Forslag til endring i forskrift om kontroll av nettvirksomhet
Utforming av uttakstariffer i distribusjonsnettet

5
2017
Høringsdokument nr 5-2017
Forslag til endring i forskrift om kontroll av nettvirksomhet

Utgitt av: Norges vassdrags- og energidirektorat
Redaktør: Velaug Mook
Forfattere: Håvard Hansen, Torfinn Jonassen, Kari Løchen, Velaug Mook

Trykk: NVEs hustrykkeri
Opplag: Digital publisering (www.nve.no)
Forsidefoto: NVE
ISSN 1501-2840


Emneord: Nettleie, tariff, effekt, kapasitet

Norges vassdrags- og energidirektorat
Middelthunsgate 29
Postboks 5091 Majorstua
0301 OSLO

Telefon: 22 95 95 95
Telefaks: 22 95 90 00
Internett: www.nve.no

November 2017
Innhold

Forord ...................................................................................................................... vi
Sammendrag ............................................................................................................. vii
1 Innledning ........................................................................................................... 1
2 Bakgrunn............................................................................................................. 4
  2.1 Mål med utforming av tariffer ................................................................. 4
  2.2 Tidligere arbeid .......................................................................................... 5
  2.3 Standardisering ......................................................................................... 6
  2.4 Lik tariffmodell for alle kundegrunn ......................................................... 7
  2.5 Gjennomfakturering .................................................................................... 8
  2.6 Tidspunkt for ikrafttredelse ..................................................................... 8
3 Modellvalg .......................................................................................................... 8
  3.1 Modeller NVE vurderer som mindre egnet ............................................. 10
  3.2 Aktuelle modeller ....................................................................................... 10
    3.2.1 Abonnert effekt .................................................................................. 11
    3.2.2 Målt effekt ........................................................................................ 12
    3.2.3 Tidsavhengig energiledd (time of use) .............................................. 14
    3.2.4 Regneeksempler .............................................................................. 15
      3.2.4.1 Tariffer ........................................................................................ 15
      3.2.4.2 Scenarioer .................................................................................. 17
    3.2.5 NVEs forslag til abonnert effekt ....................................................... 19
4 Forslag til endring av kapittel 13 Generelt om tariffer ............................ 21
  4.1 Prinsipper for utforming av punkttariffer §13-1 ....................................... 21
    4.1.1 Forslag til endring i § 13-1 ............................................................... 22
    4.1.2 NVEs kommentar til endringer i bokstav h) .................................... 22
    4.1.3 NVEs kommentar til ny bokstav i) ................................................... 22
  4.2 Almennelige regler for tariffrering § 13-2 ................................................. 23
    4.2.1 Forslag til endringer i § 13-2 ............................................................ 23
    4.2.2 NVEs kommentar ............................................................................. 23
  4.3 Bruksavhengige tariffled ............................................................................. 23
    4.3.1 Forslag om å oppheve § 13-3 ............................................................ 24
    4.3.2 NVEs kommentar ............................................................................. 24
  4.4 Andre tariffled § 13-4 ............................................................................... 24
    4.4.1 Forslag om å oppheve § 13-4 ............................................................ 25
    4.4.2 NVEs kommentar ............................................................................. 25
  4.5 Informasjonsplikt § 13-5 ............................................................................. 25
    4.5.1 Forslag til endringer i § 13-5 ............................................................ 26
    4.5.2 NVEs kommentar til endring i tredje ledd ...................................... 26
    4.5.3 NVEs kommentar til endring i gjeldende fjerde ledd .................... 26
    4.5.4 NVEs kommentar til nytt fjerde ledd .............................................. 27
    4.5.5 NVEs kommentarer til endring i gjeldende femte ledd ............... 27
    4.5.6 NVEs kommentar til endring i syvende ledd ................................. 28
5 Forslag til endring av kapittel 14 om praktisk utforming av tariffer for ordinære uttak .............................................................. 28

5.1 Utforming av tariffer for ordinære uttak i sentral- og regionalnett § 14-1

5.1.1 Forslag til endring i § 14-1 ................................................... 29
5.1.2 NVEs kommentar .............................................................. 29

5.2 Utforming av tariffer for ordinære uttak i distribusjonsnettet § 14-229

5.2.1 Forslag til endring i § 14-2 første ledd ............................. 30
5.2.2 NVEs kommentar til endring i første ledd ....................... 30
5.2.3 Forslag om å oppheve gjeldende § 14-2 annet ledd .......... 31
5.2.4 NVEs kommentar ............................................................ 31
5.2.5 Forslag til nytt § 14-2 annet ledd ................................. 31
5.2.6 NVEs kommentar til nytt annet ledd ............................. 31
5.2.7 Forslag om å flytte gjeldende § 14-2 tredje ledd .......... 32
5.2.8 Forslag til nytt § 14-2 tredje ledd ................................. 33
5.2.9 NVEs kommentar til endring i tredje ledd .................... 33
5.2.10 Forslag om å oppheve gjeldende § 14-2 fjerde ledd ...... 34
5.2.11 NVEs kommentar ............................................................ 34
5.2.12 Forslag til nytt § 14-2 fjerde ledd ................................. 34
5.2.13 NVEs kommentar til endring i fjerde ledd ................. 34
5.2.14 Forslag om å oppheve gjeldende § 14-2 femte ledd ...... 35
5.2.15 NVEs kommentar ............................................................ 35
5.2.16 Forslag til nytt § 14-2 femte ledd .............................. 36
5.2.17 NVEs kommentar til nytt femte ledd ........................... 36
5.2.18 Forslag til nytt § 14-2 sjette ledd ................................. 37
5.2.19 NVEs kommentar til nytt sjette ledd ......................... 37
5.2.20 Forslag til nytt § 14-2 syvende ledd ......................... 38
5.2.21 NVEs kommentar til nytt syvende ledd ...................... 38
5.2.22 Forslag til nytt § 14-2 åttende ledd ......................... 38
5.2.23 NVEs kommentar til nytt åttende ledd ...................... 38

6 Øvrige forskriftsendringer ..................................................... 39

6.1 Endringer i betegnelsen på høyeste spenningsnivå .......... 39
6.1.1 § 1-3 definisjon av sentralnett ....................................... 40
6.1.2 Forslag til endring i § 1-3 definisjon av transmisjonsnett .... 40
6.1.3 NVEs kommentar til endring i § 1-3 ............................... 40

7 Økonomiske og administrative konsekvenser ................. 41

7.1 Sluttkunder i distribusjonsnettet .............................. 41
7.1.1 Lavere energiledd i distribusjonsnettet ................. 41
7.1.1.1 Besparelser som kommer nettkundene til gode .... 41
7.1.1.2 Fordelingsvirkninger ............................................ 42
7.1.2 Tariffmodell ................................................................. 42
7.1.2.1 Besparelser som kommer nettkundene til gode .... 42
7.1.2.2 Økt bevissthet kan gi forbruksendring ................. 42
7.1.2.3 Fordelingsvirkninger ............................................ 43
7.2 Spesielle typer kunder .................................................... 43
7.2.1 Kraftprodusenter .......................................................... 43
Forord

Norges vassdrags- og energidirektorat (NVE) beskriver i dette dokumentet forslag til endringer i forskrift av 11. mars 1999 nr. 302 om økonomisk og teknisk rapportering, inntektsramme for nettvirksomheten og tariffer (forskrift om kontroll av nettvirksomhet).


NVE ber om kommentarer til endringsforslagene, ikke til øvrige bestemmelser i forskrift om kontroll av nettvirksomhet.

NVE ber om at kommentarer til de foreslåtte endringene sendes NVE innen 1. mars 2018.

Høringssvar sendes til: nve@nve.no

Svaret merkes med referansenummer 201706767.

NVE vil etter høringsfristens utløp vurdere de inkomne høringsuttalelsene. NVE tar sikte på at de fleste endringene skal tre i kraft 1. januar 2021.

Oslo, november 2017

Per Sanderud
vassdrags- og energidirektor

Ove Flataker
avdelingsdirektør
Sammendrag

De siste årene er det observert at effektuttaket i Norge har økt mer enn energibruken. Årsaken til dette er sammensatt. For det første øker Norges befolkning, og med det også vårt behov for energi til både belysning, elektriske apparater og varme. Mer energieffektive apparater og bedre isolerte hus holder energibruken nede, til tross for økt befolkning. Årsaken til at effektbruker øker mer enn energiforbruket er fordi mange energieffektive apparater har høy effektuttak, det vil si høy energibruk per tidsenhet. Når vi får flere bygninger og flere el-biler i Norge forsterkes derfor behovet for økt nettkapasitet. Resultatet er at nyttselskapene må investere i økt nettkapasitet. Utbygging av nytt strømnett må skje i forakt av forbruksutviklingen. Kostnadene fordeles på brukerne av nettet, og resultatet er at nettleien går opp. Hvordan nettleien er utformet har betydning for hvordan nettet brukes og for fordeling av kostnader mellom nettkundene. En mer effektiv utnyttelse av nettet kan redusere behovet for fremtidige nettinvesteringer, og over tid gi lavere kostnad for brukerne av nettet samlet sett.

Flere nullhus og plussbusser innebærer at mange kunder kan ha lavt årlig forbruk av strøm fra nettet, mens de i enkelte timer likevel har høyt effektuttak. Kostnadene i nettet er hovedsakelig de samme uavhengig av årlig strømbruk. Dersom flere av bruken nettet er fåttall timer, vil kostnaden for bruken per tidsenhet øke betydelig. Resultatet kan være at flere velger å bruke mindre strøm fra nettet, og i ytterste konsekvens velger å koble seg fra nettet. På kort og mellomløp sikt påvirker ikke dette kostnadene i nettet, og nettleien til gjenværende kunder vil øke.

NVE mener nettleien i større grad bør gjenspeile hvordan kostnadene i nettet oppstår. Kundebeslutninger og forbruksmønster påvirker kostnadene i nettet. En nettleie som bedre gjenspeiler nettets kostnadsstruktur, motiverer kundene til å bruke strømmetnettet mer effektivt. Dette kan for eksempel være å lade elbilen på tidspunkt hvor annet forbruk er lavt. Mest mulig korrekte priser i nettleien i forhold til nettets kostnadsstruktur, er viktig av flere grunner. For det første legger det til rette for at kundene kan ta gode valg med tanke på energi- og effektforbruk. Kundene kan beslutte investeringer og bruk av nettet opp mot de kostnader som påføres nettet. For det andre legges det til rette for ny teknologi og innovativt marked som kan redusere kostnader eller gi økt nytte for kundene. For det tredje innebærer korrekte priser mer kostnadsriktig fordeling av nettkostnadene blant brukerne av nettet.

Innføringen av smarte strømmålere (AMS) vil gi nyttselskapene mulighet til å beregne nettleien basert på kundens forbruk per time (kWh/h). Såkalte effekttariffer som priser hvor mye strøm kunden bruker i løpet av én time, vil bidra til å få ned forbrukstroppene i nettet, slik at investeringer i nytt nett kan utsettes eller reduseres. Dermed begrenses økningen i den samlede nettleien.

NVE foreslår effekttariffer utformet som et abonnement hvor prisen avhenger av hvor mye strøm kunden vil bruke i løpet av én time (kWh/h).

Nettleie = abonnement + overforbruk + transporttap
I modellen NVE foreslår, betaler kunden høyere pris for forbruk utover abonnementsgrensen, såkalt overforbruk. Overforbruksprisen kan nettselskapet velge å differensiere i tid. Høyt effektuttak i timer når belastningen i nettet er høy, kan avregnes en høyere pris enn høyt effektuttak i timer det er god kapasitet i nettet. I tillegg til abonnementsledd og overforbruksledd, betaler alle kunder et energiledd. Energileddet skal avspeile kostnaden kunden påfører nettet i økte tapekostnader, ved bruk av én ekstra kWh (transporttap).

Å betale for abonnert effekt er noe kundene kan dra kjensel på fra andre tjenester som mobil og bredbånd. For noen vil modellen være gjenkjennelig fordi den ligner på tariffen vi hadde inntil 70-tallet, ofte synliggjort ved en rød pil i wattmeteret på veggen ved siden av komfyren.

For de aller fleste kunder sammenfaller overforbruk godt med de timene nettet er høyt belastet. Derfor er modellen effektiv til å flytte forbruk når dette er høyt, samtidig som de fleste ikke vil få overforbruk om sommeren når det er god kapasitet i nettet. Modellen legger til rette for at kundene blir mer aktive og kan treffe gode valg med tanke på energi og effekt.

Fordi modellen er forutsigbar for kundene, vil det være relativt enkelt å vurdere økonomisk gevinst ved forbruksendringer. Abonnert effekt kan avregnes etter samme tidsoppløsning som spotprisen i kraftmarkedet fastsettes. Fordi prisene fra nettleien ikke virker utover den timen de inntreffer forstyrres ikke prisene kunden får fra kraftmarkedet. Abonnert effekt innebærer at kraftproduksjon foran og bak kundens målepunkt blir mer likestilt, sammenlignet med dagens nettleie. Dette bidrar til mer effektiv allokering av investeringer i ulike former for kraftproduksjon.

Mer standardisert utforming av nettleien vil være kostnadsbesparende, øke kundenes forståelse og gi likere rammebetingelser for tjenesteleverandører i ulike geografiske områder.

NVE foreslår at nettselskapene beregner og informerer den enkelte kunde om hvilket abonnement som gir lavest kostnad over året basert på historisk timesforbruk. En slik veiledningsplikt vil gi kundene godt beslutningsgrunnlag, enten de velger å følge nettselskapets beregning, eller velger et annet abonnement.

Nettkunder skal ha egne nettleieutgifter per time elektronisk tilgjengelig senest påfølgende døgn kl. 9.00. God tilgang til informasjon om egne utgifter til nettleie relativt nært opp til forbruksstidspunktet vil øke kundenes bevissthet om hvor mye strøm de bruker på én gang og bidrar til at kundene blir mer aktive.
1 Innledning

Nettselskapenes utforming av nettleien, heretter omtalt som tariffer, er regulert i forskrift av 11. mars 1999 nr. 302 om økonomisk og teknisk rapportering, inntektsramme for nettvirksomheten og tariffer (forskrift om kontroll av nettvirksomhet). Gjeldende regelverk gir nettselskapene stor grad av frihet i utforming av tariffer. NVE har som reguleringsmyndighet ansvar for at regelverket for utforming av tariffer så langt som mulig bidrar til å sikre at nettet utvikles og bygges ut på en sikker og samfunnsmessig rasjonell måte.

NVE skal arbeide for effektive markeder, effektive monopoler og riktige prissignaler gjennom tydelig regulering\(^1\). Dette skal gjøres på en måte som fanger opp teknologisk og strukturell utvikling. Ved utgangen av 2018 skal alle norske strømforbrukere ha fått montert nye avanserte måle- og styresystemer (AMS)\(^2\). Timeverdier fra AMS-måleren gjør det mulig med tariffer som i større grad tar hensyn til kundens effektbelastning på nettet, også kalt effekttariffer. Effekt er den momentane belastningen i nettet og måles i kilowatt (kW). Energi er belastningen over tid, for eksempel én time og måles i kilowatttimer (kWh). For eksempel er 4 kW i én time 4 kWh, og 4 kW i én halvtime er 2 kWh. I dette dokumentet benyttes betegnelsen effekt for kundens gjennomsnittlige effektuttak over én time (kWh/h).

NVE mener det er behov for å endre regelverket for utforming av tariffer for uttakskunder i distribusjonsnettet som følge av de pågående endringene i kraftsystemet. Strømforbruket blir mer energieffektivt, men også mer effektkrevende ved at vi ønsker å bruke mer strøm på én gang. Nye produkter og nye bruksområder tilsier at forbruket vil variere mer over tid, med høyt forbruk i korte tidsrom. Dersom dagens tariffpraksis videreføres, forventes det at denne utviklingen vil bli forsterket over tid, i takt med økt utbredelse av elbiler og annen ny teknologi. Produkter som elbil, gjennomstrømningsvannvarmer og induksjonstoppe gir større forskjeller i strømforbruk og bruk av nettkapasitet. Videreføring av dagens tariffpraksis, kan lede til at noen kunder i svært liten grad bidrar til å dekke felleskostnadene i nettet. Disse kostnadene vil da skyves over på resterende nettkunder i form av økte tariff. Samtidig med at forbruket blir mer effektkrevende, skjer en økende andel av kraftproduksjonen med fornybare teknologier (vindkraft, små vannkraftverk, solceller) som i begrenset grad kan styres etter behovet for kraft.

Elektrifisering av transportsektoren med økende andel hurtiglading, nye hus og bygninger som bruker strøm til oppvarming og utviklingen av elektriske apparater med høyt effektbehov, kan føre til at nettet mange steder må forsterkes for å dekke forbruksopptakene. På den annen side kan etterisolering av eksisterende byggi redusere effektuttaket, og tilsvarende kan fjernvarme, eller ved omlegging fra panelovner til væske til væske eller væske til luft varmepumper redusere kundenes effekttopper betydelig.

\(^1\) Med prissignal menes prisen nettkunden betaler for siste forbrukte enhet strøm per time. Det er denne prisen nettkunden sparer på marginen ved en liten reduksjon i forbruket sitt. Prissignal gir kundene økonomiske insentiv til å tilpasse forbruket.

\(^2\) Nettelskapene har ikke plikt til å installere AMS dersom: a) forbruket i målepunktet er lavt og forutsigbart, b) installasjoner er til vesentlig og dokumenterbar ulempe for sluttbruker.
I følge nettselskapenes investeringsplaner, er det forventet nettinvesteringer for 140 milliarder kroner for perioden 2016-2025\(^3\). En slik økning i nettinvesteringene forventes å øke nettelten til husholdningskunder med om lag 30 % i nominelle priser frem til 2025. Mesteparten av tiden vil imidlertid nettkapasiteten være dårlig utnyttet. Dyre investeringer i kapasitet som bare brukes i korte tidsrom vil ofte være dårlig samfunnsøkonomi. En enklere og rimeligere løsning vil ofte være å dempe forbrukstopper og dermed utsette eller redusere investeringer i nytt nett. Slik kan økningen i tariffene begrenses.

Timeverdier fra kunder hos Ringeriks-Kraft Nett indikerer at de 10% høyeste forbrukstoppen i snitt kun inntreffer i 0,38 % av tiden, totalt 33 timer i løpet av ett år. De 20 % høyeste forbrukstoppen inntreffer 4,5 % av tiden, totalt 397 timer i løpet av et år. Disse tallene illustrerer at hvis forbruket reduseres i ganske få timer gjennom året, kan kundenes maksimale effektuttak reduseres betydelig.

![Figur 1 Varighetskurve for 500 kunder hos Ringeriks-Kraft Nett](image)

Det er behovet for nettkapasitet, og muligheten til å kunne bruke strøm fra nettet når som helst, som bestemmer det aller meste av kostnadene i nettet. De fleste nettselskap har i dag tariffer som i all hovedsak priser samlet forbruk over en lengre periode, typisk én til to måneder. Tariffene tar ikke hensyn til hvordan forbruket til enkeltkunden faktisk er fordelt over perioden. Følgelig reflekteres heller ikke hvilken nettkapasitet kunden faktisk bruker i tariffen.

Etter energiloven § 10-6 jf. § 4-1 andre ledd nr. 4 kan det gis nærmere forskrifter om fastsettelse og beregning av tariffer og inntekter ved salg av nettjenester.

\(^3\) Basert på rapporterte tall i kraftsystemutredninger for transmisjons- og regionalnettet 2016, samt spørreundersøkelse hos representative distribusjonsnett
NVE er delegert myndighet til å utf Erdige nærmere forskrifter om tariffer, jf. energilovforskriften § 9-1. NVE har i forskrift om kontroll av nettvirksomhet fastsatt nærmere bestemmelser om tariffering. NVE hører med dette endringer i gjeldende bestemmelser om tariffering i forskrift om kontroll av nettvirksomhet.

NVE har hørt ulike modeller for tarifformulering sommeren 2015, og fått nyttige innspill. Forslaget som nå sendes på høring er basert på en helhetlig vurdering.

Etter høringsfristens utløp vil NVE gå gjennom de innkommende høringsuttalelsene. På bakgrunn av innkommende høringsinnspill vil foreslåtte endringer bli vurdert vedtatt.

Gjennom høringen ønsker NVE spesielt innspill på:

- Lik modell for alle uttakskunder i distribusjonsnettet, jf. forslag til § 14-2.
- Behov for krav om å tilby tidsdifferensierte abonnement til næringskunder.
- Behov for krav om å tilby tidsdifferensiert overforbrukspris.
- Behov for klarere føringer for fastsettelse av prisforholdet mellom abonnement og overforbruk, jf. forslag til første ledd og sjette ledd i § 14-2.
- Behov for å gi nærmere føringer for hva som legges i at kundene skal ha økonomisk insentiv til å holde seg innenfor abonnementet i «de fleste» timer, jf. forslag til endring i første ledd i § 14-2.
- Behov for klarere føringer for fastsettelse av abonnemener, herunder intervall på trinnene og prisstigning på satsene på trinnene for å oppnå mer harmonisert tarifformulering, jf. forslag til første og annet ledd i § 14-2.
- Behov for å regulere kundenes mulighet til å endre abonnement gjennom forskrift, jf. forslag til nytt fjerde ledd i § 14-2.
- Behov for å gi nærmere føringer for hva som vurderes å være et rimelig nivå på overforbruksleddet i tariffen, og mulighet for geografisk differensiering av overforbruksleddet innad i konsesjonsområdet jf. forslag til nytt sjette ledd i § 14-2.
- Ansvarsfordelingen mellom netselskap, kraftleverandør og eventuelt Elhub når det gjelder informasjon til kunde om tariffkostnad per time, jf. forslag til nytt fjerde ledd i § 13-5, og når det gjelder netselskapenes veiledningsplikt og forslag til nytt tredje ledd i § 14-2.
- Krav til å videreføre variasjoner i endrete tapsforhold over året fra overliggende nett til uttakskunder i distribusjonsnettet, jf. forslag til nytt femte ledd i § 14-2.
- Om ny tariffmodell i forslag til endring i § 14-2 bør tre i kraft fra 1. januar 2020.
2 Bakgrunn

2.1 Mål med utforming av tariffer

Energiloven med tilhørende forskrifter bygger på prinsipp om samfunnsmessig rasjonell overføring av elektrisk energi.

Samfunnsøkonomisk effektive priser skal reflektere marginkostnaden ved bruk av nettet. Slike priser gir optimal utnyttelse av utbygget kapasitet, men vil ikke være tilstrekkelig for å dekke kostnadene til drift og utbygging av nettet. Det kan være hensiktsmessig å gi prissignaler om at nettkapasiteten på sikt er begrenset. En praktisk tilnærming kan være å innføre tariffledd som gjennomgående slår inn for kundene når nettet er høyt belastet.

NVE har satt opp følgende mål for utforming av tariffer:

- Tariffene skal dekke nettselskapets kostnader innenfor tillatt inntekt, og fordelingen av kostnadene mellom brukerne av nettet skal være rimelig. Med rimelig fordeling legger NVE til grunn at kunder som belaster nettet gjennom høyt effektforbruk, betaler mer enn kunder som belaster nettet mindre.


Tariffer som reflekterer kostnadene i nettet og hvordan disse oppstår, vil virke mer noytrale, blant annet med hensyn til prisforholdet mellom strøm og andre energibærere, og med hensyn til lønnsomhet av energieffektiviserings tiltak og strømproduksjon bak egen måler. Kostnadsreflekterende tariffer vil redusere behovet for inndeling i kundegrupper.

- Tariffene bør være enkle og forståelige for kundene, slik at de har mulighet til å respondere på dem og dermed påvirke egen tariffkostnad. For å kunne respondere, er det viktig at kundene har god og lett tilgjengelig informasjon om priser i forakt, og informasjon om tariffkostnaden så nær opp til forbruksdeltakelsespunktet som mulig. Kundene bør enkelt kunne beregne økonomisk lønnsomhet av endret adferd, av installasjon i automatiske styringssystem, av

---

4 Energilovforskriften § 4-4 bokstav d)
5 Med forsyningsikkerhet menes kraftsystemets evne til kontinuerlig å levere strøm av en gitt kvalitet til sluttbrukere, og omfatter både energisikkerhet, effektsikkerhet og driftssikkerhet.
investering i alternative oppvarmingsløsninger eller av å investere i produksjonsutstyr bak egen måler. Dynamiske tariffer som kan endres ofte, vil gjøre tariffene mer presise. Dette må imidlertid veies mot andre hensyn som forutsigbarhet og kundeforståelse.

Det er helheten av marked, tariffer og andre virkemidler som skal sikre effektiv utnyttelse og utvikling av nettet. Ut fra dagens vurdering, er generelle tariffer ikke et effektivt og treffsikkert virkemiddel i situasjoner med akutt knapphet på overføringskapasitet hvor det er behov for å redusere eller øke forbruk (eller produksjon) raskt på et gitt geografisk sted. Det kan være komplisert for nettetskaperne å beregne, og for kundene å forholde seg til, dersom nettskapet skal beregne tariffer som er tilstrekkelig treffsikre for å avhjelpe akutt knapphet på overføringskapasiteten. Der det er mulig å bruke markedsmekanismer, er dette ønskelig. Prissignaler gjennom tariffen gir kundene generelle insentiv til reduksjon i energi- og effektforbruk. Dette garanterer likevel ikke at samlet forbruk ikke overstiger nettet i de periodene nettet er høyest belastet. Hvor i nettet det er knapphet på overføringskapasiteten vil variere over tid, og avhenge blant annet av nettskapets historiske og nye nettinvesteringer.

Av ovenfor nevnte grunner vurderer NVE at situasjoner med akutt knapphet på overføringskapasitet kan håndteres mer effektivt gjennom avtaler om utkobling. Gjeldende regelverk åpner for at nettselskaperne kan tilby reduserte tariffer og koble ut kunder etter avtale i timer med forventet knapphet på overføringskapasiteten. Alternativt kan nettskapet kjøpe ut forbruk gjennom markedsbaserte løsninger for fleksibilitet. Hvordan forbrukerfleksibilitet kan bidra til balansering av forbruk og produksjon er ikke videre drøftet i denne høringen. NVE vil arbeide videre med tilrettelegging for markedsbaserte løsninger for forbrukerfleksibilitet som et supplerende virkemiddel til utformingen av tariffer i distribusjonsnettet. NVE legger ikke opp til å fjerne nettskapenes mulighet til å tilby reduserte tariffer til forbruk som kan kobles ut etter avtale, før det foreligger alternativ markedsbasert løsning for denne fleksibiliteten.

### 2.2 Tidligere arbeid

NVE gjennomførte i 2015-2016 en høring om mulige endringer i regelverket for utforming av tariffer i distribusjonsnettet, og varslet en overgang fra dagens energibaserte tariffer til mer effektbaserte tariffer. Denne høringen om mulige endringer omtales i dette dokumentet som konsepthøring. I konsepthøringen ble behovet for å endre tariffstruktur utførlig drøftet. I oppsummering av konsepthøringen ble det pekt på at energileddet bør gjenspeile marginale tapskostnader, og ulike former for effekt tariffer ble omtalt. Disse er nærmere drøftet i kapittel 3.

Kundeforståelse og kundekommunikasjon er avgjørende for en vellykket omlegging av tariffstruktur. Trøndelag Forskning og Utvikling har på oppdrag fra NVE gjennomført en kvalitativ fokusgruppeundersøkelse. Et fåtall forbrukere ble spurte om deres holdninger til, og forståelse av, ulike måter å utforme effektbaserte tariffer på. Undersøkelsen viser at disse kundene opplever det som krevende å tenke på nettleie eller tariffer isolert fra strøm pris og avgifter, og enda mer krevende å skille mellom energi og effekt. Mange kjener sitt strøm forbruk (kWh), men svært få har et forhold til hva egen bolig krever av strømmen.

---

7 NVE Rapport 86:2016
effekt (kWh/h). Tankegangen bak å skulle betale for den kapasiteten man trenger, er likevel velkjent for de fleste gjennom betalingsordningene for en rekke andre produkter og tjenester. Kunder som deltok i undersøkelsen ønsker å ha fleksibilitet og mulighet for å påvirke egen tariikkostnad gjennom å tilpasse eget forbruk, samtidig ønsker de fleste en forutsigbar nettleie.

Undersøkelsen tyder på at forbrukere vil akseptere endringer dersom det er mulig for dem å forstå hvorfor, og hvilke konsekvenser det har, forutsatt at økonomi og komfort ikke reduseres.

NVE har som ledd i arbeidet med å utforme regelverk for hvordan nettselskapene skal utarbeide tariffer, avholdt to arbeidsmøter vinteren 2016-2017 hvor både nettselskap, kraftleverandører, forbrukermyndigheter og bransjeorganisasjoner har vært representert. Bransjeorganisasjonen Energi Norge har i tillegg gitt innspill gjennom notater.

2.3 Standardisering

I dag har nettselskapene relativt stor frihet når det gjelder utforming av tariffer. Dette gjelder både kostnadsfordeling mellom de ulike tariffleddene og hvor mange tariffledd kunden avregnes. De fleste kunder med årlig forbruk over 100 000 kWh har tariffer bestående av effektledd, i tillegg til fastledd og energiledd som alle tariffer må bestå av. Gjeldende regelverk åpner for at nettselskapene kan avregne effektledd for alle kunder når AMS-målerne er installert. Hvordan avrengningsgrunlaget for effekteleddet fastsettes, er ikke regulert i forskrift om kontroll av nettvirksomhet, og er dermed opp til det enkelte nettselskap å avgjøre. Det finnes mange måter å gjøre dette på, og praksisen er svært ulik.

Både nettselskap, kraftleverandører og flere interesseorganisasjoner har i høringssvar til konsepthøringen tatt til orde for stor grad av standardisering. Standardisering forenkler kommunikasjonen med kundene ved at bransjen og myndigheter kan ha enhetlig kommunikasjon, noe som både øker kundeforståelsen og er kostnadsbesparende. For kundene vil det være enklere å innhente og forstå informasjon om tariffene. Standardisert tariffstruktur legger til rette for felles marked med like rammebetingelser for tredjepartsaktører som tilbyr produkter og tjenester som bidrar til laststyring og sluttbrukerfleksibilitet. Kostnadsnivået hos nettselskapene synliggjøres og tariffen blir mer sammenlignbar mellom nettområder.

I forslag til leverandørsentrisk markedsmodell for sluttbrukermarkedet, blir kraftleverandør kundens primære kontaktpunkt. Det kan være krevende for kraftleverandør å skulle håndtere ulike prinsipp for utforming av tariffer i alle landets konsesjonsområder. Ulik tariffstruktur kan både øke kostnadene for kraftleverandørene, og ha konsekvenser for hvilke nettområder kraftleverandørene ønsker å levere i. I tillegg til å bedre disse forholdene, kan standardisert tariffstruktur gjøre det enklere for kraftleverandører å gi kunden gode svar og enklere for kunden å avdekke eventuelle feil på fakturaen.

---

8 THEMA Notat 2015-04, THEMA Notat 2016-06

9 Med leverandørsentrisk markedsmodell menes pliktig felles fakturering av kraft og nett utført av kraftleverandør.
Ansvaret for å avregne tariffene ligger i dag hos nettselskapene. Når alle måleverdier lagres og deles i Elhub, vil det også være mulig å gjøre selve avregningen av tariffene i Elhub\(^{10}\). Oslo Economics har på oppdrag fra NVE utarbeidet rapporten «Samfunnsøkonomisk analyse av modeller for leveringsplikt og nettleieavregning» hvor de finner det samfunnsøkonomisk lønnsomt å overføre ansvaret for avregning av tariffer fra nettselskapene til Elhub\(^{11}\). Dette forutsetter at tariffstrukturen er mer harmonisert enn i dag.

NVE ønsker å forskriftsfeste én hovedmodell for utforming av tariffer til kunder i distribusjonsnettet for å oppnå de fordeler en viss standardisering gir. Innenfor foreslått modell legger NVE opp til at nettselskapene har en viss grad av frihet i den konkrete utformingen.

Valg av modell er nærmere omtalt i kapittel 3, og forslag til endring i § 14-2 er beskrevet i kapittel 5.2.

### 2.4 Lik tariffmodell for alle kundegrupper

Det har lenge vært krav om timemåling av kunder med forventet årlig forbruk over 100 000 kWh, og disse kundene avregnes i all hovedsak et effektledd i tariffen i dag. Ofte benyttes én til tre av kundens høyeste effektutak (kWh/h) innenfor en periode på én eller flere måneder som avregningsgrunnlag, men variasjonene er mange.

Selv om effektmålte næringskunder som regel er færre enn energimålte kunder i antall, kan levert energi til effektmålte næringskunder likevel utgjøre en betydelig andel av nettselskapets overførte energimengde.

NVE ønsker i utgangspunktet å gå bort fra tradisjonell kundegruppeinndeling ved fastsettelse av tariffer. Hvilket formål strommen benyttes til, har i utgangspunktet ingen betydning for hva kunden skal betale i nettleie. Alt uttak skal tilbys ikke-diskriminerende og objektive tariffer og vilkår. Ulikheter innad i kundegrupper kan være vel så store som på tvers av kundegrupper, selv om kundegruppene i snitt har karakteristiske særtrekk. Når alle kunder har timemåling, er det måledataene som bør ligge til grunn for kundens tariffer, og ikke et gjennomsnitt av alle kunder innenfor samme kundegruppe.

Av hensyn til forbrukerne er det likevel slik at enkle tarifer bør tillegges større vekt for forbrukerkunder enn for næringskunder. Tariffer for forbrukerkunder som gir gode insentiv til forbruksutjevning og rimelig fordeling av nettkostnader bør imidlertid også kunne benyttes for næringskunder, all den tid annen tariffutforming for disse kundene ikke gir bedre utnyttelse eller mer effektiv utvikling av nettet.

NVE legger til grunn at det vil være kostnadsbesparende om alle uttakskunder i distribusjonsnettet avregnes etter samme tariffmodell. Vår vurdering er at kundebonnementer basert på etterspurt kapasitet også er egnet for tariffering av næringskunder. For å gi et mer presist prissignal kan det være aktuelt at næringskunder i større grad tilbys tidsdifferensierte priser. Ulike priser avhengig av sesong og tid på

---

\(^{10}\) Elhub er en datahub som skal omfatte alle måledata for strøm i Norge. Elhub er planlagt lansert innen utgangen av oktober 2018.

\(^{11}\) NVE Rapport 10:2017
døgnet kan være spesielt viktig for næringskunder som har høyest forbruk i andre perioder enn i de timene i året nettet er høyest belastet\(^\text{12}\). Det samme gjelder næringskunder som lett kan tilpasse eller flytte forbruket noen timer. Eksempel på næringskunder med atypisk forbruksprofil kan være bakeri, veksthusbedrifter, jordbruksrelatert sesonguttag som korntørke og vanningsanlegg, og i flere tilfeller også hurtiglastasjoner for elbiler.

NVE ber om innspill på om tariffmodellen bør være lik for alle uttakskunder i distribusjonsnettet, også kunder som i dag er effektmålte. Og om det bør stilles krav om å tilby tidsdifferensierte tariffer til næringskunder.

### 2.5 Gjennomfakturering

Det følger av energilovforskriften § 4-5 annet ledd at fakturering skal utføres på en måte som bidrar til at sluttbuker bevisstgjøres sitt forbruk av elektrisk energi. Dette er gjentatt i forskrift om måling, avregning, fakturering av nettjenester og elektrisk energi, nettselskapets nøytralitet mv. (heretter omtalt som måle- og avregningsforskriften) § 1-1 fjerde ledd, der det heter at reglene for fakturering av nettjenester og elektrisk energi har som formål å bevisstgjøre forbrukere om sitt strømforbruk.

Ved felles fakturering av nettjenester og elektrisk energi, skal fakturering av elektrisk energi skje både etter de bestemmelser som gjelder fakturering av nettjenester, og de bestemmelser som gjelder fakturering av elektrisk energi\(^\text{13}\). Kraftleverandører plikter ved felles fakturering å gjengi presentasjonen av nettleien på sin faktura, slik denne er spesifisert fra nettselskapet. Det vil si at de ulike leddene i tariffen skal presenteres på faktura til kunde.

Etter måle og avregningsforskriften §7-1a annet ledd skal nettjenester til forbrukere faktureres etterskuddvis.

### 2.6 Tidspunkt for ikrafttredelse

NVE legger opp til at endringer i regelverket for utforming av tariffer skal tre i kraft 1. januar 2019, 1. januar 2021 og 1. januar 2022. Virkningstidspunkt til de enkelte bestemmelsene er angitt under det enkelte forslaget. NVE legger opp til at ny tariffmodell innføres fra 1. januar 2021, slik at nettselskapene og kunde kan nyttiggjøre seg av måledata fra AMS målerek før innføringen. Vi ønsker innspill på om ny tariffmodell bør innføres fra 1. januar 2020.

### 3 Modellvalg

NVE har fått mange innspill på valg av modell, både gjennom høring av ulike modeller i 2015 og i møter med bransjen. Følgende modeller har vært drøftet i tidligere høringsnotat og oppsummeringen av konsepthøringen\(^\text{14}\):

- Sikringsstørrelse

\(^{12}\) Med topplast eller topplasttime menes den eller de timene i året nettet er høyest belastet.

\(^{13}\) Forskrift om måling, avregning, fakturering av nettjenester og elektrisk energi, nettselskapets nøytralitet mv. § 7-3

- Målt effekt i definerte perioder (kr/kW)
- Abonnert effekt (kWh/h) med muligheter for overforbruk eller ved bruk av bryterfunksjonalitet i AMS måleren
- Tidsavhengig energiledd (kWh/h) med høyere pris i timer med forventet høy last (time of use)

Tabellen under gir en forenklet oppstilling av tariffledd i de ulike modellene.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Fastledd</th>
<th>Energiledd</th>
<th>Effektbasert tariffledd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sikringsstørrelse</td>
<td>Ja, differensiert etter kundenes hovedsikring kr per kW</td>
<td>Ja, marginaltapsbasert øre per kWh</td>
<td>Nei, kun differensiert fastledd avhengig av muligheten til å ta ut effekt (hovedsikring)</td>
</tr>
<tr>
<td>Målt effekt</td>
<td>Ja, kundespesifikke kostnader kr per kunde</td>
<td>Ja, marginaltapsbasert øre per kWh</td>
<td>Ja, avregnes etter topplasttimen eller kundemaks per</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• år</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• måned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• døgn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kr per kWh/h</td>
</tr>
<tr>
<td>Abonnert effekt</td>
<td>Ja, differensiert etter kundens abonnement kr per kWh/h</td>
<td>Ja, marginaltapsbasert øre per kWh</td>
<td>Ja, ivaretas dels ved differensiering av fastleddet og dels ved høyere pris for uttak utover abonnement (overforbruksledd)</td>
</tr>
<tr>
<td>Time of use</td>
<td>Ja, kan være behov for differensiering i kundegrupper kr per kunde</td>
<td>Ja, høyere energiledd i perioder med forventet høy last</td>
<td>Nei, ivaretas ved differensiering av energiledd</td>
</tr>
</tbody>
</table>
3.1 Modeller NVE vurderer som mindre egnet

NVE vurderer at modellene basert på sikringsstørrelse og bruk av bryterfunksjonalitet i AMS måleren, ikke er velegnet som tariffmodell i distribusjonsnettet. Årsaken er at direktoratet for samfunnssikkerhet og beredskap (DSB), som nasjonal sikkerhetsmyndighet, har vurdert at bruk av kundens fysiske installasjon til å fastsette kundens nettleie kan være i strid med forskrift om elektriske lavspenningsanlegg § 16.

Videre vurderer NVE at bruk av kundens målte forbruk i nettets topplasttime, ikke er egnet for tarifftering av sluttkunder i distribusjonsnettet. Siden denne timen i liten grad kan forutsies av kundene, vil de også i liten grad være i stand til å påvirke egen regning. At kundens årskostnad i stor grad blir stort av kundens forbruk i én av årets 8760 timer, kan fort gi utilstekte fordelingsvirkninger og vil i mange tilfeller ikke oppfattes som rimelig av kundene.

3.2 Aktuelle modeller

Modellene NVE mener er aktuelt å vurdere nærmere er abonnert effekt, målt effekt avregnet etter kundens høyste forbruk eller time of use. NVE mener egnet modell skal ha potensial til effektivt å kunne redusere forbruket i de timene i året det samlede forbruket er høyest. Grunnen er at reduksjon i forbruket når dette er høyt, bidrar til at investeringer i nettanlegg kan utsettes eller unngås når dette er samfunnsøkonomisk lønnsomt. Reduserte eller utsatte investeringer vil over tid gi kundene lavere samlet nettleie, alt annet likt.

I distribusjonsnettet dimensjoneres nettet i liten grad av enkeltkunders effektbelastning, men av samlagringen av alle kundene innenfor et område. Skal tariften ha potensial til å redusere topplaststundene, er det viktig at flest mulig kunder får prissignal fra tariffen som gir insentiv til å redusere forbruket når det samlede forbruket er høy.

Ettersom kundens uttak under nettets topplasttime ikke er egnet for fastsettelse av kundens nettleie i distribusjonsnettet, samtidig som det er viktig å gi flest mulig kunder prissignal nettopp i denne timen, må egnet tariffmodell avregne kundens forbruk i flere timer. Flere avregningstimer fører til at flere kunder oftere får prissignal om forbruksreduksjon. På den ene siden øker flere avregningstimer sannsynligheten for å gi kundene prissignaler i timer nettet er høy belastet. På den andre siden øker sannsynligheten for at kundene også får prissignal om forbruksreduksjon når det er god kapasitet i nettet, noe som kan gi et samfunnsøkonomisk tap ved unødvendige kundetilpasninger. Egnet tariffmodell må være treffsikker med hensyn til å gi prissignal til flest mulig kunder i de timene nettet er høyest belastet. Nettet er høyest belastet når mange kunder bruker mye, og ikke når enkeltkunder har sine forbrukstopper.
3.2.1 Abonnert effekt


Tanken bak abonnementsmodellen er å gi kundene prissignal om å redusere forbruket i de timene forbruket er spesielt høyt. På kort sikt har kundene økonomisk insentiv til å tilpasse seg, slik at forbruket holdes innenfor abonnementet. På lengre sikt har kundene økonomisk insentiv til å gjøre tiltak som gjør det lønnsomt å velge et lavere abonnement. Dette kan redusere eller utsette behovet for investeringer i nettet.

Nettselskapet fastsetter priser på abonnement og overforbruk slik at det vil være lønnsomt for kundene å ha overforbruk et gitt antall timer per år. I timer med overforbruk gis kundene prissignal om forbruksreduksjon sammenlignet med andre timer. Kundene velger abonnement på bakgrunn av eget historisk timeforbruk over året. De fleste kunder har høyere forbruk på kalde vinterdager enn resten av året, og det vil være nettopp disse timene kundenes forbruk vil overstige valgt abonnement. Derfor er det i all hovedsak timene nettet er høyt belastet at kundene får prissignal om utjevning av forbruket gjennom overforbruksleddet, og i mindre grad i sommerhalvåret. Dette vurderer NVE som en vesentlig styrke ved modellen abonnert effekt.

Lav pris på overforbruk vil føre til at mange kunder velger et abonnement som igjen fører til at de får flere timer med overforbruk. Dette gir flere kunder prissignal om forbruksreduksjon i topplasttiden, men samtidig vil også flere kunder få prissignal om å redusere forbruket i andre timer. Spesielt for kunder med atypisk forbruksprofil, vil prissignaler fra overforbruksleddet gi insentiv til å redusere forbruket selv om det er god kapasitet i nettet. Kundetilpasninger uten nytte for nettet kan representerere et samfunnsøkonomisk tap. Dersom nettselskapet velger å prise overforbruk høyere på tidspunkt nettet typisk er høyt belastet, vil prissignalene om forbruksreduksjon i disse timene styrkes. Tilsvarende, kan lav pris på overforbruk i timer hvor det er god kapasitet i nettet, bidra til mindre kundetilpasninger når det ikke er behov for dette i nettet. Nytten av å kombinere abonnementsmodellen og time of use for forbruk utover abonnementet (overforbruk) må imidlertid vurderes opp mot økt kompleksitet i modellen.

Abonnert effekt gjør det mulig å avregne kundens tarifkontokostnad time for time. Dette bidrar til at tariften i minst mulig grad forstyrer prissignaler kunden får fra kraftmarkedet. Dette er nærmere omtalt i beskrivelsen av modellen målt effekt under. I abonnementsmodellen får kunden prissignal fra overforbruksleddet bare i de timene forbruket er over abonnementet, og bare på den delen av forbruket som er over abonnementet. Dermed blir ikke overforbruksprisen heftende for kunden over en lengre periode, samtidig som én time overforbruk ikke vil svekke kundens økonomiske insentiv til å unngå overforbruk i senere timer.
Inntekter fra kundenes abonnementer står for mesteparten av inntekten gjennom tariffen, mens inntekter fra overforbruksleddet og energileddet utgjør en mindre andel. Selv om kundene har en viss fleksibilitet til å endre abonnement etter egne preferanser og behov, bidrar dette til forutsigbare inntekter for nettselskapene og tilsvarende forutsigbare kostnader for kundene. Også overforbruksleddet vil være forutsigbart for kundene, da de kan være trygge på at dette slår inn kun når forbruket går over abonnementsgrensen.

Abonnementsstørrelsen er et uttrykk for forventet etterspørsel etter kapasitet. Vi vurderer det som relevant å fordele kostnader, som ikke dekkes gjennom energileddet eller gjennom overforbruksleddet, på bakgrunn av kundens forventede etterspørsel etter kapasitet. Grunnen er at kostnaden for nettet ved at kunden har mulighet til å bruke det, er nesten like høy som kostnaden ved at kunden faktisk gjør bruk av nettet. Kundene har likevel mulighet til å påvirke egne kostnader når de velger eller endrer abonnement.

Kunder vil ofte dra kjensel på prinsippet om betaling for tilgang på den ene siden og bruk på den andre. At prisen på tilgang avhenger av hvilket abonnementet kunden velger, er kjent gjennom betalingsordninger for andre tjenester som mobil, bredbånd og ulike forsikringsordninger. Fokusgruppeundersøkelsen blant forbrukere tyder på at abonnert effekt oppfattes som den mest forståelige av de skisserte modellene.

For alle modeller må det forventes omleggingskostnader. Så langt NVE kjenner til, kan dagens avregningssystemer håndtere modellen med abonnert effekt. Det må imidlertid påregnes administrative kostnader til å fastsette og veilede kundene ved valg av abonnement basert på deres historiske timeforbruk.

### 3.2.2 Målt effekt

Tariffer basert på målt effekt, det vil si kundens høyeste gjennomsnittlige effektuttak per time, benyttes i dag i stor utstrekning for kunder med forventet årlig forbruk over 100 000 kWh.

Modellen innebærer at kundene avregnes tre ledd i tariffen. Et fastledd, et marginaltapsbasert energiledd og et effektledd. Hoveddelen av kundenes kostnad til nettleie legges i denne modellen til effektleddet. Effektleddet vil både gi prissignal om langsiktige nettkostnader, og også være fordelingsnøkkel for kostnader som ikke hentes inn gjennom fastleddet eller energileddet i tariffen. Kostnadsfordelingen gjennom effektleddet er basert på hvor mye nettkapasitet kundene faktisk har brukt i timen der effektuttaket har vært høyest innenfor avregningsperioden.

Det er viktig at flest mulig kunder har insentiv til å redusere forbruket i de timene nettet er høyest belastet, for at tariffen skal ha potensial til å redusere nettets topplast. Jo lengre tidsperiode med én avregningsstime, dess mindre sannsynlig er det at kundens høyeste forbruksstunde inttreffer i netnets topplasttime. Månedlig avregningsperiode gir lite sammenfall mellom enkeltkundens høyeste forbrukstid og nettets topplasttime i timedata NVE har studert. Det kan likevel være rasjonelt for en kunde å redusere

---

15 I datasettet NVE har studert og med de prisene vi har fastsatt er fordelingen på de ulike tariffleddene følgende: Fastledd (abonnement) 73 %, overforbruksledd 11 % og marginaltaps 16 %.
16 NVE Rapport 86:2016
17 Timedata fra 500 kunder hos Ringeriks-Kraft Nett
forbruket i alle timer kundens forbruk er høyt, fordi kunden ikke med sikkerhet kan vite hvilken time som er den høyeste før avregningsperioden er over.

Kundene bør raskt kunne nyte godt av reduksjon i egen effektbelastning, og høy forbrukstopper bør ikke bli heftende for kundene over lang tid. Dersom kundens høyeste effektbelastning avregnes over en lang tidsperiode, for eksempel en måned, vil kunder med svært kort brukstid kunne få høye kostnader. Eksempel på dette er hurtiggadestasjoner for elbiler som er lokaliseret i distriktene med gjennomgående lav brukstid. Disse kan gjøre at forbrukstoppe på andre tidspunkt enn nettets topplast. Så langt NVE kjenner til, har flere netselskap akseptert en praksis hvor hurtiggadestasjoner for elbiler tilknyttes med flere målepunkt for å holde uttaket innenfor effektgrensen netselskapet har satt for energimålt næring. Andre eksempel på forbruk med svært kort brukstid som ikke bruker nettet når dette er høyt belastet er korntørker og vanningsanlegg.

I kraftmarkedet fastsettes spotprisen for hver time. Tariffer med lavere tidsoppløsning kan forstyrre prissignalene kunden får fra kraftmarkedet, fordi de også virker på kunden utover den timen de inntreffer. Det er ønskelig at kundene har insentiv til å reagere på prissignaler fra kraftmarkedet.

Egnet tariffmodell bør gjøre det mulig å gi kunden lett tilgjengelig informasjon om egen tariffkostnad relativt raskt etter forbrukstidspunktet. Dermed gis kundene bedre mulighet til å tilpasse seg tariffkostnaden også innenfor fakturaperiodene.

Av ovenfor nevnte grunner vurderer NVE at månedlig avregningsperiode for kundens høyeste effektuttak er for lang avregningsperiode for tariffering av sluttbrukere i distribusjonsnettet.

Hyppigere avregningsperioder kan bedre flere av forholdene over. Daglig avregningsperiode av kundens høyeste effektuttak vil gi kunden mulighet for informasjon om egen tariffkostnad relativt kort tid etter forbrukstidspunktet. Eventuelle høye forbrukstimer vil bare bli heftende for kunden det aktuelle døgnet, og insentiv til reduksjon av forbruk i andre timer vil eventuelt bare svekkes innenfor samme døgn.

På den andre siden vil daglig avregning av kundens høyeste effektuttak føre til at kundene oftere får prissignaler som gir insentiv til forbruksreduksjon, også når belastningen i nettet er lav og det ikke er behov for forbruksreduksjoner. Dersom netselskapet velger å tidsdifferensiere effektledet, eller å vekte høyeste effektuttak avhengig av tidspunkt, vil prissignalene i modellen bedres ved at de i større grad samviser med belastningen i nettet. Nytten av tidsdifferensiering må i så fall vurderes opp mot kostnaden ved at modellen blir mer kompleks og vanskeligere for kundene å forstå og å forholde seg til.

I modellen med avregning av kundens høyeste effektuttak per døgn, må kundene forholde seg til et effektled som kan oppleses som uforutsigbart. Grunnen er at det er usikkert om forbrukt i en time vil bli målt som topplast for perioden siden fremtidig forbruk er ukjent. Forbrukerne som detok i fokusgruppeundersøkelsen oppfattet modellen målt effekt som lite kontrollerbar og litt vanskelig å forstå. På direkte spørsmål om hvilken modell de ville foretrukket, var det i realiteten ingen som ønsket seg målt effekt. Dette er

---

18 NVE Rapport 86:2016
i sterk kontrast til bransjens innspill gjennom konsephøringen hvor målt effekt ble fremholdt førtrukket modell.

Erfaringer fra nettselskap som har innført ulike varianter av modellen målt effekt til forbrukerkunder tyder likevel på at kundene vil akseptere modellen, dersom man lykkes i kommunikasjonen og skaper forståelse for endringen. Etter en omleggingsperiode får disse nettselskapene relativt få kundehenvendelser om effektledet i tariffen. Det må påregnes forbigående økte administrative kostnader knyttet til omlegging av tariffstruktur.

3.2.3 Tidsavhengig energiledd (time of use)

Time of use innebærer at nettselskapet fastsetter noen timer med høyere energipris enn andre timer. At nettselskapene kan sette timeprisen målrettet mot de timene det erfaringsmessig er høy belastning i nettet, er en vesentlig fordel ved denne modellen. Alle kunder vil da få prissignal og insentiv til å redusere forbruket i disse timene, ikkje bare de kundene som har sitt høyeste forbruk (som ved daglig målt effekt) eller kunder som har forbruk over abonnementet (som ved abonnert effekt). Prissignalene fra et tidsavhengig energiledd vil gjelde alle kilowattimer kunden bruker i denne timen.

Dersom kostnader som i dag hentes inn gjennom energiledet i alle årets timer, kun skal hentes inn i timer med høy last, innebærer dette at prisen enten må settes svært høyt i timer med høy last, eller at mange timer må definieres som timer med høy last.

Det er også mulig å sette energiprisen i alle årets timer høyere enn den kortsiktige marginalkostnaden ved kundens energibruk, men la satsen variere mellom perioder med henholdsvis høy og lav belastning i nettet. I likhet med dagens modell, vil timer med energipris over marginalkostnaden ved kundens bruk, innebære en vridning i relative priser. Som beskrevet i høringsdokument om mulige endringer, har dette betydning blant annet for kundens valg av energibærer, kundens insentiver til produksjon bak egen måler, investering i tiltak for forbruksreduksjon og for flytting av forbruk. Å fordele kostnader som ikke er energirelaterte gjennom energiledet, innebærer at kunder som bruker mye energi betaler en større andel av kostnadene sammenlignet med kunder som bruker lite energi. Kunder som bruker lite energi kan likevel ha like stort behov for kapasitet i nettet.

Alternativt kan større deler av nettselskapenes inntektsbehov legges over på fastledet i tariffen. Høye fastled vil av rimelighetshensyn skape behov for differensiering av tariffen mellom ulike kundegrupper. Det er flere måter å differensiere fastledet i tariffen på. I henhold til gjeldende regelverk kan dette gjøres etter objektive og kontrollerbare kriterier som er basert på relevante nettoforhold. NVE foreslår i kapittel 5.2 at fastledet i tariffen differensieres på bakgrunn av kundeabonnementer.

Når energiledet settes høyere i perioder med høy belastning i nettet, typisk kalde vinterdager, vil nettselskapenes tariffintekt i større grad avhenge av dette forbruket som kan variere betydelig fra år til år avhengig av utetemperatur. Dette kan gi større svingninger i tariffintektet i forhold til i dag, som nettselskapene må håndtere gjennom deres mer-/mindreinntekt.

Time of use vurderer NVE som intuitivt lett å kommunisere til kundene, og også forholdsvis lett for kundene å forstå og forholde seg til fordi prisingen knytter seg til

---

19 NVE Høringsdokument 3:2015
energi (kWh). Parallellen til rushtidsavgifter blir spesielt synlig i denne modellen. Forbrukerne som deltok i fokusgruppeundersøkelsen hørte om at denne modellen ser ut til å måtte gi økt regning for de som har vanlige «A4-liv», ettersom alt forbruk i rushtiden avregnes en høyere pris.

Enhver omlegging av tariffen vil gi forbigående økning i administrative kostnader. Fordi modellen er en energitariff som har vesentlige likhetstrekk med dagens tariffrustuktur, antas ikke modellen å gi vesentlige økninger i administrative kostnader.

### 3.2.4 Regneeksempler

På bakgrunn av måledata fra 500 kunder hos Ringeriks-Kraft Nett har NVE gjort beregninger for å studere virkningen av tre ulike tiltak hos en husholdningkunde i de tre tariffmodellene beskrevet over. Med et års måledata fra én kunde i datasettet og tilfeller utfornet for å gi lik inntjening uavhengig av tariffmodell, har forbruket til kunden blitt justert som om det var blitt installert et solcelleanlegg, en bergvarmepumpe eller en elbil.

Eksempelkunden er valgt fordi denne har tilnærmert lik årskostnad med alle tariffmodellene. På denne måten er det lettere å illustrere effekten av de ulike tiltakene med forskjellige tariffmodeller. Eksempelkunden er en større husholdning med et årsforbruk på 22 300 kWh og et maksimalt effektuttak på 9 kWh/h.

Forbruksprofilene som er brukt i beregningene er gjennomsnittsprofiler og inneholder en del usikkerheter. For eksempel har ikke solprofilen overskyede dager eller spesielt solrike dager, men et jevnt, tynt gjennomsnittsskydekke hver dag hele året. Elbilen lades like mye hver gang den lader. I virkeligheten vil disse tiltakene virke på enkelkundens forbruk. Forbruket på enkeltkunders forbruk time for time kunne være ganske annerledes med større toppene og bunner.

Tariffmodellenes virkninger avhenger både av den nærmere utformingen av leddene i tariffen og karakteristika ved den enkelte kunde. Beregningene gir likevel en illustrasjon på hvordan kundens årskostnad påvirkes av ulike teknologivalg og bruksmønster med de alternative tariffmodellene.

#### 3.2.4.1 Tariffer

Prisene i tariffmodellene er satt slik at de gir lik total inntjening på datasettet som det energitariffen gir. I tillegg er fastleddene fastsatt slik at minimumsprisen er lik i alle tariffmodellene.

Regneeksemplene ser på nettselskapenes inntjening og er ikke medregnet mva. og forbruksavgift, da disse vil være de samme, uansett modell. Sammen med energiprisen vil forbruksavgiften føre til at den reelle utgiften ved å lade elbil vil være større, mens solceller og bergvarmepumpe vil gi større besparelse enn regneeksemplene viser, uavhengig av modellvalg.

### Energitariff:

Det er tatt utgangspunkt i den vektede gjennomsnittstariffen for husholdningskunder i Norge pr. november 2017\(^\text{20}\).
Målt effekt:
Det er benyttet en målt effekt modell med avregning av kundens høyeste effektuttak per døgn. Energileddet er satt lik marginaltapskostnaden og effektleddet er fastsatt slik at inntekten for hele datasettet blir den samme som med energitariffen brukt ovenfor.

<table>
<thead>
<tr>
<th>Fastledd</th>
<th>Energiledd</th>
<th>Effektledd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1749 kr/år</td>
<td>19,4 øre/kWh</td>
<td></td>
</tr>
</tbody>
</table>

Time of use:
I eksempelet er modellen utformet slik at alle kostnader utover fastleddet legges på energileddet. Energileddet differensieres, slik at prisen om sommeren er 80 % av prisen om vinteren og pris på dattid hverdag vinter er 250 % av pris vinter. Deretter settes pris for vinter slik at inntekten for hele datasettet blir den samme som med energitariffen ovenfor.

Vinter er definert fra starten av november til og med mars. Her er det definert tre ulike prisklasser:

<table>
<thead>
<tr>
<th>Fastledd</th>
<th>Energiledd</th>
<th>Vinter hverdag kl. 6-20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sommer</td>
<td>Vinter</td>
<td>Vinter hverdag kl. 6-20</td>
</tr>
<tr>
<td>1749 kr/år</td>
<td>12,2 øre/kWh</td>
<td>15,2 øre/kWh</td>
</tr>
</tbody>
</table>

Abonnert effekt:
Abonnert effekt har flere frihetsgrader enn de andre modellene. Overforbruksprisen er satt til 1 kr/kWh/h. Modellen er deretter avstemt slik at de minste kundene møter samme faste årlige kostnaden som i de andre modellene. Fastleddet er 1060 kr og dette gir en abonnementspris på 689 kr/kWh/h per år. Med minste abonnement på 1 kWh/h betyr det at kundene møter en årlig minimumskostnad på 1749 kr, likt som i de andre modellene. I snitt har kundene 670 timer med overforbruk. Eksempelkunden har et abonnement på 5 kWh/h.

<table>
<thead>
<tr>
<th>Fastledd + abonnement</th>
<th>Energiledd</th>
<th>Overforbruksledd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1060 kr + 689 kr/kWh/h per år</td>
<td>5 øre/kWh</td>
<td>1 kr/kWh/h</td>
</tr>
</tbody>
</table>
3.2.4.2 Scenarioer
De ulike tariffmodellene gir eksempelkunden med årlig forbruk på 22 300 kWh og maksimalt effektuttak på 9 kWh/h, følgende årlige tariffkostnad:

<table>
<thead>
<tr>
<th>Tariffmodell</th>
<th>Årlig kostnad til nettleie (årsøkostnad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energitariff</td>
<td>6073</td>
</tr>
<tr>
<td>Time of use</td>
<td>6213</td>
</tr>
<tr>
<td>Målt effekt</td>
<td>5922</td>
</tr>
<tr>
<td>Abonnert effekt</td>
<td>6085</td>
</tr>
</tbody>
</table>

Prisene er satt slik at alle tariffmodellene gir lik inntjening over hele datasettet. Det vil si at en gjennomsnittskunde vil ha samme årsøkostnad i alle modellene. Fordi hver modell vektlegger ulike kriterier ulikt, vil enkeltkunder kunne ha variasjoner i kostnaden til nettleie på tvers av modellene.

Elbil

Profilen i dette eksemplet er en elbil som lader hver dag på en 16 A kurs. Total ladeenergi på et år er 2 940 kWh som innebærer en omtrentlig kjørelengde på 14 700 km. Dette tilsvårer gjennomsnittlig kjørelengde for elektriske personbiler i 2016.

I eksempelet uten styring lader elbilen ved 3,5 kW i 2 timer og 20 min hver dag. Ladingen starter kl. 17:40 og varer frem til kl. 20. Dette øker kundens maksimale effektuttak fra 9 kWh/h til 12,4 kWh/h.

Det andre scenarioet er en enkel form for styring som fordeler ladingen jevnt gjennom natten når øvrig forbruk er lavt. Her lades elbilen med 1,34 kW fra midnatt til kl. 06 hver dag. Totalt energiforbruk er det samme som ved lading uten styring, men kundens maksimale effektuttak forblir 9 kWh/h, det samme som uten elbil.

Totalt lader elbilen 2 940 kWh, som øker marginaltapskostnaden med 147 kr.

Med time of use tariff vil ladingen på hverdager om vinteren bli utsatt for høy pris, mens helgeladingen vil møte den normale vinterprisen. Over året vil mer enn halvparten av ladingen foregå på sommeren hvor det er relativt lav pris uavhengig av ukedag.

Lading av elbil på ettermiddagen vil føre til at kunden får sitt høyeste effektuttak i én av disse timene, de fleste dager. Denne timen danner avregningsgrunnlaget for kundens effektledde i modellen med daglig målt effekt.

Ved lading på ettermiddagen i abonnert effekt-modellen vil omtrent halvparten av ladeenergien bli overforbruk dersom abonnementet ikke endres. Uten styring fører elbilen til nok overforbrukstimer til at abonnementet bør justeres opp til 6 kWh/h. Med styring gir abonnementet med 5 kWh/h fremdeles lavest nettleie over året for kunden.

<table>
<thead>
<tr>
<th>Tariffmodell</th>
<th>Årsøkostnad</th>
<th>Differanse fra utgangspunkt</th>
</tr>
</thead>
</table>

https://www.ssb.no/klreg/
Solceller

Eksempelet med solceller tar utgangspunkt i et 7 kW solcelleanlegg installert i Oslo. Dette er et anlegg som man typisk kan finne på taket til større eneboliger. Årspanningsjonen er på 6 440 kWh, og anlegget påvirker ikke kundens maksimale effektuttak.

Solceller produserer mest i sommermånedene, mens strømforbruket er høyest om morgenen og om kvelden i vintermånedene. 12 % av produksjonen fra kundens solceller kommer midt på dagen i vintermånedene.

Energien levert av solproduksjonen reduserer marginaltapskostnaden med 322 kr. Med målt effekt reduseres i tillegg kundens maksimale effektuttak en del sommerdager.

Med abonnert effekt reduserer egenproduksjonen kun et fåtall timer med overforbruk. Besparelsen er for det meste marginaltapskostnader. Installasjon av solceller påvirker ikke hvilket abonnement eksempelkunden bør velge.

<table>
<thead>
<tr>
<th>Tariffform</th>
<th>Årskostnad</th>
<th>Differanse fra utgangspunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energitariff</td>
<td>5158</td>
<td>-915</td>
</tr>
<tr>
<td>Time of use</td>
<td>5451</td>
<td>-763</td>
</tr>
<tr>
<td>Målt effekt</td>
<td>5406</td>
<td>-516</td>
</tr>
<tr>
<td>Abonnert effekt</td>
<td>5714</td>
<td>-371</td>
</tr>
</tbody>
</table>

Bergvarmepumpe

NVE har stipulert et oppvarmingsbehov for eksempelkunden, for å simulere hvordan installasjon av bergvarmepumpe påvirker kundens forbruksprofi. Dette ble gjort ved å bruke temperaturdata fra måleperioden og gjøre antagelser om husets størrelse basert på forbruket. Romvarmebehovet ble deretter delt på tre for å reflektere varmepumpens virkningsgrad. Total reduksjon i energibehov med bergvarmepumpe er 5 600 kWh, og kundens maksuttak reduseres fra 9 kWh/h til 7,53 kWh/h.

Varmepumpen reduserer marginaltapskostnaden med 280 kr.
Mesteparten av oppvarmingsbehovet kommer på dagen om vinteren. Dette er timer hvor time of use tariften har høyest pris.

Hele vinteren vil varmepumpen redusere kundens daglig høyeste målte effektuttak. Dette er i mindre grad tilfelle om sommeren.

I abonnert effekt modellen vil varmepumpen redusere forbruket i overforbrukstimerne. Varmepumpen vil også redusere effektuttaket i andre timer så mye at det er økonomisk lønnsomt for kunden å redusere abonnementet fra 5 kWh/h til 4 kWh/h.

<table>
<thead>
<tr>
<th>Tarifmodell</th>
<th>Årskostnad</th>
<th>Differanse fra utgangspunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energitariff</td>
<td>4987</td>
<td>-1086</td>
</tr>
<tr>
<td>Time of use</td>
<td>5005</td>
<td>-1208</td>
</tr>
<tr>
<td>Målt effekt</td>
<td>5186</td>
<td>-736</td>
</tr>
<tr>
<td>Abonnert effekt</td>
<td>5005</td>
<td>-1080</td>
</tr>
</tbody>
</table>

Figuren under gir en samlet oversikt over hvordan endringene i kundens årlige tariffkostnad endrer seg i ulike tariffmodeller som følge av ulike tiltak hos eksempelkunden.

**Figur 2 Endring i kundens nettleie ved ulike tiltak i ulike tariffregimer**

### 3.2.5 NVEs forslag til abonnert effekt

Alle modeller har noen gode, og noen mindre gode egenskaper. Ved valg av modell har NVE måttet balansere ulike hensyn. NVE har vurdert hvor egnet de ulike modellene er til å oppnå målene for utforming av tariffer, jf. kapittel 2.1, samt administrative kostnader ved modellene. I tillegg har NVE vektlagt at samspillet med kraftmarkedet tilsier at
tariffene bør kunne avregnes basert på samme tidsoppløsning som i kraftmarkedet for øvrig.

NVEs vurdering er at modellen time of use alene er lite egnet som tariffmodell i distribusjonsnettet. Årsaken er at modellen byr på de samme utfordringer som dagens energitariff, forutsatt at energileddet i alle timer også skal dekke kostnader utover marginaltapskostnaden. Alternativet er å sette fastleddet høyere, som da skaper behov for å differensiere dette mellom kundegrupper. I kombinasjon med modellene målt effekt eller abonnert effekt, mener NVE time of use kan være et godt virkemiddel for mer presise prissignal. Eventuell tidsdifferensiering må imidlertid veies opp mot økt kompleksitet.

NVEs vurdering er at modellen abonnert effekt er mer treffsikker til å gi mange kunder prissignal når nettet er høyt belastet, og å gi få kunder prissignal når det er god kapasitet i nettet. Prinsippet om at kunden selv kan velge abonnement, ivaretar etter vår vurdering en rimelig fordeling av nettkostnadene, uten at modellen blir for kompleks. Modellen abonnert effekt gir kundene mindre usikkerhet knyttet til prissignalet enn i modellen målt effekt, fordi kundene vet at overforbruksleddet slår inn når forbruket er over valgt abonnementsgrense.

NVEs vurdering er at modellen målt effekt basert på kundens døgnmaks er mindre treffsikker for å gi mange kunder prissignal når belastningen i nettet er høy, sammenlignet med modellen abonnert effekt. For kundene er det større usikkerhet knyttet til prissignalet for målt effekt enn for abonnert effekt. Årsaken er at fremtidig forbruk fortsatt er ukjent og kundene kan være usikre på om forbruket i én time vil bli timen med høyest forbruk dette døgnet. NVE vurderer at modellen målt effekt basert på kundens døgnmaks, i mindre grad bidrar til å nå målene med utforming av tariffer som beskrevet i kapittel 2.1, sammenlignet med modellen abonnert effekt.

Forslag til konkret utforming av abonnementsmodell er nærmere beskrevet i kapittel 5.2 forslag til endringer i § 14-2.
4 Forslag til endring av kapittel 13 
Generelt om tariffer

4.1 Prinsipper for utforming av punkttariffer §13-1

Prinsipper for utforming av punkttariffer fremgår av forskrift om kontroll av 
nettverksomhet § 13-1 bokstav a) til h).

Gjeldende § 13-1 lyder:

§ 13-1 Prinsipper for utforming av punkttariffer

Alle nettselskapene er ansvarlige for at det utarbeides tariffer som er punktbaserte 
etter følgende prinsipper:

a) tariffene skal refereres tilknytningspunktene.

b) avtale med nettselskapet i tilknytningspunktet skal gi adgang til hele netsystemet og 
kraftmarkedet.

c) nettselskapet plikter å tilby alle som etterspør nettjenester ikke-diskriminerende og 
objektive punkttariffer og vilkår.

d) tariffene skal utformes slik at de i størst mulig grad gir signaler om effektiv utnyttelse 
og effektiv utvikling av nettet.

e) Tariffene kan differensieres etter objektive og kontrollerbare kriterier basert på 
relevante nettforhold.

f) Tariffene skal fastsettes uavhengig av avtaler om kraftkjøp/kraftsalg.

g) Tariffene skal gi nettselskapet inntekter til dekning av kostnader innenfor tildelt 
inntektsramme, kostnader i overliggende nett, innbetalt eiendomsskatt og lovpålagt 
innbetaling til energifond.

h) Den enkelte boenhet eller fritidsbolig skal måles og avregnes hver for seg.
4.1.1 Forslag til endring i § 13-1

§ 13-1 Prinsipper for utforming av punkttariffer

Alle nettselskapene er ansvarlige for at det utarbeides tariffer som er punktbaserte etter følgende prinsipper:

a) tariffene skal refereres tilknytningspunktene.

b) avtale med nettselskapet i tilknytningspunktet skal gi adgang til hele nettsystemet og kraftmarkedet.

c) nettselskapet plikter å tilby alle som etterspør nettjenester ikke-diskriminerende og objektive punkttariffer og vilkår.

d) tariffene skal utformes slik at de i størst mulig grad gir signaler om effektiv utnyttelse og effektiv utvikling av nettet.

e) tariffene kan differensieres etter objektive og kontrollerbare kriterier basert på relevante nettforhold.

f) tariffene skal fastsettes uavhengig av avtaler om kraftkjøp/kraftsalg.

h) Den enkelte boenhet eller fritidsbolig skal måles og avregnes hver for seg, målte og stipulerte timeverdier i Elhub skal benyttes til avregning av tariffer

i) den enkelte boenhet eller fritidsbolig skal måles og avregnes hver for seg.

4.1.2 NVEs kommentar til endringer i bokstav h)

Etter innføring av Elhub vil måleverdier og kundeinformasjon som benyttes til måling og avregning være samlet i Elhub. For kunder uten timemåling, skal avregningsansvarlig stipulere timefordelt uttak. NVE foreslår krav om å benytte målte og stipulerte timeverdier i Elhub til avregning av tariffer. Bestemmelsen er foreslått tatt inn som bokstav h) i § 13-1. Gjeldende bokstav h) flyttes og blir ny bokstav i).

Endringen foreslås å tre i kraft fra den tid Elhub settes i drift.

4.1.3 NVEs kommentar til ny bokstav i)

Gjeldende bokstav h) flyttes, og blir ny bokstav i). Endringen innebærer at henvisningen § 14-3 også foreslås endret fra bokstav h) til bokstav i).

Endringen foreslås å tre i kraft fra den tid endring i bokstav h) trer i kraft.

---

22 Ny § 7-5 i forskrift om måling, avregning, fakturering av nettjenester og elektrisk energi, nettselskapets näyralitet mv. som trer i kraft fra den tid NVE bestemmer.
4.2 Alminnelige regler for tariffering § 13-2
Gjeldende § 13-2 lyder:

§ 13-2. Alminnelige regler for tariffering
Tariffene for uttak og innmating av kraft skal utarbeides etter følgende grunnstruktur:

a) brukshengige tariffledd som varierer med kundens løpende uttak eller innmating av energi.
b) andre tariffledd.

4.2.1 Forslag til endringer i § 13-2

<table>
<thead>
<tr>
<th>§ 13-2. Alminnelige regler for tariffering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tariffene for uttak og innmating av kraft skal utarbeides etter følgende grunnstruktur:</td>
</tr>
<tr>
<td>a) brukshengige tariffledd som varierer med kundens løpende uttak eller innmating av energi.</td>
</tr>
<tr>
<td>b) andre tariffledd som skal dekke nettkostnader som ikke dekkes gjennom brukshengige tariffledd.</td>
</tr>
</tbody>
</table>

4.2.2 NVEs kommentar
NVE foreslår å legge til nytt annet punktum i bestemmelsens bokstav b) som erstatter gjeldende § 13-4. Forslaget innebærer ingen realitetsendring.

Endringen foreslås å tre i kraft 1. januar 2021.

4.3 Bruksavhengige tariffledd § 13-3
Gjeldende § 13-3 lyder:

§ 13-3. Bruksavhengige tariffledd
Bruksavhengige tariffledd består av energiledd og kapasitetsledd.

Energileddet skal som hovedregel fastsettes på grunnlag av marginale taksoknstader i nettet.

Nettselskapene kan fastsette kapasitetsledd slik at det skapes balanse mellom overføringsbehov og nettkapasitet. Kapasitetsleddet kan benyttes når overføringsbehovet overstiger kapasiteten i nettet.
4.3.1 Forslag om å oppheve § 13-3

§ 13-3. Bruksavhengige tariffledd

Bruksavhengige tariffledd består av energiledd og kapasitetsledd.

Energileddet skal som hovedregel fastsettes på grunnlag av marginale tapskostnader i nettet.

Nettselskapene kan fastsette kapasitetsledd slik at det skapes balance mellom overføringsbehov og nettkapasitet. Kapasitetsleddet kan benyttes når overføringsbehovet overstiger kapasiteten i nettet.

4.3.2 NVEs kommentar

NVE foreslår å oppheve bestemmelsen.

Gjeldende første ledd om hvilke tariffledd som hører inn under bruksavhengige tariffledd er foreslått opphevet. § 14-2 bokstav a beskriver hva som menes med bruksavhengige tariffledd.

Prinsippet i gjeldende annet ledd om fastsettelse av energileddet er foreslått flyttet til § 14-1 og er beskrevet i forslag til endring i §§ 14-1 og 14-2 for henholdsvis transmisjons- og distribusjonsnett.

Gjeldende tredje ledd er foreslått strøket og erstattes ikke. Kapasitetsledd er ikke omtalt andre steder i forskriften, og fjernes dermed som begrep fra forskrift om kontroll av nettvirksomhet. Anledningen til å fastsette kapasitetsledd etter denne bestemmelsen benyttes ikke av noen nettselskap. Kapasitetsbegrensninger i distribusjonsnettet prises ikke løpende i dag. Dette skyldes dels praktiske utfordringer ved å utvikle metoder som effektivt kan løse kapasitetsbegrensningene ved endret forbruk eller produksjon, samt at nettselskapene i dag investerer i ny nett- kapasitet når etterspørselen nærmer seg kapasitetsgrensen. Etter NVEs vurdering bør fremtidige løsninger for håndtering av flaskehalser i distribusjonsnettet gjøres gjennom markedsloansninger og ikke gjennom løpende tariffrering av nettet. Prismøder som benyttes for håndtering av strukturelle flaskehalser i transmisjonsnettet reguleres i forskrift om systemansvaret i kraftsystemet.

Endringen foreslås å tre i kraft 1. januar 2021.

4.4 Andre tariffledd § 13-4

Gjeldende § 13-4 lyder:

§ 13-4. Andre tariffledd

Andre tariffledd skal dekke nettkostnader som ikke dekkes gjennom bruksavhengige tariffledd.
4.4.1 Forslag om å oppheve § 13-4

§ 13-4. Andre tariffledd

Andre tariffledd skal dekke nettkostnader som ikke dekkes gjennom bruksavhengige tariffledd.

4.4.2 NVEs kommentar

NVE foreslår å oppheve bestemmelsen. Forslaget innebærer ingen realitetsendring da innholdet i bestemmelsen samtidig foreslås flyttet til nytt annet punktum i § 13-2 bokstav b.

Endringen foreslås å tre i kraft 1. januar 2021.

4.5 Informasjonsplikt § 13-5

Gjeldende § 13-5 lyder:

§ 13-5 Informasjonsplikt

Nettselskapene plikter av eget tiltak å gi andre nettselskaper den informasjon som er nødvendig for at disse skal kunne beregne egne tariffer. Informasjonen skal gis innen rimelig tid før nye tariffer trer i kraft.

Nettselskapene plikter på forespørsel og innen rimelig til å gi kunder informasjon om beregningsgrunnlaget for egne tariffer og beregningen av tariffene for de ulike kundegrupper.

Tariffer og vilkår skal finnes samlet i egen brosjyre, eller annen skriftlig informasjon, som er tilgjengelig for nettkundene.

Nettselskapene skal i rimelig tid før endring av tariffene trer i kraft informere den enkelte nettkunde om tariffendringer. Informasjonen skal inneholde en begrunnelse for tariffendringene.

Nettselskapene plikter å underrette Norges vassdrags- og energidirektorat om endringer av sine tariffer innen én uke etter at disse er vedtatt.

Ved uenighet mellom nettselskap og nettkunde om tariffer og andre overføringsvilkår, plikter nettselskapet å informere kunden om at Norges vassdrags- og energidirektorat er kontrollmyndighet etter bestemmelsen i forskrift 7. desember 1990 nr. 959 § 9-2 og om bestemmelsen i § 18-1 i denne forskrift.
4.5.1 Forslag til endringer i § 13-5

§ 13-5 Informasjonsplikt

Nettselskapene plikter av eget tiltak å gi andre nettselskaper den informasjon som er nødvendig for at disse skal kunne beregne egne tariffer. Informasjonen skal gis innen rimelig tid før nye tariffer trer i kraft.

Nettselskapene plikter på forespørsel og innen rimelig tid å gi kunder informasjon om beregningsgrunnlaget for egne tariffer og beregningen av tariffene for de ulike kundegrupper.

Tariffer og vilkår skal samles i egen brosjyre, eller annen skriftlig, og være lett tilgjengelig for nettkundene.

Nettselskapet skal legge til rette for at informasjon om nettkunders tarifffaktor per time er elektronisk tilgjengelig for nettkunden senest påfølgende døgn kl. 9.00.

Nettselskapene skal i rimelig tid før endring av tariffene trer i kraft informere den enkelte nettkunde om tariffendringer. Informasjonen skal inneholde en begrunnelse for tariffendringene.

Nettselskapene plikter å underrette Norges vassdrags- og energidirektorat om endringer av sine tariffer innen én uke etter at disse er vedtatt i rimelig tid før disse trer i kraft.

Ved uenighet mellom nettselskap og nettkunde om tariffer og andre overføringsvilkår, plikter nettselskapet å informere kunden om at Norges vassdrags- og energidirektorat er kontrollmyndighet etter bestemmelsen i forskrift 7. desember 1990 nr. 959 § 9-2 og om bestemmelsen i § 18-1 i denne forskrift.

4.5.2 NVEs kommentar til endring i tredje ledd

NVE foreslår at krav om egen brosjyre for tariffer oppheves. NVE mener det er tilstrekkelig at tariffer og vilkår finnes samlet i skriftlig informasjon som er tilgjengelig for kundene. Dagens teknologi innebærer at det kan være mer hensiktsmessig å gi kundene en samlet oversikt over nettselskapets tariffer på andre måter enn i form av en brosjyre. NVE vil presisere at alle nettselskapets tariffer skal samles, og være lett tilgjengelig for nettkundene.

Endringen foreslås å tre i kraft 1. januar 2019.

4.5.3 NVEs kommentar til endring i gjeldende fjerde ledd

Gjeldende fjerde ledd flyttes, og blir nytt femte ledd. Det foreslås ingen endringer i innhold.

Endringen foreslås å tre i kraft 1. januar 2019.
4.5.4 NVEs kommentar til nytt fjerde ledd

Gjeldende fjerde ledd flyttes, og blir nytt femte ledd. Det tas inn et nytt fjerde ledd i bestemmelsen.

I dag gis prisinformasjon om kundens tariffkostnad i all hovedsak i forbindelse med faktura, enten ved fakturering direkte fra nettselskapet eller ved gjennomfakturering. Dette er for sjelden dersom nettkundene skal ha mulighet til å tilpasse seg tariffkostnaden også innenfor fakturaperiodene.

Kundens måleverdier i kWh per time vil være tilgjengelig for utveksling gjennom Elhub innen kl. 9 døgnet etter forbruksdøgnet når Elhub settes i drift. Forslaget innebærer at nettkunders tariffkostnad per time, for hvert døgn skal være elektronisk tilgjengelig for nettkunden senest påfølgende døgn kl. 9. Informasjon om nettkundens tariffkostnad per time kan for eksempel gjøres tilgjengelig via en nettside med kundeinnlogging, eller via mobil app kunden kan laste ned.

Bestemmelsen er ikke til hinder for at andre aktører kan levere informasjonen til nettkunden, dersom kunden har samtykket til dette. Dersom nettkunden ikke får informasjonen fra andre aktører, innebærer bestemmelsen at nettselskapet skal sørge for at informasjonen er elektronisk tilgjengelig for nettkunden. NVE vil i arbeid med leverandørsentrisk markedsmodell se nærmere på ansvarsfordelingen mellom nettselskap, kraftleverandør og eventuelt Elhub når det gjelder kommunikasjon av informasjon til nettkundene om deres tariffkostnad, og om nødvendig komme med presiseringer på et senere tidspunkt.

Forslaget forutsetter daglig avregning av forbruket basert på timeverdier. Tariffutforming som gjør daglig avregning mulig, vil forenkle avregningen. Det er ikke nødvendig å hente fram timeverdier som ligger flere dager eller uker tilbake i tid for å kunne beregne kundens tariffkostnad. Mulighet for daglig avregning av tariffene åpner også for fleksibel faktureringshyppighet innenfor gjeldende minimumskrav i måle- og avregningsforskriften.

Endringen foreslås å tre i kraft 1. januar 2019.

4.5.5 NVEs kommentarer til endring i gjeldende femte ledd

Gjeldende femte ledd flyttes, og blir nytt sjette ledd.

Forslaget innebærer at det innføres samme tidsfrist for å underrette NVE ved endringer i tariffen, som for informasjon om tariffendringer til nettkundene. Gjeldende tidsfrist for rapportering til NVE har vist seg vanskelig å følge opp, samtidig som NVE i liten grad har nyttiggjort seg denne informasjonen på et tidlig tidspunkt.

NVE mener det er tilstrekkelig at nettselskapene underretter NVE om endringer i sine tariffer i rimelig tid før disse trer i kraft, og foreslår å strekke kravet om rapportering innen en uke etter at tariffene er vedtatt. Hva som anses som rimelig tid, vil avhenge av hvilke typer kunder endringen gjelder. For eksempel vil rimelig tid være kortere dersom endringen gjelder tariffer for sluttkunder, enn ved endring i tariffer for andre nettselskaper.

Endringen foreslås å tre i kraft 1. januar 2019.
4.5.6 NVEs kommentar til endring i syvende ledd
Gjeldende sjette ledd flyttes, og blir nytt syvende ledd.

Endringen foreslås å tre i kraft 1. januar 2019

5 Forslag til endring av kapittel 14 om praktisk utforming av tariffer for ordinære uttak

5.1 Utforming av tariffer for ordinære uttak i sentral- og regionalnett § 14-1

Gjeldende § 14-1 lyder:

§ 14-1 Utforming av tariffer for ordinære uttak i sentral- og regionalnettet


5.1.1 Forslag til endring i § 14-1

§ 14-1 Utforming av tariffer for ordinære uttak i sentraltransmisjons- og regionalnettet


5.1.2 NVEs kommentar

Endringene i bestemmelsen er språklige justeringer.

Begrepet «sentralnett» i overskriften og bestemmelsen erstattes med begrepet «transmisjonsnett» som følge av ny bestemmelse i energiloven § 1-5 Transmisjonsnett.

Endringer i betegnelsen på høyeste nettnivå er nærmere beskrevet i kapittel 7.

NVE foreslår ingen endring i prinsipp for beregning av marginaltapssatser. I transmisjonsnett det beregnes marginaltapssatser på bakgrunn av systembelastningen i et samlet nordisk kraftsystem. I regionalnettene tillater NVE at det tas utgangspunkt i systembelastningene i det lokale nettet, som deretter summeres med marginaltapssatsene i utvekslingspunkt mot overliggende nett. Statnets praksis er å beregne marginaltapssatser i transmisjonsnettet med ukesoppløsning, og med egne satser for dag og natt/helg.

I tråd med gjeldende § 13-5 om informasjonsplikt skal marginaltapssatser som legges til grunn for avregning av energileddet gjøres kjent for kundene i forkant. Nettelskapene kan for eksempel vise til overliggende nett sine nettsider for oppdaterte tariffer.

Endringen foreslås å tre i kraft 1. januar 2019.

5.2 Utforming av tariffer for ordinære uttak i distribusjonsnettet § 14-2

Gjeldende § 14-2 lyder:

§ 14-2 Utforming av tariffer for ordinære uttak i distribusjonsnettet

I distribusjonsnettet skal kunder uten effektavregning avregnes etter et fastledd og et energiledd, slik at:
fastleddet dekker kundespesifikke kostnader og en andel av de øvrige faste kostnadene i nettet.

energileddet dekker marginale tapskostnader og kan i tillegg dekke en andel av de øvrige kostnader som ikke innkreves gjennom fastleddet.

Kunder med effektavregning i distribusjonsnettet skal belastes fastledd, energiledd og effektledd. Fastleddet skal som et minimum dekke kundespesifikke kostnader. Energileddet skal som et minimum dekke marginale tapskostnader i nettet. Effektleddet skal baseres på kundens effektuttak i definerte perioder.

Det skal utarbeides separate tariffer for høyspent og lavspent uttak.

For lavspent uttak skal effektleddene være kvantumsdifferensierte. Disse tariffene skal utformes slik at alle kunder betaler samme pris for uttak opp til første trinn og lavere satser ved de senere trinn. Alternativt kan tariffene fastsettes på annen måte som gir tilsvarende virkning.

Netteier skal tilby tariffer med tidsdifferensiert energiledd til alle kunder i distribusjonsnettet som i forskrift er pålagt måleravlesning flere ganger i året.

5.2.1 Forslag til endring i § 14-2 første ledd
I distribusjonsnettet skal kunder uten effektavregning avregnes etter et tariffene bestå av et fastledd, og et energiledd og et overforbruksledd, slik at kunden gis insentiv til å holde seg innenfor abonnert energiuttak per time, i de fleste timer.

a) fastleddet dekker kundespesifikke kostnader og en andel av de øvrige faste kostnader i nettet.
b) energileddet dekker marginale tapskostnader og kan i tillegg dekke en andel av de øvrige kostnader som ikke innkreves gjennom fastleddet.

5.2.2 NVEs kommentar til endring i første ledd
Tariffen skal bestå av fastledd, energiledd og et nytt overforbruksledd. Kundene abonnerer på hvor mye effekt (kWh/h) de vil bruke, og betaler fastledd på bakgrunn av størrelsen på abonnementet. Kunder med forbruk innenfor abonnementet i alle timer, vil ikke få kostnader knyttet til overforbruksleddet.

Bestemmelsen gir føringar for hvordan nettelskapene skal fastsette nivået på fastleddet med trinnvis abonnementsstige og overforbruksleddet i tariffen, jf. krav til kvantumsdifferensierte abonnementstrinn i forslag til endring i annet ledd. Bestemmelsen slår fast at kundene skal gis insentiv til å holde seg innenfor abonnement effekt i de fleste timer. Tanken er at prisforholdet mellom abonnementsstrinnene og overforbruksprisen skal gi insentiv til utjevning av forbruk på tidspunkt nettet typisk er høyt belastet. For de fleste kunder vil modellen gi insentiv til utjevning av forbruk på kalde vinterdager. Om prisen på overforbruk er høy, vil kundene typisk velge høye abonnement og ha relativt få timer med prissignal fra overforbruksleddet. Om prisen på overforbruk er lav, vil kundene typisk velge lave abonnement og ha mange timer med prissignal fra overforbruksleddet. I NVEs kommentarer til endringer i sjette ledd er overforbruksleddet nærmere omtalt.

Kunder som bare bruker nettet enkelte dager eller i perioder kan ønske å abonnere på laveste trinn, og heller betale overforbruk de timene kunden benytter nettet. Nettsskapet må derfor påse at abonnementstrinn og priser er utført slik at også disse kundene bidrar til å dekke sin andel av faste kostnader i nettet. NVE legger opp til at nettselskapet fastsetter prisene slik at kundene har økonomisk insentiv til å holde forbruket innenfor abonnementet i de fleste timer. Det kan være aktuelt å gi nærmere foringer for hva som legges i «de fleste» timer. NVE ønsker innspill på dette.

NVE vil presisere at marginaltapsbasert energiledd, overforbruksledd og forbruksavgift skal framkomme hver for seg på informasjonen som gjøres tilgjengelig for kunde etter § 13-5 fjerde ledd, og også på fakturagrunnlaget.

Endringen foreslås å tre i kraft 1. januar 2021.

### 5.2.3 Forslag om å oppheve gjeldende § 14-2 annet ledd

| Kunder med effektavrengning i distribusjonsnettet skal belastes fastledd, energiledd og effektledd. Fastleddet skal som et minimum dekke kundespesifikke kostnader. Energileddet skal som et minimum dekke marginale tapskostnader i nettet. Effektledet skal baseres på kundens effektuttak i definerte perioder. |

### 5.2.4 NVEs kommentar

NVE foreslår å oppheve gjeldende annet ledd.

Endringen foreslås å tre i kraft 1. januar 2021.

### 5.2.5 Forslag til nytt § 14-2 annet ledd

| Fastleddet skal dekke kundespesifikke kostnader og en andel av de øvrige kostnadene i nettet. Fastleddet skal være kvantumsdifferensiert og fastsettes på bakgrunn av kundens abonnerte energiuttak per time. Første trinn skal minimum dekke kundespesifikke kostnader. |

### 5.2.6 NVEs kommentar til nytt annet ledd

Vår vurdering er at det vil være kostnadsbesparende om alle uttakskunder i distribusjonsnettet avregnes etter samme tariffmodell. Vi mener modellen med abonnementer tilpasset kundens forbruk i kWh per time også er egnet for tariffering av næringskunder i distribusjonsnettet.
Forslag til annet ledd beskriver hvordan fastleddet i tariffen skal utformes. Fastleddet skal dekke kostnader innenfor netselskapets tillatte inntekt som ikke dekkes gjennom bruksavhengige tariffledd. Fastleddet er ikke å anse som bruksavhengig, men hører inn under de såkalte andre tariffledd, jf. §13-2 bokstav b. Dette til tross for at størrelsen på fastleddet avhenger av kundens valg av abonnement. NVE foreslår at «øvrige faste kostnader» erstattes med «øvrige kostnader». Dette er en språklig tilpasning til gjeldende praksis.

Forslaget om kvantumsdifferensierte fastledd innebærer at netselskapene må fastsette en trinnvis abonnementsstigige. Hvert trinn angir maksimalt effektuttag (kWh/h) for trinnet, og for hvert trinn fastsettes et tilhørende fastledd. Høyere trinn får høyere fastledd. Intervallet i de lavere trinnene skal være lite nok til at også små kunder gir insentiv til å jevne ut sitt forbruk. Intervall på 1 kWh/h vil ivareta dette hensynet for de minste kundene. På høyere trinn kan det fastsettes større intervall. Netselskapet utarbeider priser og trinn, slik at kunden gir insentiv til å holde seg innenfor abonnert effekt i de fleste timer, jf. første ledd.

Første trinn skal minimum dekke kundespesifikke kostnader. Med kundespesifikke kostnader menes kostnader knyttet til måling, avregning, fakturering og tilsynskostnader. Dette er kostnader som følger av kundens tilknytning til nettet, uavhengig av hvor mye effekt kunden ønsker å abonnere på. Første trinn bør også bidra til å dekke andre kostnader som følger av kundens tilknytning til nettet, uavhengig av kundens uttak.


Pris differensieringen må stå i forhold til de relevante nettoforholdene som ligger til grunn for differensieringen.

Abonnementene skal ikke differensieres geografisk innenfor sammenhengende konsesjonsområder. Det er et grunnleggende prinsipp at tariffene for et konsesjonsområde skal beregnes på bakgrunn av et samlet kostnadsgrunnlag og fordeles mellom kundene som er tilknyttet netselskapets nettanlegg. Dette prinsippet ligger også til grunn for kravet om like tariffer ved oppkjøp og sammenslåing av nett i tilgrensende nettområder, jf. § 17-6 første ledd.

Endringen foreslås å tre i kraft 1. januar 2021.

**5.2.7 Forslag om å flytte gjeldende § 14-2 tredje ledd**

NVE foreslår å flytte gjeldende tredje ledd til nytt syvende ledd, jf. kapittel 5.2.18.

---

23 Med punkttariffer menes at størrelsen på tariffen fastsetter ut i fra kundens tilknytningspunkt, men er uavhengig av den geografiske avstanden kunden kjøper kraften fra.
5.2.8 Forslag til nytt § 14-2 tredje ledd


5.2.9 NVEs kommentar til endring i tredje ledd

Nytt tredje ledd innebærer en ny veiledningsplikt for nettselskapene. Veiledningsplikten innebærer en plicht til å beregne hvilket abonnement som gir kunden lavest tarifikkostnad over året, og en plicht til å informere den enkelte kunde om resultatet av beregningen.

De fleste kunder har i dag liten forutsetning for å anslå hvilket abonnement som vil gi dem tarifikkostnad over året. Generelt vil det være lønnsomt å abonnere på lavere effekt, enn kundens høyeste effektuttak (kWh/h) over året. Abonnementet betaler kunden for fast gjennom hele året. For forbruk utover abonnementet, skal kunden bare betale for den mengden energi som er over abonnementet i hver time med overforbruk. NVE mener en veiledningsplikt er nødvendig for å sikre at kundene får riktig beslutningsgrunnlag ved valg av abonnement.

Veiledningsplikten innebærer at nettselskapet skal beregne hvilket abonnement som gir kunden lavest tarifikkostnad basert på historiske timeverdier fra Elhub. For å få et best mulig anslag for fremtidig forbruk, skal nettselskapet benytte snittberegninger over flere år, såfremt slike data er tilgjengelig. Beregningen gjøres ved innføring av ny tariffmodell, ved nye kundeforhold og på forespørsel fra kunden. Det samme gjelder ved endring i abonnementsutstyr dersom forholdet mellom pristrinn og overforbruket endres. I de tilfeller det ikke foreligger historiske timeverdier, eller disse ikke er relevante, kan nettselskapet benytte stipulerte timeverdier. For eksempel kan stipulere verdier basert på et gjennomsnitt av sammenlignbare kunder benyttes. Veiledningsplikten omfatter ikke simulering av forventede forbrukssendringer hos kunden.

Veiledningsplikten innebærer også at nettselskapet skal informere den enkelte kunde om hvilket abonnement som (på bakgrunn av historiske timeverdier) gir kunden lavest tarifikkostnad over året. Informasjonen skal også inneholde beregning av hva kostnaden blir, dersom kunden velger ett trinn høyere eller ett trinn lavere abonnement, slik at kunden får synliggjort kostnaden ved mer forutsigbar nettleie og forventet billigere nettleie dersom kunden tilpasser forbruket. Nettselskapet skal informere den enkelte kunde om dette innen rimelig tid.

NVE foreslår at nettselskapet plasserer kunden på abonnementet som gir kunden lavest tarifikkostnad over året. Med mindre kunden aktivt velger et annet abonnement, avregnes han etter dette abonnementet.

Det er den enkelte kunde som selv velger å abonnere på mer eller mindre effekt gjennom fastleddet. Dette er en vesentlig endring i forhold til dagens praksis. Bestemmelsen legger til rette for mer aktive kunder, samtidig som kunder som ikke selv velger abonnement blir ivaretatt. Som beskrevet over tildeler disse kundene det abonnementet som gir dem lavest årskostnad basert på historiske timeverdier. De unngår dermed å få urimelig høy
tariffkostnad. Kundene kan søke råd og veiledning om valg av abonnement hos andre enn nettselskapet. Det kan være kraftleverandør eller andre tjenesteytere som kunden gir tilgang til egen forbruksinformasjon. NVE antar at det vil komme aktører som vil tilby veiledningstjenester, og som gjør det enkelt for kunden å gjøre gode valg av abonnement.

Ansvarsfordelingen for veiledningsplikten mellom nettselskap, kraftleverandør og eventuelt Elhub vil NVE vurdere videre i arbeidet med ny markedsmодell for sluttbrukermarkedet.

Endringen foreslås å tre i kraft 1. januar 2021.

5.2.10 Forslag om å oppheve gjeldende § 14-2 fjerde ledd

For lavspent uttak skal effektleddene være kvantumsdifferensierte. Disse tariffene skal utformes slik at alle kunder betaler samme pris for uttak opp til første trinn og lavere satser ved de senere trinn. Alternativt kan tariffene fastsettes på annen måte som gir tilsvarende virkning.

5.2.11 NVEs kommentar

NVE foreslår å oppheve gjeldende fjerde ledd som følge av foreslått ny tariffmodell abonnert effekt.

Endringen foreslås å tre i kraft 1. januar 2021.

5.2.12 Forslag til nytt § 14-2 fjerde ledd

Abonnert energiuttak per time avtales for en periode på 12 måneder. I tilfeller kunden åpenbart har feil abonnement, ved nye kundeforhold eller ved vesentlige endringer i tariffen, kan abonnementet endres innenfor 12 måneders perioden.

5.2.13 NVEs kommentar til endring i fjerde ledd

De fleste kunder vil ha høyere effektuttak i vintermånedene i forhold til resten av året. Derfor vil kunder kunne ønske å gjøre strategiske tilpasninger og abonnere på mer i disse månedene enn resten av året. Av hensyn til kostnadsfordelingen mellom nettselskapets kunder, er det nødvendig å begrense kundenes mulighet til gjentatte endringer i abonnement gjennom året. Uten begrensninger, vil kunder som endrer abonnement flere ganger i året skyve kostnader over på kunder som holder det samme abonnementet hele året, uten at kostnadene i nettet reduseres. Derfor foreslår NVE at abonnert effekt i utgangspunktet avtales for en periode på 12 måneder. Dette innebærer likevel betydelig frihet for kundene til selv å kunne velge abonnement. Ingen av de andre tariffmodellene som har vært vurdert gir kundene en slik frihet.

De fleste kunder vil ikke ha behov for, eller ønske, å endre abonnement hvert år. Når kunder gjør tiltak som påvirker hvilket abonnement som gir dem lavest kostnad over året, vil det i de fleste tilfeller være mer enn 12 måneder siden kunden endret abonnement sist. Dermed kan kunden i de fleste tilfeller endre abonnement straks, og nyte godt av effektreduserende tiltak gjennom lavere abonnement.
Dersom det er mindre enn 12 måneder siden kunden endret abonnement sist, foreslår NVE at endring av abonnement kun tillates i de tilfeller kunden har et abonnement som åpnenbart er satt for høyt eller for lavt, ved nye kundeforhold eller dersom nettselskapet endrer tariffen vesentlig. Dette kan for eksempel være i tilfeller hvor kunden ved uhell har valgt for høyt eller for lavt abonnement. Eller dersom stipulerte timeverdier fra sammenlignbare kunder viser seg å ikke stemme for et nytt kundeforhold.

NVE ber om innspill på om det er behov for å regulere kundenes mulighet til å endre abonnement gjennom forskrift.

NVE mener det bør være et års innkjøring og foreslår at bestemmelsen trer i kraft 1. januar 2022.

**5.2.14 Forslag om å oppheve gjeldende § 14-2 femte ledd**

Netterier skal tilby tariffer med tidsdifferensiert energiledd til alle kunder i distribusjonsnettet som i forskrift er pålagt måleravleising flere ganger i året.

**5.2.15 NVEs kommentar**

NVE foreslår å oppheve nettselskapenes plikt til å tilby tidsdifferensierte energiledd til alle kunder i distribusjonsnettet som i forskrift er pålagt måleravleising flere ganger i året.

Gjeldende krav ble tatt inn i forskriften i 2002 på bakgrunn av at tariffene i større grad skulle reflektere belastningen i nettet. Marginale tap er høyere under høylast enn under lavlast. En høyere pris på forbruk under høylast kan redusere etterspørselen etter overføringstjenester når systemet er presset, og på sikt bidra til å redusere investeringsbehovet og påvirke investeringstidspunktet. I praksis er det slik at nettselskapene lar kunden velge mellom å ha likt energiledd hele året, eller om kunden vil ha en tariff med et forhøyet energiledd om vinteren og redusert energiledd om sommeren. Det er få kunder som velger tariffer med tidsdifferensiert energiledd i dag.

Basert på økonomisk teori bør energileddet beregnes for hvert tilknytningspunkt i nettet, og variere kontinuerlig på bakgrunn av endrede tapsforhold i nettet. NVEs forsklag til ny utforming av tariffer for kunder i distribusjonsnettet, gir kundene gode insentiv til å jevne ut eget forbruk. Modellen åpner for tidsdifferensiering av både fastledd med abonnement og overforbrukssledd på bakgrunn av relevante nettforhold. Differensiering av disse leddene vil typisk gi kundene sterkere prissignaler enn differensiering av marginaltapsleddet.

For å forenkle tariffen, foreslår NVE å gå bort fra kravet om plikt til å tilby tidsdifferensiert energiledd for uttak i distribusjonsnettet. Regelverket er likevel ikke til hinder for at nettselskap som vurderer dette som hensiktsmessig, kan tilby tariffer med tidsdifferensiert energiledd. Nettselskap som vurderer at nytteverdi av punktvis beregning står i forhold til kostnadene, til tross for at energileddet utgjør en mindre andel av kundens totale nettleie, kan differensiere energileddet geografisk innad i nettselskapets konsesjonsområde på bakgrunn av ulike tapskostnader. Det er nettselskapet som må svare for hvorfor energileddet er høyere et sted enn et annet sted i nettet. I utgangspunktet kan ikke den enkelte kunde endre tapsprosenten, men tapsprosenten vil kunne endres over tid.
dersom bruken av nettet endres eller dersom nettet bygges ut. Dette kan utfordre kundenes opplevde likebehandling, og vil kunne gjøre det vanskelig å skape aksept blant kundene for geografisk differensierte energiledd innad i et konsesjonsområde.

5.2.16 Forslag til nytt § 14-2 femte ledd

Energileddet skal avspeile dekker marginale tapskostnader i eget og overliggende nett, og kan i tillegg dekke en andel av de øvrige kostnader som ikke innkreves gjennom fastleddet.

5.2.17 NVEs kommentar til nytt femte ledd


NVEs vurdering er at et energiledd som avspeiler marginale tapskostnader er riktig prissignal å gi kundene om den direkte kostnaden de påfører nettet ved bruk av en ekstra kWh. I praksis er det stor variasjon i hvordan marginaltappssatser i distribusjonsnettene beregnes. Tapsprosenten skal så langt som mulig fastsettes slik at fortegn og nivå står i forhold til den samlede virkningen uttaket har på tappeholdene i nettet. I prinsippet skal energileddet hele tiden vise verdien av endring av taket som oppstår ved endret forbruk eller produksjon.

Kostnadene ved beregning hos nettselskapene sett i forhold til nytt av mer nøyaktig beregning, tilsier at beregning av marginaltappssatser i distribusjonsnettet bør være forenklet. Energitapet i en linje øker proporsjonalt med effekten i kvadrat. Marginaltapet, dvs. endring i overføringstap ved en marginal endring i forbruk eller produksjon er grovt sett to ganger faktisk overføringstap. Nettselskapene kan velge om de vil ta utgangspunkt i dette når de fastsetter marginaltappssatser, eller beregne mer nøyaktige marginaltappssatser. Beregning av mer nøyaktige satser kan ha større verdi i områder der satsene varierer mer geografisk og over tid.

Som en praktisk tilnærming kan tappssatset i distribusjonsnettet fastsettes tilsvarende marginaltapp i utvekslingspunkt(er) mot overliggende nett, pluss gjennomsnittlig marginaltapp for det aktuelle området. For å forenkle tariffen, legger NVE ikke opp til en generell plikt til å videreføre variasjoner i endrede tappshold over året fra overliggende nett til alle uttakskunder i distribusjonsnettet. NVE ber om innsnill på om det bør være plikt til å videreføre variasjoner i endrede tappshold fra overliggende nett til uttakskunder i høyspentnettet eller kunder over en viss størrelse.

For innmatting i distribusjonsnettet har NVE tillatt at nettselskapet beregner marginale tappssatser punktvis eller områdevis. I de tilfeller nettselskapet fastsetter tappssatser for innmatting i distribusjonsnettet på bakgrunn av et gjennomsnitt av de marginale tapskostnadene i det aktuelle nettområdet, vil tappssatseren for henholdsvis uttak og innmatting være den samme, men med motsatt fortegn. Dette innebærer at for eksempel
plusskunder vil kunne få betalt gjennom energileddet i timer med innmating av kraft dersom innmatingen skjer i et underskuddsområde.

Endringen foreslås å tre i kraft 1. januar 2021.

### 5.2.18 Forslag til nytt § 14-2 sjette ledd

**Overforbruksleddet skal tarifieres forbruk i hver time utover abonnert energiuttag per time, og kan tidsdifferenieres på bakgrunn av belastningen i nettet.**

**Overforbruksleddet skal holdes innenfor et rimelig nivå.**

### 5.2.19 NVEs kommentar til nytt sjette ledd

Nettselskapet skal utforme et tariffledd for overforbruk i øre/kWh, som tarifieres den delen av kundens forbruk per time som overstiger abonnert effekt. Overforbruksleddet skal gi kundene prissignal om å jevne ut forbruket hvis forbruket i timen er over kundens abonnementsgrense. Prisen på overforbruk gjelder i utgangspunktet alle nettselskapets abonnementer.

Overforbruksleddet kan differensieres i tid på bakgrunn av nettets belastning. Nettselskapet fastsetter da på forhånd enkeltimer eller perioder med forventet høy last. Tidspunkt med høy belastning i det lokale nettet trenger ikke nødvendigvis sammenfalle med tidspunkt overliggende nett er høyt belastet. Nettselskapet må vurdere hvordan lokale forhold skal vektlegges i forhold til belastningen i overliggende nett ved eventuell tidsdifferensiering av pris på overforbruk. Pris og hvilke timer det gjelder må være kjent for kunden på forhånd, jf. § 13-5. NVE legger ikke opp til at overforbruksleddet skal kunne differensieres geografisk innad i nettselskapets konsesjonsområde. I utgangspunktet er tariffene generelle og gjelder hele konsesjonsområdet. Eventuell differensiering må være begrunnet i relevante nettforhold. NVE ber om innspill på om det er ønskelig at overforbruksleddet skal kunne variere geografisk innenfor konsesjonsområdet.

NVE har ikke funnet det hensiktsmessig å pålegge nettselskapene å varsle kunden når overforbruk inntreffer. En varslingstjeneste er noe kunden vil kunne kjøpe av andre tjenesteytere, gjerne som en integrert del av et styringssystem. Kunden eier egne forbruksdata, og kan gi tilgang til den han ønsker varsel fra.


Endringen foreslås å tre i kraft 1. januar 2021.
5.2.20 Forslag til nytt § 14-2 syvende ledd

Det skal utarbeides separate tariffer for høyspent og lavspent uttak.

5.2.21 NVEs kommentar til nytt syvende ledd

Forslaget innebærer at gjeldende tredje ledd blir nytt syvende ledd.

Det følger av prinsippet om punkttariffer at uttakskunder i høyspentnettet ikke skal belastes kostnader i lavspentnettet. Hvordan nettselskapene skal utforme tariffer for uttak i høyspentnettet følger av de øvrige leddene i bestemmelsen. Nettelskapene skal fastsette egne trinn og priser på abonnementer, samt pris på overforbruk for høyspentuttak i distribusjonsnettet.

Endringen foreslås å tre i kraft 1. januar 2021.

5.2.22 Forslag til nytt § 14-2 åttende ledd

Kunder uten AMS avregnes etter et fastledd og et energiledd. Fastleddet dekker kundespesifikke kostnader og en andel øvrige nettkostnader. Energileddet dekker marginale tapskostnader og kan i tillegg dekke en andel av de øvrige kostnadene som ikke innkreses gjennom fastleddet.

5.2.23 NVEs kommentar til nytt åttende ledd

Forslaget regulerer utforming av tariffer for kunder med fritak fra AMS måler.

Kunder med fritak fra AMS måler avregnes som tidligere med et fastledd og et energiledd fastsatt av nettselskapet. For disse kundene kan energileddet også dekke en andel av øvrige kostnader i nettet. Fastleddet dekker minimum kundespesifikke kostnader og en andel øvrige kostnader i nettet.

Nivået på fastleddet og energileddet til kunder uten AMS måler fastsettes slik at kundegruppene med og uten AMS måler betaler sin forholdsmessige andel av kostnadene i nettet. I utgangspunktet skal en gjennomsnittskunde i disse kundegruppene ha tilnærmet lik årskostnad dersom kunden ikke tilpasser seg effekttariffen. Eventuell differensiering av nivået på tariffene til disse kundegruppene må være begrunnet i relevante nettforhold.

Endringen foreslås å tre i kraft 1. januar 2021.
6 Øvrige forskriftsendringer

6.1 Endringer i betegnelsen på høyeste spenningsnivå

Nettet i Norge er delt inn i tre nivå. Forskrift om kontroll av nettvirkomhet omtaler de tre nivåene som sentralnett, regionalnett og distribusjonsnett. Sentralnett er anlegg i overføringsnettet på spenningsnivå 132 kV eller høyere og som er definert som anlegg i sentralnettet. Distribusjonsnettet er overføringsnett med nominell spenning opp til og med 22 kV, med mindre annet er bestemt. Regionalnett er overføringsnettet mellom sentralnettet og distribusjonsnettet.

I europeisk regelverk deles overføringsnettet inn i to nivåer, transmisjonsnett, som omfatter det høyeste spenningsnivået, og distribusjonsnett, som omfatter lavere spenningsnivåer. Som en del av forberedelsene til gjennomføring av EUs tredje energimarkedspakke (2009/72/EF), har begrepet transmisjonsnett blitt tatt inn og definert i energiloven § 1-5, jf. Prop. 35 L. (2015-2016). Begrepet transmisjonsnett erstatter dermed dagens betegelse av høyeste nettnivå i energiloven med tilhørende forskrifter. Denne endringen medfører behov for endringer i begrepsbruken i forskrift om kontroll av nettvirkomhet, ettersom forskriften i dag gjennomgående bruker begrepet sentralnett om høyeste nettnivå. NVE foreslår på denne bakgrunn at betegnelsen sentralnett erstattes med betegnelsen transmisjonsnett i følgende bestemmelser:

§ 1-3 første ledd
§ 1-4 tredje ledd
§ 3-1 første ledd
§ 4-4 første ledd
§ 4-5 første ledd
§ 4-6 første ledd
§ 4-7 første ledd
§ 5-1 annet ledd
§ 5-3 fjerde og femte ledd
§ 7-5 femte og sjette ledd
§ 7-7 første ledd
§ 8-7 annet ledd
§ 14-1 overskrift samt første og annet ledd
§ 16-2 første ledd
§ 17-2 første ledd
Ved gjennomføringen av andre elmarkedsdirektiv (2003/54/EF) ble det norske regional- og distribusjonsnettet ansett å være omfattet av det som i direktivet betegnes som distribusjonsnett, jf. Ot.prp. nr. 61 (2005-2006). Denne forståelsen er videreført i forbindelse med at energiloven har fått en egen bestemmelse om transmissjonsnett, jf. Prop. 35 L. (2015-2016). Her uttaler departementet at de ikke kan se at tredje elmarkedsdirektiv er til hinder for at det er flere nivåer for distribusjonsnett i direktivets forstand, og at det norske nivået regionalnett i all hovedsak er å anse som distribusjonsnett etter direktivet. NVE velger å beholde begrepene regionalnett og distribusjonsnett slik de er definert i forskrift om kontroll av nettvirksomhet § 1-3. Dette er en innarbeidet begrepsbruk i Norge, og det gir muligheter for å stille differensierte krav i forskrift til henholdsvis regionalnett og distribusjonsnett.

Endringene foreslås å tre i kraft 1. januar 2019.

6.1.1 § 1-3 definisjon av sentralnett

Gjeldende § 1-3 definisjon av sentralnett lyder:

Sentralnett: Anlegg i overføringsnettet på spenningsnivå 132 kV eller høyere og som er definert som anlegg i sentralnettet.

6.1.2 Forslag til endring i § 1-3 definisjon av transmissjonsnett

Sentraltransmissjonsnett: Anlegg i overføringsnettet på spenningsnivå 132 kV eller høyere og som er definert som anlegg i sentralnettet definert etter energiloven § 1-5.

6.1.3 NVEs kommentar til endring i § 1-3

Som beskrevet over er begrepet transmissjonsnett definert i energiloven § 1-5 med virkning fra 1. juli 2016. NVE anser det som uheldig at begrepet defineres med ulik ordlyd i forskrift om kontroll av nettvirksomhet, og foreslår derfor at det i forskrift om kontroll av nettvirksomhet vises til definisjonen i energiloven.

Endringen foreslås å tre i kraft 1. januar 2019.
7 Økonomiske og administrative konsekvenser

Overgang fra dagens energibaserte til mer effektbaserte tariffer vil påvirke hvilke insentiver tariffene gir og kostnadsfordelingen blant brukerne av nettet. Forslaget om abonnert effekt vil gi kundene økonomisk insentiv til et jevnere forbruk, spesielt på kalde vinterdager når det er relativt mange kunder som har et forbruk over sin abonnementsgrense. Jevnere forbruk bidrar til at nettselskapene kan utsette eller redusere investeringer i nettet, som igjen innebærer at tariffene over tid ikke vil øke like mye som de ellers ville gjort. På kort sikt endrer ikke omleggingen det samlede nivået på tariffene innenfor hvert konsesjonsområde.

7.1 Sluttkunder i distribusjonsnettet

7.1.1 Lavere energiledd i distribusjonsnettet

Det samlede nivået på tariffene innenfor hvert konsesjonsområde endres ikke på kort sikt som følge av endret tariffutforming. Når energileddet i distribusjonsnettet avspeiler marginale tapskostnader, vil kostnadene til tariffens energiledd reduseres og det vil bli en tilsvarende økning i øvrige tariffledd, for at tariffen fremdeles skal dekke nettselskapets tillatte inntekt. For årene 2013 til 2016 ville kundenes kostnader til energiledd reduseres fra 9,4 til 2,8 mrd. kroner per år. Tilsvarende ville øvrige tariffledd økt fra 9,2 til 15,8 mrd. kroner per år.

Basert på tariffen for 2017 for en gjennomsnittlig husholdningskunde, og et marginaltapsbasert energiledd på anslagsvis 5 øre/kWh vil kundens kostnader knyttet til energileddet i snitt reduseres med 2900 kroner per år, og øvrige tariffledd må økes tilsvarende. Variasjonen mellom nettselskap spaner fra 800 kroner til 7200 kroner i årlig redusert energiledd. Det store spønn vi skyldes at nettselskapene har ulik fordeling mellom energiledd og andre tariffledd, og at de har ulikt kostnadsnivå. Kunder som i dag tarieres et forholdsvis lavt energiledd vil oppleve mindre endring i kostnader knyttet til energileddet enn kunder som i dag tarieres et høyt energiledd.

For kunder med årlig forbruk over 100 000 kWh som i all hovedsak avregnes effektledde i tariffen i dag, vil konsekvensen av forslag om at energileddet skal dekke marginale tapskostnader i eget og overliggende nett avhenge av gjeldende praksis hos nettselskapet. En del nettselskap har denne praksisen i dag, mens noen nettselskap i tillegg henter inn øvrige kostnader gjennom energileddet, også for disse kundene.

7.1.1.1 Besparelser som kommer nettkundene til gode

Energiledd som avspeiler marginalprisen på energi gir kundene riktigere insentiver til bruk av nettet og til å fatte gode beslutninger med tanke på energi- og effektrelaterte investeringer. Dagens påslag på energileddet fører til skjevheter både når det gjelder relative priser og omfordeling av kostnader mellom kundene. Tiltak som kunder kan

---

Basert på tall fra nettselskapenes regnskapsrapportering i eRapp.
24 Dagens tariff: fastledd 1749 kr/år, energiledd 19,4 øre/kWh energiforbruk 20 000 kWh per år. Reduksjon i inntekter gjennom energileddet: 20 000 kWh *(0,194 kr/kWh – 0,05 kr/kWh) = 2900 kr.
gjennomføre for å redusere energiuttaket fra nettet, gir i dag redusert tariffkostnad for kunden uavhengig av om tiltaket avlaste nettet eller ikke. Tiltak hos kunden som ikke avlaste nettet, og derfor heller ikke gir ikke besparelser for nettet, medfører i dag en omfordeling av tariffkostnader mellom kundene. Redusert tariffkostnad til kunden som reduserer energiuttaket veltes over på nettelskapets øvrige kunder.

Forslag om energiledd som avspeiler marginale tapskostnader vil gi mer kostnadsriktige tariffer og fjerne skjevheter som følge av feilprising av energi gjennom energileddet. Kunder som gjennomfører tiltak for å redusere uttaket fra nettet vil gjennom energileddet få en besparelse som tilsvarer reduerte tapskostnader. Reduserte tapskostnader er en reell økonomisk besparelse i driften av strømnettet, og innebærer en energieffektiviseringsgevinst ved at strømtillegget i nettet reduseres. Forslag om abonnert effekt vil gi ytterligere besparelse for kunden dersom tiltaket avlaster behovet for kapasitet i nettet. Redusert behov for nettkapasitet bidrar til redusert investoringsbehov i nettet, som over tid reduserer samlet nettleie.

7.1.1.2 Fordelingsvirkninger
Etter gjeldende praksis deler nettselskapene kundene inn i kundegrupper som tariffes ulikt på bakgrunn av relevante nettforhold. Nettelskapene tar hensyn til de ulike kundegruppene kostnadsansvar i tariffastsettelsen. Det er derfor ikke ventet at reduksjon i energiledd og tilsvarende økning i andre tariffledd vil gi særlig omfordeling mellom kundegrupper.

Innenfor hver kundegruppe vil reduksjon i energileddet innebære omfordeling av kostnader mellom enkeltkunder. Hvordan reduksjon i inntekter fra energileddet kompenserer med økning i de øvrige tariffleddene (fastledd med abonnementstrinn og overforbruksledd), har betydning for fordelingsvirkningene. Dette omtales nedenfor.

7.1.2 Tariffmodell
Forslaget om abonnert effekt innebærer at kundens tariffkostnad avhenger av hvor mye effekt (kWh/h) kunden ønsker å abonnere på og hvor mye overforbruk kunden har. I tillegg kommer marginaltapskostnaden.

Gitt at kundene velger abonnementet som gir dem lavest nettleie over året, vil tariffkostnaden bli mer forutsigbar for kundene ettersom mesteparten av tariffkostnaden vil være knyttet opp mot hvor mye effekt kunden ønsker å abonnere på over året. Dette er kjent for kunden på forhånd, og kundene vil gjennomgående få en jevnere kostnad over året. Prissignalet fra overforbruksleddet slår inn når forbruket ligger over abonnementsgrensen. Dette gir lite usikkerhet knyttet til modellen.

7.1.2.1 Besparelser som kommer nettkundene til gode
På kort sikt gir abonnert effekt kundene insentiv til å holde seg innenfor abonnementet, for å unngå overforbruk. På lengre sikt gir modellen kundene insentiv til å gjøre tiltak og investeringer slik at de kan reducere abonnementet. De fleste kunder har høyest forbruk på dagtid i vintromånedene. Det er i disse timene med høyest forbruk at kundene typisk vil ha forbruk over deres abonnementsgrense. Dermed får de en høyere pris på overforbruket. Periodene med overforbruk forventes å samsvare godt med når nettet er høyest belastet, og overforbruksprisen vil gi kundene gode insentiv til utjevning av forbruk. Forslaget bidrar derfor til å redusere maksimal belastning i nettet. Over tid vil
investeringer i nettanlegg kunne utsettes, eller unngås. Over tid vil kundene da også få lavere samlet nettleie enn med dagens energitariff.

7.1.2.2 Økt bevissthet kan gi forbruksendring
Forslaget forventes å øke kundenes bevissthet om eget forbruk. Høyere enhetskostnad for overforbruk gir kundene insentiv til å redusere effekttutaket når dette er over abonnementsgrensen. Kundene vil ha tilgang til tariffkostnad time for time senest innen kl. 9 påfølgende døgn, og kan tilpasse forbruket også innenfor fakturaperiodene. Kundene som ønsker å ta i bruk HAN-grensesnittet i AMS måleren vil kunne få forbruksdata i tilnærmet sanntid\textsuperscript{26}. Kunden kan selv nyttiggjøre seg dette, eller engasjere tredjeparter som tilbyr styrings- og varslingstjenester når forbruket nærmer seg kundens abonnementsgrense.

Kunden kan relativt enkelt vurdere kostnadsbesparelse ved endret adfærd, og dermed lønnsomhet i utstyr som automatiserer forbrukstilpasningen. Kunder med automatiske styringssystem kan respondere raskt på prisvariasjoner. Dette kan bidra til økt forbrukerfleksibilitet.

7.1.2.3 Fordelingsvirkninger
Forslaget vil gi fordelingsvirkninger mellom kunder som i dag tilhører samme kundegruppe, spesielt for kunder med avvikende forbruksprofil i forhold til gjennomsnittet i deres kundegruppe. Generelt vil kundens forbruksprofil og forholdet mellom kundens energi- og effekttutak være avgjørende. Kunder med høyt effekttutak og lavt energiforbruk (kort brukstid) vil trolig få økte kostnader. Tilsvarende vil kunder med lavt effekttutak og høyt energiforbruk kunne få reduserte kostnader. Konsekvenser for spesielle typer kunder er nærmere omtalt i kapittel 7.3.

7.2 Spesielle typer kunder

7.2.1 Kraftprodusenter
Forslag om å innføre abonnert effekt som tariffmodell for uttak i distribusjonsnettet har ingen konsekvenser for tariffering av innmating av kraftproduksjon. Forslaget innebærer imidlertid at kraftproduksjon foran og bak kundens målepunkt blir mer likstilt.

7.2.2 Plusskunder
Strømproduksjon bak egen måler som omfattes av plusskundeordningen reduserer avregnet forbruk, når det er samtidighet mellom produksjon og forbruk. Når energileddet reduseres til å avspeile marginaltapet, vil besparelser plusskunden i dag har gjennom energileddet ved å bruke egenprodusert kraft bli redusert.

I de tilfeller kundens strømproduksjon bak egen måler gjør det optimalt for kunden å abonnere på mindre effekt enn uten strømproduksjon bak egen måler, vil kundene kunne redusere tariffkostnadene gjennom et lavere abonnement sammenlignet med en situasjon uten strømproduksjon bak egen måler. Tilsvarende vil egenproduksjon som reduserer antall timer med overforbruk redusere tariffkostnadene knyttet til overforbruksleddet. Samlede tariffvirkninger for kunder med strømproduksjon bak egen måler vil avhenge av

\textsuperscript{26} Alle AMS-målere er utstyrt med en fysisk utgang, ofte kalt HAN-porten (Home Area Network). Ved å koble seg til HAN-porten vil kundene få tilgang til informasjon om eget strømforbruk.
i hvor stor grad produksjonen gjør det lønnsomt å redusere kundens abonnement og i hvor stor grad produksjonen bidrar til å redusere antall timer med overforbruk.

I dag har de fleste plusskunder installert solcelleanlegg. Siden mesteparten av solproduksjonen kommer om sommeren, og det oftest er kundens forbruk på kalde vinterdager som avgjør hvor høy effektgrense kunden bør abonnere på, vil installasjon av solceller i de fleste tilfeller ikke påvirke hvilket abonnement en typisk uttakskunde bør velge. Solcelleanlegg kan likevel bidra til å redusere antall timer med overforbruk hos en typisk husholdningskunde.

7.2.3 Kunder med alternative varmeløsninger, fjernvarme

Forslaget om endringer i tariffutforming i distribusjonsnettet kan gjøre det mer attraktivt å velge andre oppvarmingskilder enn strøm når kunden har høyest forbruk. Bruk av strøm som oppvarmingskilde innebærer at strømforbruket i vinterperioden er mye høyere enn resten av året, og strømforbruket i vinterperioden vil være dimensjonerende for valg av abonnement. Bruk av andre oppvarmingskilder som ved og pellets reduserer strømforbruket vinterstid vesentlig, og kunden kan spare nettleie ved å velge et lavere abonnement og/eller ved å redusere overforbruket. Det samme gjelder utnyttelse av grunn-/sjøvann ved hjelp av væske til væske eller væske til luft varmepumper. Slike varmepumper vil også bli mer konkurransedyktig i forhold til luft til luft varmepumper som har dårlig virkningsgrad i den kaldeste perioden når strømnnettet har høyest belastning.

Forslag om endringer i tariffutforming i distribusjonsnettet vil ha betydning for fjernvarme på flere måter. Både gjennom regulering av maksprisen for fjernvarme og for kostnådene ved bruk av strøm som innsatsfaktor i produksjon av fjernvarme.

Maksimalprisen for fjernvarme er regulert gjennom energiloven § 5-5 i den forstand at kunder som er underlagt tilknytningsplikt kan klage til konsesjonsmyndigheten over priser og andre leveringsvilkår. Fjernvarmeprisen skal ikke overstige prisen for elektrisk oppvarming i vedkommende forsyningsområde. Etter gjeldende forvaltningspraksis inngår energi- og effektleddet, men ikke fastleddet i beregning av maksimalprisen for fjernvarme. Forslaget til endring i forskriftens § 14-2 innebærer at energileddet reduseres, og kostnader som tidligere ble hentet inn gjennom energileddet dekkes dels gjennom et fastledd (abonnement), og dels gjennom et overforbruksledd. Med dagens forvaltningspraksis, innebærer dette isolert sett at maksimalprisen for fjernvarme reduseres. Dersom denne virkningen er vesentlig, vil NVE vurdere å endre forvaltningspraksis for regulering av maksimalpris for fjernvarme. Eventuelt endring i maksimalprisen for fjernvarme er ikke videre omtalt i denne høringen.

For det andre utgjør tariffer en kostnad ved produksjon av fjernvarme. Bruk av el-kjeler i fjernvarme bestemmes av kostnaden for bruk av strøm sammenlignet med prisen på andre brensel. Utforming av tariffer påvirker dermed hvilke brenser som brukes til enhver tid i et fleksibelt varmeanlegg. Fjernvarmeprodusenter tarifiseres i dag gjerne et effektledde i tariffen i tillegg til fastledd og energiledd. Effektledde beregnes ofte på bakgrunn av kundens maksimale effektuttak for én måned. Dette medfører at effektleddet kan gi varierende prissignal avhengig av anleggets tidligere og forventede effektuttak i den aktuelle måneden. Det kan i sin tur påvirke om og hvordan varmeanlegget utnytter sin fleksibilitet med hensyn til endringer i strømprisen i markedet. Forslag om abonnert
effekt vil i større grad gi løpende prissignal time for time, uten at høyt effektuttak blir heftende for kunden mer enn i den aktuelle timen. Kundene for derfor insentiver til mer fleksibel respons på kraftprisene.

Mange fjernvarmomprodusenter benytter seg av ordningen med reduksjon i tariffene på bakgrunn av avtale om utkobling. Det foreslås ingen endringer i ordningen med utkoblbart forbruk.

7.2.4 Kunder som gjør tiltak for energieffektivisering

Energieffektivisering som også tar hensyn til hvordan endring i forbruk påvirker kraftsystemet, kan utsette eller redusere investeringer i nett. Dette vil komme kundene til gode gjennom lavere tariffer, eller en mindre økning i tariffene.

Forslag om abonnert effekt innebærer at kundene gis insentiv til å jevne ut forbruket innenfor deres abonnement, samtidig som kundene har insentiv til ikke å abonnere på mer effekt enn nødvendig. I de fleste tilfeller er det kundens forbruk på kalde vinterdager som avgjør hvilket abonnement kunden bør velge.

Kunder som gjør tiltak for energieffektivisering vil oppleve at den relative lønnsomheten av ulike tiltak endres som følge av forslaget. Tiltak som reduserer kundens høyeste effektuttak blir mer konkurransedyktig.

En kunde som reduserer sitt oppvarmningsbehov fra strøm som følge av bedre isolering kan jevne ut forbruket sitt og dermed oppnå lavere tariffkostnad. Tiltak som nattsenking av temperatur vil i de fleste tilfeller ikke bidra til å jevne ut kundens forbruk, og vil derfor bli mindre lønnsomt for kunden ved innføring av foreslåtte endringer. Nattsenking bidrar ikke til å avlaste nettet, snarere tvert imot. Nattsenking bidrar til lavere belastning i nettet om natten når belastningen allerede er lav, mens det medfører økt strømforbruk i morgentimene, når belastningen i nettet normalt øker kraftig.

Forslaget om riktigere og mer presis prising av energileddet vil bidra til lavere tap i nettet. En spart kWh i nettet innebærer energieffektivisering, på lik linje som en spart kWh hos kundene.

7.2.5 Kunder som bruker strøm til elektrisk transport


Kundens adferd vil spille en stor rolle i vurderingen av om foreslåtte endringer gjør det mer eller mindre lønnsomt med elbil i forhold til biler med forbrenningsmotor. Forslaget gir kundene insentiv til å ta i bruk ny teknologi som lader elbilen når forbruket ellers i husholdningen er lavt.
Dagens kommersielle ladestasjoner for hurtiglading av elbiler som er tilknyttet med ett målepunkt betaler som regel et effektledd i tillegg til fastledd og energiledd. Forslaget om abonnert effekt kan bidra til å redusere tariffkostnadene til ladestasjoner med kort brukstid som i dag er effektmålt basert på månedlig maksimal effektuttak. Årsaken til dette er at kundene kan velge å betale for overforbruk i de timer forbruket ligger over abonnementet, heller enn å abonnere på høyere effekt.

Forslaget om abonnert effekt vil gi insentiv til hurtiglading som belaster nettet mindre, for eksempel ved å dra strøm fra et bufferbatteri. Med smarte kommunikasjon- og styringssystemer og nye markedsloşninger vil slike bufferbatterier i perioder også kunne levere strøm tilbake til nettet. Også elbilbatterier vil kunne levere strøm til nettet. Privatbiler er bare i bevegelse en liten del av tiden, og elbilbatterier er ubrukt mindre delen av tiden. Abonnert effekt kan gi insentiver som bidrar til at elbiler kan bli et gode for drift av nettet.

7.2.6 Kunder som lagrer energi
Forslåtte endringer i § 14-2 vil gi kunder i distribusjonsnettet bedre insentiv til lagring av energi enn en energibasert tariff. Energilagring kan bidra til økt effektivitet i energisystemet. For eksempel kan kunder bruke opplagret energi når kundens forbruk (og forbruket i nettet for øvrig) er høyt, og hente strøm fra nettet til lagring når kundens forbruk (og belastningen i nettet for øvrig) er lavt. Forslåtte endringer vil gi kundene insentiv til å jevne ut forbruket, og å redusere samlet effektuttak. Videre kan batterier benyttes for å redusere kostnadene ved ladestrøm til elektriske transportmidler som biler og fjærer.

7.3 Nettselskap
7.3.1 Lavere energiledd i distribusjonsnettet
Samlet bidrar energiledd i dag til ca. halvparten av inntektene for distribusjonsnettene. Energiledd som avspeiler marginaltapene reduserer denne andelen til om lag en sjettedel. Overgang fra energibaserte tariffer til tariffer basert på abonnert effekt, vil gi mer forutsigbare inntekter for nettselskapet fordi en mindre andel av tariffen hentes inn gjennom bruksavhengige tariffledd. Mer forutsigbare inntekter vil bidra til å redusere nettselskapenes mer-/mindreinntekt.

7.3.2 Tariffmodell
Enhver omlegging av tariffene vil innebære forbigående kostnadsøkning for nettselskapene.

Innføring av abonnert effekt som tariffmodell i distribusjonsnettet innebærer en vesentlig endring i hvordan nettselskapene fastsetter tariffene. Nettselskapene må fastsette kvantumsdifferensierte trinn med tilhørende priser på abonnemantene og en pris for overforbruk for henholdsvis lavspent og høyspent uttak.

Nettselskapet må ha systemer og rutiner som håndterer kundenes abonnementer. Dette vil innebære høyere administrasjonskostnader som følge av forslaget. Så langt NVE er kjent med, håndterer avregningssystemer som benyttes i dag modellen abonnert effekt. I modellutformingen har NVE etter innspill fra nettselskaper lagt vekt på at nettselskapenes kundekontakt så langt som mulig skal kunne automatiseres, for å begrense økte
administrasjonskostnader. At kundene er vant til abonnementsordninger for andre tjenester og at modellen foreslås innført hos alle nettselskap kan lette implementering og bruk av modellen.

Slik forslaget er utformet, har nettselskapet ansvar for å veilede kunden om valg av abonnement, og å gi informasjon om kundens tariffkostnad senest påfølgende døgn innen kl. 9.00. NVE vil vurdere ansvarsfordelingen mellom nettselskap, kraftleverandør og eventuelt Elhub når det gjelder kundeveiledning og kundeinformasjon om tariffkostnad, i det videre arbeidet med utforming av leverandørsentrisk markedsmodell.

7.4 Kraftleverandører

Foreslåtte endringer pålegger ikke kraftleverandører ytterligere plikter. Forslaget innebærer standardisering av tariffmodell, noe som vil forenkle kundehåndteringen for kraftleverandører. Dette er forventet å redusere løpende kostnader til kundehåndtering sammenlignet med en situasjon hvor nettselskapene kan utforme ulike tariffmodeller. Forslaget innebærer at kundene får valgmuligheter og insentiver til å redusere effektuttaket. Dette åpner for at kraftleverandør eller andre tredjeparter kan utvikle og tilby kunden tjenester som bidrar til at kundene sparer nettleie.

NVE vil i arbeidet med utforming av ny markedsmodell for sluttbrukermarkedet komme tilbake til ansvarsfordelingen mellom nettselskap, kraftleverandør og eventuelt Elhub når det gjelder kundeveiledning om valg av abonnement og kundeinformasjon om tariffkostnad.
8 Forslag til forskriftstekst

Forskrift om endring av forskrift om økonomisk og teknisk rapportering, inntektsramme for nettvirksomheten og tariffer

Fastsett av Norges vassdrags- og energidirektorat xx. xx 2018 med hjemmel i forskrift 7. desember 1990 nr. 959 om produksjon, omforming, overføring, omsetning, fordeling og bruk av energi m.m. (energilovforskriften) § 9-1, og lov 29. juni 1990 nr. 50 om produksjon, omforming, overføring, omsetning, fordeling og bruk av energi m.m. (energiloven) § 10-6.

I

I forskrift av 11. mars 1999 nr. 302 om økonomisk og teknisk rapportering, inntektsramme for nettvirksomheten og tariffer gjøres følgende endringer:

§ 1-3 første ledd definisjon av transmisjonsnett skal lyde:

Transmisjonsnett: Anlegg i overføringsnettet definert etter energiloven § 1-5.

§ 13-1 første ledd bokstav h) og ny i) skal lyde:

h) målte og stipulerte timeverdier i Elhub skal benyttes til avregning av tariffer

i) den enkelte boenhet eller fritidsbolig skal måles og avregnes hver for seg.

§ 13-2 skal lyde:

Tariffene for uttak og innmating av kraft skal utarbeides etter følgende grunnstruktur:

a) bruksavhengige tariffledd som varierer med kundens løpende uttak eller innmating av energi-

b) andre tariffledd som skal dekke nettkostnader som ikke dekkes gjennom bruksavhengige tariffledd.

§ 13-3 oppheves

§ 13-4 oppheves

§ 13-5 skal lyde:

Nettselskapene plikter av eget tiltak å gi andre nettselskaper den informasjon som er nødvendig for at disse skal kunne beregne egne tariffer. Informasjonen skal gis innen rimelig tid før nye tariffer trer i kraft.

Nettselskapene plikter på forespørsel og innen rimelig tid å gi kunder informasjon om beregningsgrunnlaget for egne tariffer og beregningen av tariffene for de ulike kundegrupper.

Tariffer og vilkår skal samles skriftlig, og være lett tilgjengelig for nettkundene.

Nettselskapet skal legge til rette for at informasjon om nettkunders tarifikkostnad per time er elektronisk tilgjengelig for nettkunden senest påfølgende døgn kl. 9.00.
Nettselskapene skal i rimelig tid før endring av tariffene trer i kraft informere den enkelte nettkunde om tariffendringer. Informasjonen skal inneholde en begrunnelse for tariffendringene.

Nettselskapene plikter å underrette Norges vassdrags- og energidirektorat om endringer av sine tariffer i rimelig tid før disse trer i kraft.

Ved uenighet mellom nettselskap og nettkunde om tariffer og andre overføringsvilkår, plikter nettselskapet å informere kunden om at Norges vassdrags- og energidirektorat er kontrollmyndighet etter bestemmelsen i forskrift 7. desember 1990 nr. 959 § 9-2 og om bestemmelsen i § 18-1 i denne forskrift.

§ 14-1 skal hete:
Utforming av tariffer for ordinære uttak i transmisjons- og regionalnett

§ 14-1 skal lyde:


§ 14-2 skal lyde:

I distribusjonsnettet skal tariffene bestå av et fastledd, et energiledd og et overforbruksledd, slik at kunden gir insentiv til å holde seg innenfor abonnert energiuttak per time, i de fleste timer.

Fastleddet skal dekke kundespesifikke kostnader og en andel av de øvrige kostnadene i nettet. Fastleddet skal være kvantumsdifferensiert og fastsettes på bakgrunn av kundens abonnerte energiuttak per time. Første trinn skal minimum dekke kundespesifikke kostnader.


Abonnert energiuttak per time avtales for en periode på 12 måneder. I tilfeller kunden åpenbart har feil abonnement, ved nye kundeforhold eller ved vesentlige endringer i tariffen, kan abonnementet justeres endres innenfor 12 måneders perioden.
Energileddet skal dekke marginale tapskostnader i eget og overliggende nett.

Overforbruksleddet skal tarifieres forbruk i hver time utover abonnert energiuttak per time, og kan tidsdifferensieres på bakgrunn av belastningen i nettet. Overforbruksleddet skal holdes innenfor et rimelig nivå.

Det skal utarbeides separate tariffer for høyspent og lavspent uttak.

Kunder uten AMS avregnes etter et fastledd og et energiledd. Fastleddet dekker kundespesifikke kostnader og en andel øvrige nettkostnader. Energileddet dekker marginale tapskostnader og kan i tillegg dekke en andel av de øvrige kostnadene som ikke innkreses gjennom fastleddet.

§ 14-3 skal lyde:

Nettselskapene skal på forespørsel tilby måling og avregning per felles inntaksledning når måling og avregning etter § 13-1 bokstav i) gir urimelige merkostnader.

II
