge av en prisnedgang.

Det er meget viktig å ikke akseptere forventer at SAKS-tiltak blir gjennomført, og forventer at området det er lokalisert i er et eget prisområde med flaskehals til andre prisområder. Analyser gjennomført i vinter viste at i timer hvor det ikke var flaskehals mellom Midt-Norge og Sverige ville reservekraftverkene redusert importen fra Sverige omtrent like mye som kraftverkene produserer, og derfor er faren for rasjonerende forbruk med eller uten igangsetting av reservekraftverkene.

Igangsetting av reservekraftverkene med et lavt bud i kraftmarkedet på hele produksjonen kan gi uønskede effekter med hensyn til produksjon og forbruk. Det kan for eksempel være at det er termisk kraft i Sverige som ligger på marginalen. Dermed er det mulig at reservekraftverkene kun vil føre til redusert kraftproduksjon i de termiske kraftverk i Sverige. En annen alternativ er at det kan føre til økt forbruk i Midt-Norge eller Sverige som følge av en prisnedgang.

Det er viktig at en er restriktiv i bruken av reservekraftverkene, slik at ikke den langsiktige forventede prisstrukturen endres. Dermed svekkes heller ikke aksetrenees incentiver til å investere i ny produksjon eller energisparende tiltak. Om hyppig bruk av SAKS-tiltak fører til lavere forventede priser, vil det kunne føre til tiltak på produksjonssiden eller etterspørselsiden som før ville vært lønnsomme, nå ikke bli det.

Dersom reservekraftverk brukes sjelden, vil ikke den forventede prisstrukturen på lang sikt endres. Dermed svekkes heller ikke markedsaktorenes økonomiske incentive til å investere i nye anlegg. Slike investeringer i nye anlegg representerer markedets bidrag til å redusere sannsynligheten for fremtidige svært anstrengte kraftsituasjoner. Men omvendt vil hyppig bruk påvirke prisforventningene slik at sannsynligheten for høye priser blir mindre enn den ellers ville ha vært, mens selve prisnivået må kunne antas å være forholdsvis upåvirket i langsiktig likevekt. Dette kan føre til at nye investeringer på tilbuds- og etterspørselsiden får andre karakteristika med tanke på beredskap i forhold til tilsigssvikt, enn de ellers ville ha fått.

Dispensasjon til bruk av reservekraftverkene ved anstrengte driftsituasjoner

Forskningssikkerhet inneholder flere aspekter enn energiknapphet. Både effektnapphet og ekstraordinære hendelser i kraftsystemet kan gi omfattende samfunnsmessige konsekvenser. Reservekraftverkene kan i tillegg til å fungere som SAKS-tiltak, være et viktig bidrag for å opprettholde driften av kraftsystemet i området de er plassert i som følge av en ekstraordinær hendelse. Statnett søkte med bakgrunn i den stramme kraftsituasjonen i Midt-Norge om en midlertidig dispensasjon fra konsesjonsvilkårene for å kunne benytte reservekraftverkernes effektekspanskjøper.

Reservekraftverkene kan eksempelvis kompensere for et tilsvarende utfall av effekt fra nettanlegg eller produksjon i det området de er plassert. Reservekraftverkene kan bidra til å opprettholdt kraftsystemets balanse i en anstrengt driftsituasjon. De vil kunne være ett av flere
virkemidler som kan anvendes i situasjoner hvor dette er påkrevet for å sikre strømleveranser til innbyggere og den generelle samfunnssikkerheten. Mulighet for bruk av reservekraftverkene vil slik gi bedre beredskap i det området der de er plassert.

Midlertidig dispensasjon fra vilkåret om kun å bruke reservekraftverkene i SAKS-situasjoner, innebærer ikke at det i dispensasjonsperioden skal være mulig med alle typer bruk av disse kraftverkene. Begrunnelsen for søknaden er å gi mulighet for å utnytte kraftverkens effektegenskaper ved eventuelle driftsforstyrrelser i dagens spesielle situasjon. Statnett fikk dispensasjon for å gjøre vedtak om idriftsettelse av reservekraftverkene i anstrengte driftssituasjoner hvor all annen tilgjengelig regulering er forsinket, og hvor eneste alternative tiltak vil være utkobling av forbruk.

Motivene for å begrense driftsomfanget til disse kraftverkene i konsesjonene var særlig utslippsvirkninger og mulige uheldige virkninger på kraftmarkedet og kraftsystemet, og disse hensynene er fortsatt aktuelle. Dispensasjon fra de opprinnelige vilkårene ble satt slik at de ikke svekker reservekraftverkene som SAKS-tiltak. For at reservekapasiteten skal ha best mulig virkning, må betingelsene for igangsetting av produksjon settes slik at markedet i minst mulig grad endrer sine beslutninger og produksjonsprofi.

Dersom bruken av reservekraftverkene begrenses til kun å være ett av flere virkemidler for systemansvarlig ved driftsforstyrrelser, vil de negative virkninger være små. Systemansvarlig har gjennom forskrift om systemansvar flere måter å sikre balansen i systemet på. Reservekraftverkene kan etter dispensasjonsadgangen brukes i tilfellene hvor andre virkemidler, herunder annen effektreserve, ikke er tilgjengelig og alternativ er tvangsmessig utkobling av forbruk.

Det har i løpet av sesongen ikke oppstått situasjoner hvor Statnett har vurdert det som nødvendig å starte reservekraftverkene.

Videre vurderinger av reservekraftordningen

Ved valg av lokaliserings og innkjøp av reservekraftverkene, var det å redusere sannsynligheten for energirosjonering utgangspunktet for valg av lokalitet. Midt-Norge er det området som peker seg ut som et område i Norge hvor sannsynligheten for en slik situasjon er størst. Samtidig har vinteren vist at også andre potensielle hendelser kan gi utfordringer i regionen. Derfor har Statnett fått dispensasjon til å benytte effektegenskapene til reservekraftverkene for å unngå tvangsmessig utkobling av forbruk ved anstrengte driftssituasjoner. Selv om Nea-Järpstrømmen har gitt økt overføringskapasitet fra Sverige vil effektsituasjonen i området ikke være akseptabel før Ørskog-Fardal er på plasse.

Kriteriene i dispensasjonen gitt vinteren 2010 gir klare begrensninger på bruken som sikrer at mulige ulemper minimeres. Mulighet for bruk av reservekraftverkene vil slik gi bedre beredskap i det området der de er plassert. NVE vil se nærmere på om dispensasjonen gitt i vinter bør gjøres permanent.

Per dags dato finnes ingen alternativ lokalisering tilrettelagt for å etablere kraftverket på sesongvarsel slik det var intensjonen i henhold til søknad og behandling av tiltaket. Det kan derfor være hensiktmessig å vurdere om andre områder som i vinter opplevde en stram kraftsituasjon bør tilrettelegges for kraftverkene. For en slik vurdering gjennomføres, bør en avklaring av dispensasjonsadgangen og mulighetene for å benytte kraftverkene
effektegenskaper avklares. Blant annet kan reservekraftverkene brukes for å ivareta driftsikkerheten for områder i påvente av at nye prosjekter idriftsettes. Dette vil være viktige forutsetninger i en samfunnsøkonomisk analyse av hensiktsmessig lokalisering og flyttekostnader.
2.8 Videre utredninger og tiltak som bør vurderes

2.8.1 Prisfølsomhet – store forbrukere og kraftleverandører

Som det fremgår av avsnitt 2.6.2 er det tilsynelatende relativt små volumer av de svenske og finske effektreserverne som er benyttet i timene med høye priser. Også de siste budene på tilbudssiden har beskjedent volum. Dette innebærer at det med relativt små endringer på etterspørselssiden kunne de aller høyeste pristoppene vært betydelig redusert.

Prisene i regulerkraftmarkedet var dessuten lavere enn spotprisen i de fleste av timene hvor effektreservene ble benyttet og indikerer at prisfølsomheten ikke i tilstrekkelig grad kommer tilsynlig i spotmarkedet.

Det er liten tvil om at vinterens høye priser har påført forbrukere og leverandører uten adekvat prissikring store økonomiske tap. Samtidig kan produsenter med produksjonsmuligheter ha gått glipp av store inntekter. Disse økonomiske virkningene kan ha en oppløsende virkning, slik at mange aktører finner det lønnsomt å iverksette tiltak og prosedyrer som gir dem bedre vern mot høye priser ved neste anledning.

Samtidig er det grunn til å peke på to forhold som trolig har betydning for hvor store prisutslag en i dag vil få i en situasjon med lite tilgjengelig effekt. For det første opptrer høye priser i enkeltimer historisk sett sjelden. Vinterens hendelser viser at det i for liten grad fantes beredskap og prosedyrer hos enkeltaktører, for eksempel store og mellomstore forbrukere, for å gjennomføre tilpasninger i adferden i forhold til endringer i kraftprisene. For det andre observerer vi at endret adferd (redusert etterspørsel) ser ut til først å komme til synne i regulerkraftmarkedet og at utslagene i etterspørselen først kan observeres etter noen uker, jf 6.1.2.

NVE mener derfor det er behov for å studere hvilke virkemidler som kan være hensiktsmessige å iverksette med tanke på å øke beredskapen på etterspørselssiden fra store og mellomstore forbrukere i spotmarkedet.

Det bør også gjennomføres tilsvarende vurderinger knyttet til kraftleverandørenes muligheter for å aggregere etterspørselsfleksibilitet fra sine kunder. Dette reiser imidlertid ytterligere spørsmål knyttet til teknologiske utfordringer, blant annet muligheten for å kunne styre forbruk. Slike løsninger må derfor sees i sammenheng med innføringen av AMS, og de muligheter det gir for endringer i hvordan markedet er organisert.

2.8.2 Markedsmeldinger og revisjonsplanlegging

Vinteren 2009/2010 har vært preget av lav produksjon og regularitet i svensk kjernekraft. De svenske kjernekraftverkene er gamle og den "Svenska strålskyddsinspektionen" ser ut til å kontrollere nøyde før kjernekraft gis tillatelse til å starte opp igjen etter vedlikehold og reparasjon. NVE mener det er svært viktig med nøyde kontroll av sikkerheten på svenske kjernekraftverk og finner ingen grunn til å tvile på de faglige vurderinger som gjøres av kjernekraftinspeksjonen.

Tilsyn med dette er et internt svensk anliggende. Likevel kan det være grunn til å se nærmere på varslingsrutinene og hvordan markedsmeldingene til Nord Pool fra hvert enkelt kjernekraftverk utformes. Det har denne vinteren vært et gjenatt fenomen med stadige og nye forsinkelser av oppstart etter vedlikehold og reparasjon. Om mulig bør det innskerpes at annonserter
oppstartstidspunkt skal representere aktørens beste estimat. Det er generelt viktig at markedsmeldinger er mest mulig korrekte og reflekerer all tilgjengelig informasjon. Dette gjelder også meldinger fra andre markedsdeltakere enn kjernekraftprodusenter.

Flere svenske kjernekraftverk står foran vesentlige oppgraderinger og langsiktige vedlikehold som vil medføre lange utkoplingsperioder. Plasseringen av slike langvarige ute-periode vinteren 2009/2010 var i lys av forholdene ved inngangen til året fornuftig, siden det var god magasinfylling, lave brenselpriser og lavt kraftforbruk i Norden og Nord-Europa. I ettertid viste knappheten i kraftmarkedet seg å bli større enn forutset. NVE finner det på denne bakgrunn vanskelig å fremføre generell misnøyde med innfasingen av oppgradering og lange vedlikeholdsperioder for kjernekraften.

2.8.3 Flaskehalshåndtering og bruk av flere priser for maksimal utnyttelse av eksisterende kapasitet og utjevning av priser

I avsnitt 4 ovenfor ble hver enkelt av høyprisperiodene vi har opplevd siste vinter drøftet. Et av funnene i drøftingen er at det i timene med høyest pris i Midt-og Nord-Norge, Sverige, Finland og Sjælland var kraftig redusert overføringskapasitet fra Sør-Norge til Sverige. Det vil si at overføringskapasiteten fra lav- til høyprisområdet var begrenset. Flaskehalsen som fysisk sett befinner seg vest for Oslo (Flesaker-snittet), ble av hensyn til forsyningssikkerheten flyttet til svenskgrensen før den nye prisområdeinndelingen NO1/NO2. Dette medførte at forbrukerne øst fra Flesaker-snittet fikk nye godte av lave døgnmarkedspriser selv om deres forbruk belastet den kritiske flaskehalsen i like stor grad som eventuell eksport til Sverige.

Det er usikkert om og hvor mye forbruket øst for Flesaker-snittet ville gå ned dersom ”svensk” døgnmarkedspris slo inn i dette området. Likevel er det grunn til å se nærmere på om flere prisområder og bedre organisering av kapasitetsfastsettelsen kan bidra til å redusere de svært høye prisene som ble realisert siste vinter. Dette må også sees i sammenheng med områdeinndelingen som skal skje i Sverige.

Generelt er det en kjensgjerning at det geografiske produksjons- og forbruksmønsteret i nettet påvirker nettets evne til å frakte kraft mellom regioner. En god utnyttelse av det samlede overføringsnettet fordrer derfor innenfor et markedssystem at produksjon og forbruk får detaljerte prissignaler, ikke bare fra time til time men også avhengig av lokalisering i nettet. NVE vil se nærmere om bedre organisering av kapasitetsfastsettelse og prisområdeinndeling kan føre til en bedre utnyttelse av det eksisterende kraftsystemet.

2.8.4 Krav til forsyningssikkerhet og vurdering av fremtidige nettinvesteringer

Vinterens erfaringer understreker at Norge fortsatt kan ha effektutfordringer i kraftsystemet. Dette er blant annet fordi begrensninger i overføringsnettet medfører at vi ikke kan benytte oss av den fleksibiliteten som produksjonssystemet gir i alle områder. Det vil derfor kunne oppstå områdevisse utfordringer knyttet til energi- og effekt i påvente av realisering av nye nettinvesteringer.

Forbruk med utkoblar tariff ble i perioder med spesielt høy last koblet ut og dette var viktige bidrag for å sikre driften av systemet. Alternativet ville i vinter vært redusert driftssikkerhet med flyt i kritiske snitt over det som normalt kan tillattes. Erfaringene fra i vinter viser at det er behov for å sikre at systemansvarlig har slike virkemidler som kan benyttes i spesielle driftssituasjoner.

På kort sikt er det viktig at det sikres en optimal utnyttelse av eksisterende system med økt fokus på fleksibilitet på forbrukssiden både gjennom bruk av kraftmarkedet, men også fleksibilitet som kan utnyttes direkte av systemansvarlig for å ivareta driftsikkerheten. På lengre sikt vil nye nettinvesteringer gi kraftsystemet tilstrekkelig fleksibilitet til å sikre et effektivt kraftmarked sammen med forsynings- og optimal utnyttelse av produksjonsressursenes effektivitetsnivå i ulike deler av systemet.

Det norske kraftsystemet har en høy grad av utnyttelse. Gjennom økt bruk av mekanismer som systemvern og utkoblbart forbruk, har det vært mulig å øke overføringen i systemet til tross for få nye anlegg i systemet og større overføring. Dette har også gitt en samfunnsøkonomisk gevinst i form av utsettelse av investeringer. Men stadig nye områder som driftes med N-0 samt utfordringer for å drifte etter Statnetts mulighetsrom truer forsynings- og driftsikkerheten i systemet. Vindu for revisjoner reduseres grunnet høy utnyttelse av nettet også i sommerhalvåret. Revisjoner og mulighet for utkobling ved bygging av nye nettanlegg er essensielt for å fornye kraftsystemet.

Det er derfor behov for en større vurdering av hvilke nivå som er samfunnsmessig rasjonelt for forsynings- og driftsikkerheten i kraftsystemet. Dette gjelder både for vurderinger som foretas av systemansvarlig i driftsituasjonen, men også hvilke kriterier som skal legges til grunn ved planlegging av en samfunnsmessig rasjonell infrastruktur på sikt. Mye kan forbedres gjennom økt forbrukerfleksibilitet og et mer effektivt kraftmarked, men utvikling av infrastrukturen og tiltak som kan benyttes for å opprettholde systemdriften er en forutsetning for å få dette til.

NVE vil i løpet av 2010 utarbeide en rapport om forsynings- og driftsikkerhet i kraftsystemet. Rapporten skal vurdere kriterier for prioritering av sikker drift og forutsetninger for langsiktig planlegging av samfunnsmessig rasjonelle nettinvesteringer.
3 Vedlegg

Figur 3.7 Dansk vindkraftproduksjon, 2009 - 2010 GWh/uke. Kilde: Energinet.dk

Figur 3.9 Norsk utveksling av kraft i fjerde kvartal. TWh. Kilde: Nord Pool

Denne serien utgis av Norges vassdrags- og energidirektorat (NVE)

Utgitt i Rapportserien i 2010

Nr. 1 Tor Arnt Johnsen (red.): Kvartalsrapport for kraftmarkedet. 4. kvartal 2009

Nr. 2 Tilgangen til fornybar energi i Norge - et innspill til Klimakur 2020 (30 s.)

Nr. 3 Klimagassutslipp fra fjernvarme: Tiltak og virkemidler- et innspill til Klimakur 2020 (30 s.)

Nr. 4 Tiltak og virkemidler for redusert utslipp av klimagasser fra norske bygninger - et innspill til Klimakur 2020 (120 s.)

Nr. 5 Årsrapport for tilsyn 2009 (30 s.)

Nr. 6 Klimautfordringer i kraftsektoren frem mot 2100. Sammendragsrapport (13 s.)

Nr. 7 Thomas Skaugen (red.) Norges hydrologiske stasjonsnett –analyse og strategi (56 s.)

Nr. 8 Kulturminner i vassdrag. Flom- og erosjonssikring, kanaler og miljøtiltak (96 s.)

Nr. 9 Jørn Opdahl, Hervé Colleuille: Landsomfattende mark- og grunnvannssnett. Drift og formidling 2009 (39 s.)

Nr. 10 Tor Arnt Johnsen (red.): Kvartalsrapport for kraftmarkedet. 1. kvartal 2010
Norges vassdrags- og energidirektorat
Middelthunsgate 29
Postboks 5091 Majorstuen,
0301 Oslo

Telefon: 22 95 95 95
Internett: www.nve.no