Flomsonekart

Delprosjekt Nesbyen

Christine Kielland Larsen
Sammendrag: Det er utarbeidet flomsonekart for Hallingdalselva, fra Bromma til Sutøya, og for Rukkedøla, fra utløpet i Hallingdalselva til Hallingdal Folkemuseum, totalt ca 20 km.

Emneord: Flomsone, flom, flomanalyse, flomareal, vannlinjeberøring, Hallingdalselva, Rukkedøla, Nesbyen
Forord

Det utarbeides nå et nasjonalt kartgrunnlag – flomsonekart – for de vassdragene i Norge som har størst skadepotensial. Hovedmålet med kartleggingen er forbedret arealplanlegging og byggesaksbehandling i vassdragsnære områder, samt bedre beredskap mot flom.

Rapporten og vedlagte kart presenterer resultatene fra kartleggingen av Hallingdalsvassdraget fra Bergheim til Sutøya i Hallingdalselva og fra utløpet i Hallingdalselva til Hallingdal Folkemuseum for Rukkedøla. Grunnlaget for flomsonekartene er flomberegninger og vannlinjeberegninger.

Oslo, desember 2002

Kjell Repp
avdelingsdirektør

Hallvard Berg
Prosjektleder
Sammendrag

Det er utarbeidet flomsonekart for en strekning på ca 18 km i Hallingdalselva fra Bromma til Sutøya samt for ca 1,5 km i Rukkedøla fra utløpet i Hallingdalselva til Hallingdal Folkemuseum. Fire kartblad er vedlagt bak i rapporten, disse viser flomutbredelse ved en 100års flom. I tillegg finnes flomsomene for flere flomstørrelser digitalt på CD.

De største observerte vannføringer i Hallingdalsvassdraget er fra tiden før vassdraget ble regulert. Reguleringene ble påbegynt rundt 1950. For større flommer (fra 100 års flom) vil vassdraget reagere som om det er uregulert. For mindre flommer vil reguleringen virke dempende på flomtoppene.

Analysene som er grunnlaget for flomsonekartene er (1) flomfrekvensanalyse, som beregner hvor store og hyppige flommene i vassdraget vil være. Disse flommene mates inn i en (2) vannlinjemodell som bergner vannstand ved de ulike flommene. Vannstandene mates så inn i en (3) GIS/terrengmodell som gir den endelige flomutbredelsen som vises på kartene.

Flomtopp i Hallingdalselva vil sjelden opptre samtidig som flomtopp i Rukkedøla. Vi gjør oppmerksom på at flomutbredelsen på kartene likevel viser oversvømmelser fra begge elvene sammen.

Ved flommer med 20-50års gjentaksintervall, går disse områdene over til å bli direkte flomutsatte (figur 4.6) og vil oversvømmes av vann fra Rukkedøla. Fordi Rukkedøla er så bratt og vannet har så stor fart, vil dette få dramatiske følger og hus og veier vil kunne bli skylt bort av masseholdig flomvann.

I følge analysen vil både brua og terskelen oppstrøms Hajembrua føre til oppstuing, slik at det er sannsynlig at elvekanten vil overtoppes her først, men slike hendelser er uberegnelige og uforutsigbare, erosjon og avleiring av masse kan føre til at elva tar nytt løp annet sted.

Hele vestsiden av Nesbyen sentrum er i realiteten et fareområde og NVE vil ikke anbefale fortetting og økt utvikling i dette området slik situasjonen er i dag. Det er teknisk mulig å øke sikkerheten for vestsiden av Nesbyen ved sikringstiltak.

Flomsonekartene må brukes i arealplanleggingen for å identifisere områder som ikke bør bebygges uten nærmere vurdering av faren og mulige tiltak. En sikkerhetsmargin skal alltid legges til ved bruk av flomhøydene, sikkerhetsmarginen her skal være 50cm.
1 Innledning

1.1 Formål
Målet med kartleggingen er å bedre grunnlaget for vurdering av flomfare til bruk i arealplanlegging og byggesaksbehandling. Kartleggingen vil også gi bedre kunnskap i forbindelse med beredskap mot flom, samt bedre grunnlag for flomvurdering og planlegging av flomsikringstiltak.

1.2 Bakgrunn

I Stortingsmelding 42 (1996-97) gjøres det klart at regjeringen vil satse på utarbeidelse av flomsonekart i tråd med anbefalingene fra Flomtiltaksutvalget. Satsingen må ses i sammenheng med at regjeringen definerer en bedre styring av arealbruken som det absolutt viktigste tiltaket for å holde risikoen for flomskader på et akseptabelt nivå. Denne vurderingen fikk sin tilslutning også ved behandlingen i Stortinget.

1.3 Beskrivelse av vassdraget og avgrensning av prosjektet
Området som skal flomsonekartlegges strekker seg fra like oppstrøms Sutøya til nedenfor Bergheim bru langs Hallingdalselva (fig.1.1). Nesbyen er det tettest befolkede området på strekningen, her er store deler av sentrumsområdene flomutsatt. Ved Sutøya har Nes Kraftverk utløp i Hallingdalselva. Rukkedøla går gjennom Nesbyens sentrumsområder og munner ut i Hallingdalselva fra vest. De øvre delene av Rukkedøla er regulert.

Målestasjon 12.97 Bergheim ligger rett nedenfor Bergheim bru. Strekningen Sutøya - Bergheim er ca 18 km lang. Kartgrunnlag i området mellom Bergheim og Bromma er mangelfullt derfor er det laget flomsonekart kun fra Sutøya til Bromma (fig.1.1), men flomvannstander er beregnet helt ned til Bergheim vannmerke.

Hallingdalsvassdraget strekker seg fra de nordlige delene av Hardangervidda og de østlige delene av Hemsedalsfjella til utløp i Krøderen. Fra Krøderen renner Snarumselva som går i samløp med Drammenselva noen kilometer nedstrøms utløpet av Tyriifjorden. I vest grenser nedbørfeltet mot Numedal og i øst mot Beggadalen. Ved utløpet av Krøderen er nedbørsfeltet på totalt 5091 km² og normalt årsavløp 116 m³/s, tilsvarende 22.7 l/s km² eller 722 mm/år (Holmqvist 2001).

Fra omkring 1950 har det vært en rekke kraftutbygginger i vassdraget. Dette har i sterk grad påvirket vannføringen og dermed også flomforholdene i Hallingdalsvassdraget.

Flomutbredelse for Rukkedøla er kartlagt fra utløpet i Hallingdalselva til Hallingdal Folkemuseum, ca 1.5 km. (figur 1.1) Oversvømt areal som beregnes er knyttet til flom i Hallingdalselva og Rukkedøla. Vannstander i sidebekker/elver og oversvømmelse som følge av flom i disse, beregnes ikke.
Figur 1.1 Oversiktskart over prosjektorområdet, med tverrprofiler.
Det er primært oversvømte arealer som følge av naturlig høy vannføring som skal kartlegges. Andre vassdragsrelaterte faremomenter som isgang, erosjon og utrasinger er ikke gjenstand for tilsvarende analyser, men det tas sikte på å synliggjøre kjente problemer i tilknytning til flomsonekartene.

1.4 Prosjektgjennomføring

2 Grunnlag

2.1 Metode og databehov
Flomsonekart viser hvilke områder som oversvømmes ved flommer med ulike gjetaksintervall. I tillegg til kartene utarbeides det også lengdeprofiler for vannstand i elva.

Av vannlinjen utledes en digital vannflate. Denne kombinieres med en digital terrengmodell i GIS som beregner oversvømt areal (flomsonen).

2.2 Hydrologiske data

2.2.1 Flomfrekvensanalyse
Aktuelle vannføring er beregnet av NVE og presentert i (Holmqvist 2001). Flomberegningen er basert på frekvensanalyser av observerte flommer fra hydrometriske stasjoner i Hallingdalsvassdraget. Det er tatt hensyn til at flomforholdene er blitt forandret på grunn av reguleringene i vassdraget.

Flomrapporten (Holmqvist 2001) ble først ferdigstilt i juni 2001, deretter revidert i november 2002, da det ble funnet noen feil ved den første rapporten. Nye tall for flomstørrelser er anvendt i den hydrauliske modellen og disse resultatene ligger til grunn for vannlinjeberegningen. For Rukkedøla var imidlertid endringene så små at det ikke ble gjort nye beregninger med den hydrauliske modellen, de opprinnelige flomtall og resultater er derfor beholdt.

Flomtoppen (kulminasjonsvannføringen) i Rukkedøla og Hallingdalselva opptrer ikke samtidig. Det er derfor beregnet flomverdier for to situasjoner, flomtopp i Rukkedøla og sannsynlig samtidig vannføring i Hallingdalselva og flomtopp i Hallingdalselva med sannsynlig samtidig vannføring i Rukkedøla.

For alle flomstørrelserne er det forventet at Nes kraftverk går med full kapasitet, dvs ca 100 m³/s. Det er beregnet kulminasjonsvannføring ved forskjellige gjetaksintervall. Vannføringene ved de ulike delstrekningene og ved ulike gjetaksintervall er vist i tabell 2.1 og 2.2 (Holmqvist 2001)

Det er verd å merke seg at det er relativt stor forskjell på 50års flom og 100års flom i Hallingdalselva. Dette skyldes at det ved beregning av de største flommene (fra 100års flom og oppover) forutsettes at vassdraget reagerer som om det er uregulert. For de mindre flommene (50års flom og mindre) vil reguleringene virke dempende på flomtoppen. Dette er teoretiske forutsetninger som er gjort i beregningene. Under virkelige flomsituasjoner, vil magasinrursjoner og dermed også de teoretiske forutsetningene kunne avvike noe fra det som er gjort i de teoretiske beregningene. Beregningene er nærmere beskrevet i (Holmqvist 2001).
Tabell 2.1 Kulminasjon i Hallingdalselva og samtidig vannføring i Rukkedøla

<table>
<thead>
<tr>
<th></th>
<th>10 års flom (m³/s)</th>
<th>20 års flom (m³/s)</th>
<th>50 års flom (m³/s)</th>
<th>100 års flom (m³/s)</th>
<th>200 års flom (m³/s)</th>
<th>500 års flom (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallingdalselva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oppstrøms Sutøya (profil 27)</td>
<td>568</td>
<td>633</td>
<td>721</td>
<td>1127</td>
<td>1417</td>
<td>1747</td>
</tr>
<tr>
<td>Nedstrøms Sutøya (profil 20-23)</td>
<td>668</td>
<td>733</td>
<td>821</td>
<td>1227</td>
<td>1517</td>
<td>1847</td>
</tr>
<tr>
<td>Nedstrøms utløpet av Rukkedøla (profil 12-19)</td>
<td>728</td>
<td>802</td>
<td>898</td>
<td>1310</td>
<td>1607</td>
<td>1945</td>
</tr>
<tr>
<td>Nedstrøms utløpet av Todøla (profil 8-11)</td>
<td>758</td>
<td>836</td>
<td>937</td>
<td>1351</td>
<td>1651</td>
<td>1993</td>
</tr>
<tr>
<td>Ved Bergheim vannmerke (profil 1-2)</td>
<td>792</td>
<td>875</td>
<td>980</td>
<td>1398</td>
<td>1702</td>
<td>2048</td>
</tr>
<tr>
<td>Rukkedøla</td>
<td>57</td>
<td>65</td>
<td>73</td>
<td>79</td>
<td>85</td>
<td>93</td>
</tr>
</tbody>
</table>

Tabell 2.2 Kulminasjon i Rukkedøla og samtidig vannføring i Hallingdalselva

<table>
<thead>
<tr>
<th></th>
<th>10 års flom (m³/s)</th>
<th>20 års flom (m³/s)</th>
<th>50 års flom (m³/s)</th>
<th>100 års flom (m³/s)</th>
<th>200 års flom (m³/s)</th>
<th>500 års flom (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rukkedøla</td>
<td>123</td>
<td>140</td>
<td>157</td>
<td>170</td>
<td>183</td>
<td>200</td>
</tr>
<tr>
<td>Hallingdalselva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nedstrøms Sutøya (profil 20-23)</td>
<td>360</td>
<td>410</td>
<td>460</td>
<td>497</td>
<td>534</td>
<td>584</td>
</tr>
<tr>
<td>Nedstrøms utløpet av Rukkedøla (profil 12-19)</td>
<td>484</td>
<td>550</td>
<td>617</td>
<td>667</td>
<td>717</td>
<td>784</td>
</tr>
<tr>
<td>Nedstrøms utløpet av Todøla (profil 8-11)</td>
<td>551</td>
<td>628</td>
<td>704</td>
<td>761</td>
<td>818</td>
<td>894</td>
</tr>
</tbody>
</table>

2.2.2 Kalibreringsdata til vannlinjeberegning

For å kalibrere vannlinjeberegningsmodellen er man avhengig av samtidig registrering av vannføring og vannstand.

For kalibrering er det benyttet data for Hallingdalselva for to flomepisoder, høstflommen i 1988 og vårflommen i 2001. Dataene er av varierende kvalitet og ved sammenstilling har det vist seg at enkelte av observasjonene ikke er korrekte. Disse verdiene er ikke benyttet i den endelige analysen.
Under vårflommen i 2001 ble det gjort en vannføringsmåling med ADCP samtidig med avmerking av vannlinjen. ADCP målingene er også benyttet til å fordele økningen i vannføring nedover langs vannstrengen.

For flommen i 1988 er vannføringsdataene fra Bergheim benyttet. Det finnes noyaktige data (timesverdier) for Bergheim og disse er benyttet for å få mest mulig korrekt estimat for flomtoppen. Fordelingen av økning i vannføring nedover i elva er gjort på beste skjønn. Dato for registrering av vannstand, samhørende vannføring og profilnummer er gitt i tabell 2.3.

Tabell 2.3 Oppmålt/registrert vannføring og vannstand for flommene i 1988 og 2001

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vannføring</td>
<td>Vannstand</td>
</tr>
<tr>
<td>Hjelpeprofil mellom 26 og 25 vestre løp</td>
<td></td>
<td>160.11</td>
</tr>
<tr>
<td>Profil 25 østre løp</td>
<td></td>
<td>158.67</td>
</tr>
<tr>
<td>Profil 19, nedstrøms Rukkedøla</td>
<td>156.12</td>
<td>357 m3/s</td>
</tr>
<tr>
<td>Profil 17, Nesbyen bro</td>
<td>156.1</td>
<td>357 m3/s</td>
</tr>
<tr>
<td>Hjelpeprofil mellom profil 13 og 14</td>
<td>155.69</td>
<td>357 m3/s</td>
</tr>
<tr>
<td>Hjelpeprofil nedstrøms profil 12</td>
<td>155.83</td>
<td>357 m3/s</td>
</tr>
<tr>
<td>Profil 11, Liodden bro</td>
<td>155.56</td>
<td>154.21</td>
</tr>
<tr>
<td>Profil 6</td>
<td></td>
<td>154.13</td>
</tr>
<tr>
<td>Profil 4</td>
<td></td>
<td>154.08</td>
</tr>
<tr>
<td>Profil 0, Bergheim vannmerke</td>
<td>834 m3/s</td>
<td>154.1</td>
</tr>
</tbody>
</table>

2.3 Topografiske data
Hallingdalselva er en slak elv, og har en gjennomsnittlig bunnheling på 1/1700 gjennom prosjektstrekningen. Like oppstrøms Bergheim bru er det et trangt parti. Elva gjør et kraftig bend, deler seg rundt en øy og et nytt sidevassdrag kommer inn fra vest (fig.1.1). Her oppstår det kraftige
virvler under flom og det er vanskelig å forutse hvor stort det effektive tverrsnittet er under de største vannføringene. Dette partiet er bestemmende for vannstanden helt opp til ovenfor Nesbyen.

2.3.1 Tverrprofiler

Profilene er valgt ut for å beskrive elvas geometri i horisontal- og vertikalplanet. Alle bruer er målt opp og det er tatt opp ekstra profiler i nærheten av bruene.

Enkelte tverrprofiler i Rukkedøla og i øvre del av Hallingdalselva hadde svært korte profil. Tverrprofilene ble derfor forlenget ut fra den digitale høydemodellen, slik at de dekker det antatt effektive strømningsarealat.

Det er lagt inn flere hjelpeprofiler i modellen, for å fange opp vesentlige endringer i bredde og fallforhold. De ekstra profilene er konstruert med utgangspunkt i Økonomisk kartverk og interpolasjon fra nærliggende profil.

2.3.2 Digitale kartdata

Det er generert en terrengmodell (GRID modul i ArcInfo). Til oppbygging av terrengmodellen er det i tillegg til 1 meters høydekurver også benyttet høydedata som punkter (x,y,z) innsamlet med laser fra fly, med nøyaktighet tilsvarende som detaljert høyde. Det er også benyttet andre høydebærende data (veikant, jernbane, elvekant og vannkant). Disse har en nøyaktighet tilsvarende målestokk 1:1000. Terrengmodellen er et raster med celler 5 x 5 meter. Hver celle får tilordnet en høydeverdi i analysen.
3 Vannlinjemodellering

3.1 Modelloppsett

Programvaren Hec-Ras er benyttet til vannlinjeberegning. Hallingdalselva og Rukkedøla er satt opp i hver sin modell. I modellen for Rukkedøla er beregnet samtidig vannstand i Hallingdalselva brukt som nedstrøms grensebetingelse for Rukkedøla (tab.2.2). I modellen for Hallingdalselva er vannmerket ved Bergheim brukt som nedre grensebetingelse.

3.2 Kalibrering av modellen

Vannføringer og vannstander fra tabell 2.3 er benyttet for kalibrering. Kalibreringen er beskrevet i eget notat (Skulstad 2002) og tilleggsnotat (Stokseth 2003).

Hallingdalselva

Modellen for Hallingdalselva er satt opp med to løp forbi Sutøya. Dette er nødvendig for å få frem forskjellen i vannstand for de to løpene. For fordeling av vannføring i østre og vestre løp forbi Sutøya, er det tatt utgangspunkt i ferdig kalibrert modell. Vannstand nedstrøms Sutøya er satt som nedre grensebetingelse og forutsatt lik for begge løpene. Deretter er ulik prosentvis fordeling testet ut i en iterasjonsprosess, helt til vannstanden oppstrøms Sutøya ble lik i begge løpene. Denne framgangsmåten viser at ved små flommer (opp til 20-50 års flom) går det rundt dobbelt så stor vannføring i det vestre løpet. Ved de store flommene (50års flom og oppover) går det omtrent like mye vann i begge løpene. Disse konklusjonene baserer seg kun på teoretisk/modelltekniske resultater, det er ikke gjort kontrollmålinger i elva av vannføringsfordelingen mellom de to løpene. Det er tatt hensyn til at Nes Kraftverk har avløp i det vestre løpet.

Ved mindre øyer nedover i elva, er ikke elveløpet delt opp, fordi det ikke forventes forskjell i vannstand i løpene. Det er imidlertid lagt inn økt motstand i modellen. Ved Bukkeøyene, like ovenfor Bergheim, er elven igjen delt i to løp. Vannstanden viste seg likevel å være omtrent den samme for begge løp og det var antageligvis unødvendig å dele opp her.

Tabell 3.1 viser hvordan vannføringen for de to kalibreringsflommene er fordelt langs vannstrengen, sammen med oppmålt vannstand. Dataene er grunnlaget for kalibrering av modellen.

Oppstrøms Bergheim bru i Hallingdalselva, er det svært spesielle strømningsforhold. Dette området er utløpsområdet for Brommafjorden, og er bestemmende for vannstanden helt opp til Nesbyen sentrum. Bukkeøyene deler her elveløpet i to, noe som medfører virvler ved samløpet. Nedstrøms samløpet, kommer elva Sevreåni inn fra vest (fig.3.1), i tillegg er det en skarp fjellknaus i samme profil på motsatt side av elven. Dette gir bavejver og virvler, noe som medfører at det effektive strømningsarealet snevres inn fra begge sider. De innsamlede kalibreringsdataene er benyttet til å justere profilene, ved å snevre inn profilene til kalibreringsvannstanden er riktig. Det er imidlertid vanskelig å forutse hvordan disse virvelene vil endres ved økende vannføring. Ettersom det ikke finnes kalibreringsdata for ekstreme flommer, blir dette i stor grad en vurdering basert på skjønn.

Det er foretatt en enkel følsomhetsanalyse for å anslå hvor mye ulike forutsetninger om innsneving i modellen påvirker beregnet vannstand ved Nesbyen, før det ble gjort et valg på sannsynlig innsneving ved de største flommene (Skulstad 2002).
Figur 3.1 Bergheimsområdet.

Figur 3.2 Kalibrert modell for Hallingdalselva med observerte vannstander for flommen 21.07.88 og 14.05.01 (modellert blå linje med observerte svarte firkanter)
Tabell 3.1 Vannføring og vannstand for flommene i 1988 og 2001 for bruk i kalibrering

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vannføring</td>
<td>Vannstand</td>
</tr>
<tr>
<td>Hjelpeprofil mellom 26 og 25 vestre løp</td>
<td>470 m3/s</td>
<td>222.5 m3/s</td>
</tr>
<tr>
<td>Profil 25 østre løp</td>
<td>230 m3/s</td>
<td>81.5 m3/s</td>
</tr>
<tr>
<td>Profil 19, nedstrøms Rukkedøla</td>
<td>800 m3/s</td>
<td>156.12</td>
</tr>
<tr>
<td>Profil 17, Nesbyen bro</td>
<td>800 m3/s</td>
<td>156.1</td>
</tr>
<tr>
<td>Hjelpeprofil mellom profil 13 og 14</td>
<td>800 m3/s</td>
<td>155.69</td>
</tr>
<tr>
<td>Hjelpeprofil nedstrøms profil 12</td>
<td>800 m3/s</td>
<td>155.83</td>
</tr>
<tr>
<td>Profil 11, Liodden bro</td>
<td>818 m3/s</td>
<td>155.56</td>
</tr>
<tr>
<td>Profil 6</td>
<td>824 m3/s</td>
<td>410</td>
</tr>
<tr>
<td>Profil 4</td>
<td>824 m3/s</td>
<td>410 m3/s</td>
</tr>
<tr>
<td>Profil 0, Bergheim vannmerke</td>
<td>834 m3/s</td>
<td>154.1</td>
</tr>
</tbody>
</table>
Rukkedøla

Riksvegen krysser Rukkedøla like ved utløpet i Hallingdalselva. Rukkedøla passerer vegfyllingen gjennom fire store kulverter. I flomsituasjoner er det vannstanden i Hallingdalselva som bestemmer undervannet i kulvertene. I beregningene er derfor vannstanden i profil 19 i Hallingdalselva brukt som nedstrøms grensebetingelse for Rukkedøla.

3.3 Resultater fra vannlinjeberegningene

Beregningen er gjort for to ulike situasjoner, henholdsvis når Hallingdalselva kulminerer og når Rukkedøla kulminerer. Resultatet fra vannlinjeberegningene er vist tabell 3.2 og 3.3. Langs nedre del av Rukkedøla varierer det hvilken situasjon som gir den høyeste vannlinja. Ved lave gjentaksintervall (mindre flommer) er det Rukkedøla som gir høyest utslag, mens Hallingdalselva gir de høyeste verdiene ved høye gjentaksintervall (større flommer). Situasjonen som til enhver tid gir høyeste vannstand må benyttes (uthevet med rødt i tabell 3.3).

3.4 Spesielt om bruer

Bruer i Hallingdalselva

I østre løp ved Sutøya går det en bru over til Rudsøya (kartblad Sutøya, profil 24o), brukarene til denne brua bidrar til å snevre inn elveløpet. Brua vil gå full et sted mellom en 50 og 100 års flom. I praksis vil brua neppe stå imot vannmassene.

Stasjonsbrua ved Nesbyen sentrum er en høy og vid bru. På tross av to sett brupilarer i elveløpet, (tre sett ved store flommer) påvirkes elva ikke nevneverdig av brua, og vannmassene vil heller ikke nå oppunder brua.

Bruer i Rukkedøla

Tabell 3.2 Vannstander for profilene i Hallingdalselva ved flommer av ulike gjentaksintervall.

<table>
<thead>
<tr>
<th>Profilnummer</th>
<th>Beskrivelse</th>
<th>10års flom vannstand (m.o.h)</th>
<th>20års flom vannstand (m.o.h)</th>
<th>50års flom vannstand (m.o.h)</th>
<th>100års flom vannstand (m.o.h)</th>
<th>200års flom vannstand (m.o.h)</th>
<th>500års flom vannstand (m.o.h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Oppstrøms Sutøya</td>
<td>161.86</td>
<td>161.88</td>
<td>162.04</td>
<td>162.35</td>
<td>162.84</td>
<td>163.03</td>
</tr>
<tr>
<td>26 vest</td>
<td>Vestre løp forbi Sutøya</td>
<td>161.62</td>
<td>161.65</td>
<td>161.82</td>
<td>162.25</td>
<td>162.85</td>
<td>162.96</td>
</tr>
<tr>
<td>25 vest</td>
<td>Vestre løp forbi Sutøya</td>
<td>160.71</td>
<td>160.75</td>
<td>160.98</td>
<td>161.69</td>
<td>162.50</td>
<td>162.42</td>
</tr>
<tr>
<td>24 vest</td>
<td>Nes kraftverk har utløp mellom profil 3 og 4.</td>
<td>159.21</td>
<td>159.24</td>
<td>159.36</td>
<td>159.80</td>
<td>160.22</td>
<td>160.82</td>
</tr>
<tr>
<td>26 øst</td>
<td>Østre løp forbi Sutøya</td>
<td>159.50</td>
<td>159.50</td>
<td>159.88</td>
<td>161.91</td>
<td>162.20</td>
<td>162.52</td>
</tr>
<tr>
<td>25 øst</td>
<td>Østre løp forbi Sutøya</td>
<td>158.14</td>
<td>158.23</td>
<td>158.24</td>
<td>160.85</td>
<td>161.11</td>
<td>161.36</td>
</tr>
<tr>
<td>23</td>
<td>Nedstrøms Sutøya</td>
<td>157.22</td>
<td>157.40</td>
<td>157.66</td>
<td>158.85</td>
<td>159.66</td>
<td>160.45</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>156.70</td>
<td>156.99</td>
<td>157.33</td>
<td>158.70</td>
<td>159.53</td>
<td>160.34</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>156.49</td>
<td>156.81</td>
<td>157.16</td>
<td>158.56</td>
<td>159.41</td>
<td>160.22</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>156.24</td>
<td>155.56</td>
<td>156.91</td>
<td>158.31</td>
<td>159.16</td>
<td>159.96</td>
</tr>
<tr>
<td>19</td>
<td>Like nedstrøms utløpet til Rukkedøla.</td>
<td>156.08</td>
<td>156.41</td>
<td>156.76</td>
<td>158.16</td>
<td>159.00</td>
<td>159.79</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>156.11</td>
<td>156.44</td>
<td>156.79</td>
<td>158.18</td>
<td>159.02</td>
<td>159.80</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>155.94</td>
<td>156.27</td>
<td>156.61</td>
<td>157.97</td>
<td>158.79</td>
<td>159.54</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>155.93</td>
<td>156.26</td>
<td>156.62</td>
<td>158.04</td>
<td>158.89</td>
<td>159.68</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>155.88</td>
<td>156.22</td>
<td>156.58</td>
<td>158.01</td>
<td>158.86</td>
<td>159.65</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>155.84</td>
<td>156.18</td>
<td>156.56</td>
<td>157.99</td>
<td>158.84</td>
<td>159.63</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>155.69</td>
<td>156.04</td>
<td>156.41</td>
<td>157.87</td>
<td>158.72</td>
<td>159.50</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>155.69</td>
<td>156.04</td>
<td>156.41</td>
<td>157.85</td>
<td>158.71</td>
<td>159.48</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>155.64</td>
<td>155.98</td>
<td>156.34</td>
<td>157.78</td>
<td>158.63</td>
<td>159.40</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>155.63</td>
<td>155.97</td>
<td>156.35</td>
<td>157.79</td>
<td>158.63</td>
<td>159.38</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>155.59</td>
<td>155.93</td>
<td>156.31</td>
<td>157.74</td>
<td>158.57</td>
<td>159.32</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>155.49</td>
<td>155.81</td>
<td>156.17</td>
<td>157.56</td>
<td>158.36</td>
<td>159.07</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>155.55</td>
<td>155.88</td>
<td>156.25</td>
<td>157.67</td>
<td>158.48</td>
<td>159.22</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>155.54</td>
<td>155.86</td>
<td>156.23</td>
<td>157.66</td>
<td>158.47</td>
<td>159.21</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>155.50</td>
<td>155.82</td>
<td>156.18</td>
<td>157.59</td>
<td>158.38</td>
<td>159.10</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>155.51</td>
<td>155.83</td>
<td>156.20</td>
<td>157.62</td>
<td>158.43</td>
<td>159.16</td>
</tr>
<tr>
<td>3 vest</td>
<td>Vestre løp ved Bukkøyene</td>
<td>155.36</td>
<td>155.68</td>
<td>156.05</td>
<td>157.46</td>
<td>158.27</td>
<td>158.98</td>
</tr>
<tr>
<td>3 øst</td>
<td>Østre løp ved Bukkøyene</td>
<td>155.31</td>
<td>155.62</td>
<td>155.99</td>
<td>157.40</td>
<td>158.21</td>
<td>158.92</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>154.49</td>
<td>154.66</td>
<td>154.88</td>
<td>155.89</td>
<td>156.97</td>
<td>157.84</td>
</tr>
<tr>
<td>1</td>
<td>Nedstrøms Bergheim målestasjon</td>
<td>153.94</td>
<td>154.09</td>
<td>154.28</td>
<td>154.77</td>
<td>155.07</td>
<td>155.44</td>
</tr>
</tbody>
</table>
Tabell 3.3 Vannstander for profilene i Rukkedøla, ved flommer av ulike gjentaksintervall. For de situasjoner der Hallingdalselva med vannstand i profil 19 er høyere ved samme gjentaksintervall, er Hallingdalselvas vannstand oppgitt med rød skrift.

<table>
<thead>
<tr>
<th>Profil nummer</th>
<th>Beskrivelse</th>
<th>10års flom vannstand (m.o.h)</th>
<th>20års flom vannstand (m.o.h)</th>
<th>50års flom vannstand (m.o.h)</th>
<th>100års flom vannstand (m.o.h)</th>
<th>200års flom vannstand (m.o.h)</th>
<th>500års flom vannstand (m.o.h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>Ved museet</td>
<td>171.2</td>
<td>171.3</td>
<td>171.4</td>
<td>171.9</td>
<td>171.9</td>
<td>171.9</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>168.9</td>
<td>169.0</td>
<td>169.1</td>
<td>169.2</td>
<td>169.3</td>
<td>169.3</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td>166.3</td>
<td>166.4</td>
<td>166.5</td>
<td>166.6</td>
<td>166.7</td>
<td>166.7</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td>165.3</td>
<td>165.5</td>
<td>165.6</td>
<td>165.8</td>
<td>165.9</td>
<td>166.0</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>165.1</td>
<td>165.3</td>
<td>165.5</td>
<td>165.7</td>
<td>165.8</td>
<td>165.9</td>
</tr>
<tr>
<td>41</td>
<td>Rett oppstrøms profil 35</td>
<td>164.6</td>
<td>164.8</td>
<td>164.8</td>
<td>165.2</td>
<td>165.3</td>
<td>165.5</td>
</tr>
<tr>
<td>40.1</td>
<td></td>
<td>164.3</td>
<td>164.5</td>
<td>164.7</td>
<td>164.9</td>
<td>165.1</td>
<td>165.2</td>
</tr>
<tr>
<td>40</td>
<td>Bru</td>
<td>163.9</td>
<td>164.0</td>
<td>164.1</td>
<td>164.3</td>
<td>164.4</td>
<td>164.4</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>162.3</td>
<td>162.4</td>
<td>162.5</td>
<td>162.6</td>
<td>162.7</td>
<td>162.7</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>161.2</td>
<td>161.3</td>
<td>161.4</td>
<td>161.5</td>
<td>161.6</td>
<td>161.7</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>160.8</td>
<td>160.8</td>
<td>160.9</td>
<td>161.0</td>
<td>161.0</td>
<td>161.1</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>159.5</td>
<td>159.6</td>
<td>159.7</td>
<td>159.8</td>
<td>159.9</td>
<td>160.0</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>158.2</td>
<td>158.3</td>
<td>158.4</td>
<td>158.5</td>
<td>158.8</td>
<td>158.7</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>157.0</td>
<td>157.1</td>
<td>157.2</td>
<td>157.3</td>
<td>157.4</td>
<td>157.4</td>
</tr>
<tr>
<td>33</td>
<td>Gangbru</td>
<td>157.1</td>
<td>157.1</td>
<td>157.2</td>
<td>157.3</td>
<td>157.4</td>
<td>157.5</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>156.9</td>
<td>157.1</td>
<td>157.2</td>
<td>157.3</td>
<td>157.4</td>
<td>157.4</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>156.9</td>
<td>157.1</td>
<td>157.2</td>
<td>157.3</td>
<td>157.4</td>
<td>157.5</td>
</tr>
<tr>
<td>30.1</td>
<td>(terskel)</td>
<td>156.9</td>
<td>157.1</td>
<td>157.2</td>
<td>157.3</td>
<td>157.4</td>
<td>157.5</td>
</tr>
<tr>
<td>30</td>
<td>Innløp til kulverter</td>
<td>156.9</td>
<td>157.1</td>
<td>157.2</td>
<td>157.3</td>
<td>157.4</td>
<td>157.5</td>
</tr>
</tbody>
</table>
4 Flomsonekart

4.1 Generering av flomsoner

På kartene (vedlagt) er en tabell (lik tabell 3.2 og 3.3) som viser flomhøyder tilknyttet tverrprofilene for de beregnede flommer. I et lengdeprofil er flomhøyden i tverrprofilene knyttet opp mot avstand fra havet. Lengdeprofil for normal vannstand er tatt fra vannstader ved profilering av Hallingdalselva høsten 1998.

Flomsonen er generert ved bruk av GIS-programmet ArcInfo. For hver flom er vannstanden i tverrprofilene gjort om til en flomflate. Mellom tverrprofilene er flaten generert ved lineær interpolasjon. Tverrprofilene er forlenget ut til grensen for analyseområdet før flatene genereres. Det er lagt inn hjelpelinjer mellom de oppmålte profilene for å sikre en jevn flate mellom profilene. Flatene har samme utstrekning og celledistans (5 x 5 meter) som terrengmodellen.

Flatene kombineres med den digitale terrengmodellen. Alle celler der celleverdien i flomflaten er større enn i terrengmodellen blir definert som vannetaker areal. Dette medfører at lavpunktområder som ikke har direkte kontakt med flomsonen langs elva også blir definert som vannetaker areal. Grensene for flomsonene er generalisert og plattet innenfor 5 meter og flatere under ca. 75 m² er fjernet.

4.2 Lavpunkt

En del steder vil det finnes arealer som ligger lavere enn den beregnede flomvannstanden, men uten direkte forbindelse til elva. Dette kan være områder som ligger bak flomverk, men også lavpunkter som har forbindelse via en kulvert eller via grunnvannet. Disse områdene er markert med en egen skravur på blå bunn fordi de vil ha en annen sannsynlighet for oversvømmelse og må behandles særskilt. Spesielt utsatt vil disse områdene være ved intens lokal nedbør, ved stor flom i sidebekker eller ved gjentetting av kulverter.

Figur 4.4. Prinsippskisse som viser definisjonen av lavpunkt
4.3 **Kjellerfri sone – fare for oversvømmelse i kjeller**

Også utenfor flomsone og lavpunkter kan det være nødvendig å ta hensyn til flomfaren, da flommen vil føre til forhøyet grunnvannstand innover på elveslettene. Tilsvarende som for lavpunkter gjøres ingen kartlegging av grunnforholdene, men terreng som ligger mindre enn 2,5 meter over flomvannstand identifiseres. Innenfor denne sonen vil det være fare for at bygg som har kjeller får oversvømmelse i denne som følge av flommen (fig 4.5). Disse områdene er markert med skravur på hvit bunn.

Uavhengig av flommen kan selvsagt forhøyet grunnvannstand føre til vann i kjellere. For å analysere dette kreves inngående analyser blant annet av grunnforhold. Det ligger utenfor flomsonekartprosjektets målsetting å kartlegge slike forhold.

Figur 4.5 **Prinsippskisse som viser definisjonen av kjellerfri sone**

4.4 Kartpresentasjon

På selve kartet presenteres ulike objekter. Bygninger er delt inn ut fra hvor de befinner seg i forhold til flommen: a) flomutsatte bygg (oransje farge), disse ligger helt eller delvis i flomsonen, b) bygg med fare for oversvømmelse i kjeller (gul farge), disse ligger helt eller delvis i den kjellerfrisonen og c) ikke flomutsatte bygg (grå farge). Oversvømte veier er markert med mørk grønn farge, mens veier som ligger utenfor flomsonen er markert med rødt. På kartet vises dette i kombinasjon med 100 års flom, tilhørende kjellerfrisone, tverrprofiler, elvesystemer, jernbane, høyspentledninger og 5 meters høydekor. På kartet presenteres også tverrprofilene med flomhøyder som tabell og grafisk framstilt sammen med normalvannstand.
4.5 Kartdata

For kartbladet Nesbyen er det de verdiene som er oppgitt med rødt i tabell 3.3 som er benyttet for høydene i Rukkedøla, lengst nedstrøms. Beregnet oversvømt areal for alle flommene er vist i tabell 4.1.

Flomsonene er kvalitetskodet og datert i henhold til SOSI-standart. Lavpunktene og er kodet og skravert på kartet spesielt. Alle flomutsatte flater er kodet med datafeltene FTEMA = 3280 og GJENTAKINT = gjentaksintervall. Lavpunkt er kodet med kode LAVPUNKT = 1 (ellers = 0). I tillegg finnes alle flommene pluss kjellerfrisone på digital form, på SOSI format og ArcView (shape) format i aktuelle NGO akse og UTM sone. Disse digitale dataene, tverrprofiler med flomvannstand, rapporten, samt bilder av alle flomsonekartet på jpeg og eps-format, er brent på CD og sendt til primærbrukerne.

<table>
<thead>
<tr>
<th>Gjentaksintervall</th>
<th>Flomutsatt areal Totalt (daa)</th>
<th>Flomutsatt areal Lavpunkter (daa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 års flom</td>
<td>2261</td>
<td>49</td>
</tr>
<tr>
<td>20 års flom</td>
<td>2494</td>
<td>17</td>
</tr>
<tr>
<td>50 års flom</td>
<td>2597</td>
<td>19</td>
</tr>
<tr>
<td>100 års flom</td>
<td>3236</td>
<td>11</td>
</tr>
<tr>
<td>200 års flom</td>
<td>3528</td>
<td>18</td>
</tr>
<tr>
<td>500 års flom</td>
<td>3828</td>
<td>25</td>
</tr>
<tr>
<td>Kjellerfrisone (ved 100 års flom)</td>
<td>4438</td>
<td>2</td>
</tr>
</tbody>
</table>

4.6 Resultater fra flomsoneanalysen

Resultatet fra analysene viser at store deler av Nesbyen sentrum og deler av riksveien vil bli oversvømt allerede ved lave gjentaksintervaller. Rukkedøla vil gå over sine bredder og sannsynligvis ta nytt løp før flomvannføringen når en 100års flom. I figur 4.6 er oversvømmelse fra Rukkedøla vist med mørk blått. Fordi flomvannet vil ha stor hastighet er dette en svært dramatisk situasjon, der også menneskeliv vil kunne gå tapt. En forbygning ved Hajembrua vil her kunne forhindre at deler av sentrum blir oversvømt. Det må understrekes at Rukkedøla kan ta nytt løp også andre steder enn figur 4.6 viser.

Store deler av det lyse blå området er overlappende flom fra både Rukkedøla og Hallingdalselva. Hallingdalselva har litt større utbredelse på jordene nord for sentrum.

Riksvei 7 blir oversvømt på flere steder ved 10 års flommen. Omkjøring er mulig via Alfarveien ved 10 og 20 års-flom.
Langs Hallingdalselva vil campingplassene på Sutøya og Liodden være flomutsatt allerede ved en 10 års flom og Nor Senteret Bromma mellom en 50 og 100 års flom.

Kartgrunnlaget for området mellom Bromma og Bergheim var for dårlig til å kunne utføre en GIS-analyse. Om man sammenligner høyde på tverrprofilene med høyden på terrenget, vil man se at potensialet for oversvømmelse ved flom er stor i området ved Bergheim. Deler av sagbruket vil sannsynligvis bli oversvømt ved en 10 års flom.

5 Andre faremomenter i området

5.1 Innsamling av andre faredata
I flomsonekartprosjektet vurderes også vassdragsrelaterte forhold som ikke uten videre inngår i eller tas hensyn til i flomsonekartleggingen, slik som erosjon og massetransport og isforhold. Flomsonekartprosjektet har ikke som mål fullstendig å kartlegge slik fare, men skal systematisk forsøke å samle inn eksisterende informasjon for å presentere kjente problemer langs vassdraget som har betydning for de flomstørrelser som beregnes i prosjektet. Opplysningene er basert på NVEs arkivmateriale og kjennskap til området. Kommunen har ikke besvart skjema for innsamling av is og erosjon/sedimentdata.

5.2 Is
I Hallingdalselva utløses det isganger enkelte år i strykene nedenfor Svenkerud. Isen stanser i det flate området ved Nesbyen, men de sammenskjøvne ismassene truer sjelden riksveien. I Rukkedøla har det enkelte år vært betydelige mengder svellis, som kan kreve at det gjøres mindre tiltak for å unngå skader.

5.3 Massetransport og erosjon

Rukkedøla

Hallingdalselva
Hallingdalselva vil flomtoppen bruke lengre tid på å bygge seg opp og føre til langsamt økende oversvømmelser som gir tid til evakuering. Flom i Hallingdalselva vil sannsynligvis bare føre til mindre erosjonsskader og det er liten sannsynlighet for at elva vil ta nytt løp. Det er per i dag ingen større sikringstiltak i Hallingdalselva.

5.4 Kulverter
Kulvertene under riksvei 7 burde absolutt vært erstattet med en bru ut fra en vurdering av hydraulikk og flomfare. Kulverter blokkeres lettere av drivgods, f.eks. vegetasjon som rives løs fra elvekantene, med fare for større oversvømmelser, store erosjonsskader og at elva kan bryte nytt løp. Det er vanskelig å vurdere i hvor stor grad kulvertene vil stuve opp vannet, redusere vannhastigheten og bidra til en sedimentering av masser oppstrøms kulvertene i Rukkedøla. Dette vil kunne føre til at Rukkedøla tar nytt løp.
Blokkering av kulverter og bruer på grunn av is og drivgods i elver er et generelt problem. NVE anbefaler en generell gjennomgang av hvilke kulverter som gir skadeomfang ved blokkering. Dette bør gjennomføres som en del av kommunens risiko- og sårbarhetsanalyse (ROS).
6 Usikkerhet i datamaterialet

6.1 Flomberegningen

En annen faktor som fører til usikkerhet i data er at NVEs database er basert på døgnmiddelverdier knyttet til kalenderdøgn. I prinsippet er alle flomvannføringer derfor noe underestimerte, fordi flomtoppen alltid vil være større enn kalenderdøgennmiddel.

Å kvantifisere usikkerhet i hydrologiske data er meget vanskelig. Det er mange faktorer som spiller inn, særlig for å anslå usikkerhet i ekstreme vannføringsdata. Konklusjonen for denne beregning er at datagrunnlaget er godt, men at effekten av reguleringene på flomforholdene er vanskelig å forutsi. Beregningen kan ut fra dette kriterium klassifiseres i klasse 2, i en skala fra 1 til 3 hvor 1 tilsvarer beste klasse.

6.2 Vannlinjeberegningen
Kvaliteten på vannlinjeberegningene er avhengig av en godt kalibrert vannlinjeberegningsmodell. Det vil si at det samles inn samhørende verdier av vannføring og vannstand som modellen kan kalibreres etter. Generelt er det vanskelig å samle inn data for store nok vannføringar. Data for eldre historiske flommer har en redusert verdi på grunn av endringer i elveløpet og elveslettene som f.eks. brubygging, veibygging, flomverk, masseuttak og lignende.

Beregningene har vist at oppstuvningene ved 200- og 500-årsflommene blir svært store, på grunn av det smale profilet ved Bergheim. Usikkerheten i beregningene for disse gjentaksintervallene er imidlertid så stor at resultatene ikke bør benyttes ukritisk. Nøyaktigheten på 100-200års flom antas å være på +/- 0,5 m.

For Rukkedøla finnes ikke kalibreringsdata, beregnede flomhøyder er derfor behæftet med noe mer usikkerhet enn for Hallingdalselva.

6.3 Flomsonen
Nøyaktigheten i de beregnete flomsonene er avhengig av usikkerhet i hydrologiske data, flomberegninger og vannlinjeberegninger. I tillegg kommer usikkerheten i terrengmodellen.

Terrengmodellen bygger på konstruerte kartdata der forventet nøyaktighet i høyde er +/-30 cm. Selve utbredelsen av sonen kan derfor i svært flate områder bli noe unøyaktig. Kontroll av terrenghøyder mot beregnete vannstander kan da være nødvendig, for eksempel ved byggetillatelselser.
7 Veiledning for bruk

7.1 Hvordan leses flomsonekartet?
Oversvømt areal som beregnes er knyttet til flom i Hallingdalselva og Rukkedøla. Vannstander i andre sidebeker/-elver og oversvømmelse som følge av flom i disse beregnes ikke.

Områder som på kartet er markert som lavpunkt (områder bak flomverk, kulverter m.v.), er avledd fra en bestemt flom, men gjentaksintervallet kan ikke overføres direkte. Disse områdene er vist på kartet med skravur på blå bakgrunn. Flomfaren må i disse områdene vurderes nærmere, der en tar hensyn til grunnforhold, kapasitet på eventuelle kulverter m.v. Spesielt utsatt vil disse områdene være ved intenst lokalt regn, ved stor flom i sidebeker eller ved gjentetning av kulverter. Kjellerfrisone er avledd av 100 års flommen ved å legge på 2.5 m på flomhøyden ved 100 år flom. Denne er vist på kartet med skravur. Dette er områder hvor det med stor sannsynlighet vil komme van i kjellerne ved flom. Det må vurderes om nye bygninger her bør bygges uten kjeller. Bygninger i den kjellerfrisone er markert med gul farge. For beredskap, er bygninger som er markert med oransje farge, bygninger som vil ligge utsatt til og hvor flommassene vil kunne stå et stykke opp på veggen avhengig av beliggenhet i flomsone. Veier markert med mørk grønn, er veier som vil være oversvømt og delvis eller ikke kjørbare under flommen, avhengig av beliggenhet i flomsonen.

7.2 Unngå bygging på flomutsatte arealer
Stortinget har forutsatt at sikringsbehovet langs vassdragene ikke skal øke som en følge av ny utbygging. Derfor bør ikke flomutsatte områder tas i bruk om det finnes alternative arealer. Fortetning i allerede utbygde områder skal heller ikke tillates før sikkerheten er brakt opp på et tilfredsstillende nivå i henhold til NVEs retningslinjer. Krav til sikkerhet mot flomske er kvantifisert i NVEs retningslinje (Toverød 1999). Kravene er differensiert i forhold til type flom og type byggverk/infrastruktur.

Egnede arealbrukskategorier og reguleringsformål for flomutsatte områder, samt bruk av bestemmelser, er omtalt i (Skauge 1999).

7.3 Arealplanlegging og byggesaker – bruk av flomsonekart
Ved oversiktsplanlegging kan en bruke flomsonekartene direkte for å identifisere områder som ikke bør bebygges uten nærmere vurdering av faren og mulige tiltak.

Ved detaljplanlegging og ved dele- og byggesaksbehandling må en ta hensyn til at også flomsonekartene har begrenset nøyaktighet. Primært må en ta utgangspunkt i de beregnede vannstander og kontrollere terrengforholdet i felt mot disse. En sikkerhetsmargin skal alltid legges til ved praktisk bruk. For å unngå flomskade må dessuten dreneringen til et bygg ligge slik at avlopet fungerer under flom. Sikkerhetsmarginen bør tilpasses det aktuelle prosjekt. I dette prosjektet er grunnlagsmaterialet vurdert som godt. Vi mener utfra dette at et påslag med 0,5 m på de beregnede vannstander for å dekke opp usikkerhet i beregningen, bør være tilfredsstillende.
7.4 Flomvarsling og beredskap – bruk av flomsonekart

Et flomvarsel forteller hvor stor vannføring som ventes, sett i forhold til tidligere flomsituasjoner i vassdraget. Det er ikke nødvendigvis et varsel om skade. For å kunne varse skadeflom, må man ha detaljert kjennskap til et område. I dag sender NVE ”Varsel om flom” når vi venter vannføring med gjentaksintervall på mer enn 5 år. Varsel om stor flom sendes ut når vi venter vannføring med mer enn 50 års gjentaksintervall. Ved kontakt med flomvarslingen vil en ofte kunne få mer detaljert informasjon.

På grunn av usikkerhet både i flomvarsler og flomsonekartene, må en legge på sikkerhetsmarginer ved planlegging og gjennomføring av tiltak.

7.5 Hvordan forholde seg til usikkerhet på kartet?

NVE lager flomsonekart med høyt presisjonsnivå som for mange formål skal kunne brukes direkte. Det er likevel viktig å være bevisst at flomsonenes utbredelse avhenger av bakenforliggende datagrunnlag og analyser.

Spesielt i områder nær flomsonegrensen er det viktig at høyden på terreng sjekkes mot de beregnede flomvannstader. På tross av god nøyaktighet på terrengmodell kan det være områder som på kartet er angitt å ligge utenfor flomsonen, men som ved detaljmåling i felt kan vise seg å ligge under det aktuelle flomnivået. Tilsvarande kan det være mindre områder innenfor flomområdet som ligger over den aktuelle flomvannstand.

En måte å forholde seg til usikkerheten på, er å legge sikkerhetsmarginer til de beregnete flomvannstader. Hvor store disse skal være vil avhenge av hvilke tiltak det er snakk om. For byggetiltak har vi i kap. 7.3 angitt konkret forslag til påslag på vannstandene. I forbindelse med beredskapsituasjoner vil ofte usikkerheten i flomvannene langt overstige usikkerheten i vannlinjene og flomsone. Det må derfor gjøres påslag som tar hensyn til alle elementer.

Geometrien i elveløpet kan bli endret, spesielt som følge av store flommer eller ved menneskelige inngrep, slik at vannstandsforholdene endres. Tilsvarende kan terrenningrepost inn på elveslettene, så som oppfyllinger, føre til at terrengmodellen ikke lenger er gyldig i alle områder. Over tid kan det derfor bli behov for å gjennomføre revisjon av beregningene og produsere nye flomsonekart.

Så lenge kartene anser å utgjøre den best tilgjengelige informasjon om flomfare i et område, forutsettes de lagt til grunn for arealbruk og flomtiltak.

7.6 Generelt om gjentaksintervall og sannsynlighet

Gjentaksintervall er det antall år som gjennomsnittlig går mellom hver gang en får en like stor eller større flom. Dette intervallet sier noe om hvor sannsynlig det er å få en flom av en viss størrelse.
Sannsynligheten for eksempelvis en 50-års flom er 1/50, dvs. 2 % hvert eneste år. Dersom en 50-års flom nettopp er inntruffet i et vassdrag betyr dette ikke at det vil gå 50 år til neste gang. Den neste 50-års flommen kan inntreffe allerede i inneværende år, om to, 50 år eller kan hende først om 200 år. Det er viktig å være klar over at sjansen for eksempelvis å få en 50-årsflom er like stor hvert år men den er liten - bare 2 prosent.

Et aktuelt spørsmål ved planlegging av virksomhet i flomutsatte områder er følgende: Gitt en konstruksjon med forventet (økonomisk) levetid (L) år. Det kreves at sannsynlighet (P) for skade p.g.a. flom skal være < P. Hvilket gjentaksintervall (T) må velges for å sikre at dette kravet er oppfylt?

Tabellen nedenfor kan brukes til å gi svar på slike spørsmål. Eksempelvis vil det i en periode på 50 år være 40 % sjanse for at en 100-årsflom eller større inntreffer. Tar man utgangspunkt i en “akseptabel sannsynlighet for flomskade” på eksempelvis 10 % i en 50-årsperiode, viser tabellen at konstruksjonen må være sikker mot en 500-årsflom!

Tabell 7.1 Sannsynlighet for overskrildelse i % ut fra periodelengde og gjentaksintervall.
Referanser
Berg H.1999. Flomsonekartplan. Prioriterte elvestrekninger for kartlegging i flomsonekartprosjektet. NVEs hustrykkeri
Skauge A. 1999. Arealplanlegging i tilknytning til vassdrag og energianlegg. NVE veileder nr.1.1999
Toverød B.S.1999. Arealbruk og sikring i flomutsatte områder. NVEs retningslinjer nr.1.1999

Vedlegg
Flomsonekart Sutøya, Nesbyen sentrum, Liodden og Bromma.
Utgitt i NVEs flomsonerkartserie - 2000:
Nr 1 Ingebrigt Bævre: Delprosjekt Sunndalsøra
Nr 2 Siri Stokseth: Delprosjekt Trøsile
Nr 3 Kai Fjelstad: Delprosjekt Elverum
Nr 4 Øystein Nøtsund: Delprosjekt Førde
Nr 5 Øyvind Armand Høydal: Delprosjekt Otta
Nr 6 Øyvind Lier: Delprosjekt Rognan og Røkland

Utgitt i NVEs flomsonerkartserie - 2001:
Nr 1 Ingebrigt Bævre: Delprosjekt Støren
Nr 2 Anders J. Muldsvor: Delprosjekt Gaupne
Nr 3 Eli K. Øydvin: Delprosjekt Vågåmo
Nr 4 Eirik Traae: Delprosjekt Høyanger
Nr 5 Ingebrigt Bævre: Delprosjekt Melhus
Nr 6 Ingebrigt Bævre: Delprosjekt Trondheim
Nr 7 Siss-May Edvardsen: Delprosjekt Grodås
Nr 8 Øyvind Høydal: Delprosjekt Rena
Nr 9 Ingjerd Haddeland: Delprosjekt Flisa

Utgitt i NVEs flomsonerkartserie - 2002:
Nr. 1 Øyvind Espeseth Lier: Delprosjekt Karasjok
Nr. 2 Siri Stokseth: Delprosjekt Tuven
Nr. 3 Ingjerd Haddeland: Delprosjekt Liknes
Nr. 4 Ahmed Reza Naserzadeh: Delprosjekt Åkrestrømmen
Nr. 5 Ingebrigt Bævre: Delprosjekt Selbu
Nr. 6 Eirik Traae: Dalen
Nr. 7 Øyvind Espeseth Lier: Storslett
Nr. 8 Øyvind Espeseth Lier: Skoltefossen
Nr. 9 Ahmed Reza Naserzadeh: Koppang
Nr. 10 Christine Kielland Larsen: Nesbyen