Flomsonekartprosjektet

Flomberegning for Storelva og Nordelva

Thomas Væringstad

14
2007
Flomberegning for Storelva (037.Z) og Nordelva (037.2Z)

Norges vassdrags- og energidirektorat

2007
Dokument nr. 14 - 2007

Flomberegning for Storelva (037.Z) og Nordelva (037.2Z)

Utgitt av: Norges vassdrags- og energidirektorat
Forfatter: Thomas Væringstad

Trykk: NVEs hustrykkeri
Opplag: 30
Forsidefoto: Høllandsfossen i Nordelva 5. juni 2007 (Foto: Thomas Væringstad)
ISSN: 1501-2840

Sammendrag: I forbindelse med Flomsonekartprosjektet i NVE er det som grunnlag for vannlinjeberegning og flomsonekartlegging utført flomberegning for et delprosjekt i Storelva i Rogaland. Kulminasjonsvannføringer for flommer med forskjellige gjentaksintervall er beregnet for Storelva og Nordelva.

Emneord: Flomberegning, flomvannføring, Storelva, Nordelva
Innhold

Forord..4
Sammendrag...5
 1. Beskrivelse av oppgaven ..6
 2. Beskrivelse av vassdragene ...7
 3. Hydrometriske stasjoner ...11
 4. Beregning av flomverdier ..14
 4.1. Flomfrekvensanalyser ...14
 4.2. Beregning av middelflom ..16
 4.3. Beregning av kulminasjonsvannføring17
 4.4. Flomverdier ved samløpet mellom Storelva og Nordelva19
 Usikkerhet ..20
Referanser...21
Forord

Flomsonekartlegging er et viktig hjelpemiddel for arealdisponering langs vassdrag og for beredskapsplanlegging. NVE arbeider med å lage flomsonekart for flomutsatte elvestrekninger i Norge. Beregning av flomvannføringer på flomutsatte elvestrekninger er en del av dette arbeidet. Grunnlaget for flomberegnings er NVEs omfattende database over observerte vannstander og vannføringer, og NVEs hydrologiske analyseprogrammer som blant annet benyttes for flomfrekvensanalyser.

Denne rapporten gir resultatene av en flomberegnning som er utført i forbindelse med flomsonekartlegging av flomutsatt elvestrekning i Storelva i Rogaland. Rapporten er utarbeidet av Thomas Væringstad og kvalitetskontrollert av Erik Holmqvist.

Oslo, oktober 2007

Morten Johnsrud
avdelingsdirektør

Sverre Husebye
seksjonssjef
Sammendrag

Flomberegningen for Storelva og Nordelva omfatter delprosjekt fs 037_1 Sauda i NVEs Flomsonekartprosjekt. Vassdragene er kystnære og ligger i Rogaland i Sauda kommune og hvor elvene munner ut i Saudafjorden ved Sauda. Store flommer forekommer som oftest om høsten. Flomepisoder er normalt forårsaket av intens nedbør i form av regn og gjerne i kombinasjon med noe snøsmelting.

Det er målt vannføring i begge elvene, men måleperiodene er korte og målestasjonene dekker bare deler av vassdragene. Flomberegningen er basert på måledata fra disse stasjonene, regionale flomformler og frekvensanalyser av observerte flommer ved målestasjoner i nærliggende vassdrag. Det er også lagt vekt på flomberegninger utført i forbindelse med damsikkerhet. Det er beregnet kulminasjonsvannføring for ulike gjentaksintervall ved utløpet i fjorden. Resultatene av beregningene ble:

<table>
<thead>
<tr>
<th></th>
<th>Q_{st} m³/s</th>
<th>Q_{5} m³/s</th>
<th>Q_{50} m³/s</th>
<th>Q_{50} m³/s</th>
<th>Q_{100} m³/s</th>
<th>Q_{200} m³/s</th>
<th>Q_{500} m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storelva</td>
<td>299</td>
<td>393</td>
<td>467</td>
<td>506</td>
<td>629</td>
<td>749</td>
<td>876</td>
</tr>
<tr>
<td>Nordelva</td>
<td>147</td>
<td>184</td>
<td>214</td>
<td>237</td>
<td>292</td>
<td>325</td>
<td>368</td>
</tr>
</tbody>
</table>

Å kvantifisere usikkerheten i hydrologiske data er vanskelig, og det er mange faktorer som spiller inn. På grunn av noe mangelfullt datagrunnlag i Storelavas nedbørfelt for å beregne flommer og at vassdraget er sterkt regulert, klassifiseres denne flomberegningen i klasse 3, i en skala fra 1 til 3 hvor 1 tilsvarer beste klasse.
1. Beskrivelse av oppgaven
Flomsonekart skal konstrueres for flomutsatte elvestrekninger i Storelva i Saudavassdraget og Nordelva, begge elvene i Sauda kommune i Rogaland og tilhører delprosjekt fs 037_1 Sauda i NVEs Flomsonekartprosjekt. Som grunnlag for konstruksjon av flomsonekart skal kulminasjonsverdier av middelflom og flommer med gjentaksintervall 5, 10, 20, 50, 100, 200 og 500 år beregnes ved Storelvas og Nordelvas utløp i fjorden. De aktuelle strekningene som skal flomsonekartlegges er to strekninger på 3,5 km og 2,5 km fra utløpet og oppover i vassdraget i henholdsvis Storelva og Nordelva. Kart over Storelvas og Nordelvas nedbørfelter er vist i Figur 1 og strekning som skal flomsonekartlegges er tegnet inn med rødt.

2. Beskrivelse av vassdragene

Storelva og Nordelva ligger begge i Sauda kommune i Rogaland og har utløp i Saudafjorden ved Sauda sentrum. Nedbørfeltene drenerer hovedsakelig i sørliglig retning, og elvene består av flere sidegrener.

Storelva har et nedbørfelt med totalt areal på 354 km². Høydefordelingen strekker seg fra havnivå til opp i vel 1600 moh. Median høyde er på 924 moh. og høyeste punkt i vassdraget er Kyrkjenuten på 1602 moh.

Nordelva har et nedbørfelt med totalt areal på 81.9 km². Høydefordelingen strekker seg fra havnivå til opp i over 1400 moh. Median høyde er på 860 moh. og høyeste punkt i vassdraget er Helgedalsnuten på 1435 moh.

Hypsografisk kurve for vassdragene er vist i Figur 2 og aktuelle feltparametere er oppsummert i Tabell 1.

<table>
<thead>
<tr>
<th>Feltparametere for Storelvas og Nordelvas nedbørfelt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Areal</td>
</tr>
<tr>
<td>Storelva</td>
</tr>
<tr>
<td>Nordelva</td>
</tr>
</tbody>
</table>

Normalavløpet for vassdraget er beregnet ut fra NVEs avrenningskart for perioden 1961-1990 (NVE, 2002) og gir en midlere spesifikk avrenning for Storelva og Nordelva på henholdsvis 100 l/s·km² og 119 l/s·km². Avrenningen varierer fra rundt 50 l/s·km² i de lavereliggende områdene rundt fjorden til opp mot 150 l/s·km² i de høyereomliggende områdene. Avrenningskartet har en usikkerhet på ±20 % og øker i alminnelighet for små arealer. Estimatet for årlig middelavrenning i vassdraget er noe usikkert, fordi kartet er basert på modellsimuleringer og ikke direkte er knyttet opp mot målinger i vassdraget.

Sesongvariasjonen i avrenningen for Storelva og Nordelva vurderes ut fra målestasjon 41.8 Hellaugvatn. Figur 3 viser karakteristiske vannføringsverdier for 41.8 Hellaugvatn som antas å beskrive avrenningsmønsteret i Storelva og Nordelva godt. Øverste kurve i diagrammet viser største observerte døgnmiddelvannføring for hver enkelt dag i året.

Nederste kurve viser minste observert vannføring i løpet av måleperioden og den midterste kurven er mediankurven, dvs. at det er like mange observasjoner i løpet av referanseperioden som er større eller mindre enn denne.

Figur 4 viser relativ flomstørrelse og tidspunkt for flommer ved målestasjon 41.8 Hellaugvatn over en gitt terskelverdi, her på ca 15 m3/s, noe som er i overkant av 60 prosent av middelflom ved vannmerket for perioden 1982-2005.

Ut fra Figur 3 og Figur 4 kan en se at store flommer ved målestasjon 41.8 Hellaugvatn som oftest inntreffer om høsten, men de kan også hende i andre deler av året. Målestasjonen antas å være representativ for relativ størrelse og fordelingen av flommer gjennom året i Storelva og Nordelva.

Reguleringer i vassdragene

Det er flere overføringer og magasiner i de to vassdragene, og det er antatt at dette vil ha en dempende innvirkning på flommer, spesielt på flommer med lave gjentaksintervall. Reguleringene brukes aktivt for å redusere flommene i vassdragene.

For øyeblikket pågår Saudautbyggingen for fullt, og består av en oppgradering av eksisterende anlegg og en del nybygging. Det er antatt at det vil skje små endringer i de nåværende flomforholdene i Storelva og Nordelva som følge av utbyggingen. Magasinprosenten i de to vassdragene er for Storelva og Nordelva på henholdsvis ca 30 % og 3-4 %.

Storelva

Uregulert restfelt nedstrøms inntak/reguleringer er 38.6 km² og har en estimert middelavrenning på 71 l/s·km². Det er ingen sjøer av betydning i restfeltet. Dette vil si at Storelavas nedbørfelt er sterkt påvirket av reguleringene og hvor stort overløpet ved inntakspunktene er, vil ha stor betydning for flommene. Det er også å forvente at det vil være en tidsforskyvning mellom restfeltet og bidraget som kommer fra den regulerte delen av feltet.

Nordelva

Uregulert restfelt nedstrøms inntak/reguleringer er 67.7 km² og har en avrenning på 115 l/s·km². Regulert felt er på 14.2 km² og har et magasinvolum på 10.4 mill. m³. Maks overføringskapasitet av vann fra Nordelva til Storelva er på 12 m³/s. Ved flommer vil denne overføringen vanligvis være stengt. Det er ingen sjøer av betydning i uregulert restfelt. Dette feltet vil ha mer karakter av uregulert felt enn hva som er tilfelle for Storelva. Nedbørfeltet reagerer raskt på nedbørhendelser, og flommer har ofte et spisst forløp.

Tabell 2. Feltparametere for uregulerte restfelter nedstrøms reguleringene i Storelva og Nordelva.

<table>
<thead>
<tr>
<th></th>
<th>Areal</th>
<th>Eff. sjø %</th>
<th>Sjø %</th>
<th>Feltlengde</th>
<th>Normalavløp, Qₙ, l/s·km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storelva (ureg. restfelt)</td>
<td>38.6</td>
<td>0.0</td>
<td>0.4</td>
<td>15.2</td>
<td>71</td>
</tr>
<tr>
<td>Nordelva (ureg. restfelt)</td>
<td>67.7</td>
<td>0.1</td>
<td>1.8</td>
<td>9.5</td>
<td>115</td>
</tr>
</tbody>
</table>
3. Hydrometriske stasjoner

Figur 5. Oversikt over avløpsstasjoner benyttet i beregningene. Nedbørfeltet til stasjonene er inntegnet med blå strek, mens naturlig nedbørfelt for Storelva og Nordelva (Åbøelva) er inntegnet med svart strek.
Tabell 3. Feltparametere for målestasjoner i Storelvas og Nordelvas omegn.

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Feltareal km²</th>
<th>Eff. sjø %</th>
<th>Normalavløp Q_n l/s/km²</th>
<th>Høydeintervall moh.</th>
<th>Median høyde moh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.13 Grimsvatn</td>
<td>34.6</td>
<td>1.2</td>
<td>92/94.8</td>
<td>563-1537</td>
<td>832</td>
</tr>
<tr>
<td>37.6 Brekkestøl</td>
<td>14.4</td>
<td>0.0</td>
<td>109/104.6</td>
<td>289-1054</td>
<td>757</td>
</tr>
<tr>
<td>37.7 Hølland</td>
<td>80.6</td>
<td>0.2</td>
<td>120/-</td>
<td>38-1440</td>
<td>863</td>
</tr>
<tr>
<td>37.8 Buer</td>
<td>18.8</td>
<td>0.1</td>
<td>134/134.4</td>
<td>476-1264</td>
<td>949</td>
</tr>
<tr>
<td>37.27 Breiborgvatn</td>
<td>12.7</td>
<td>1.8</td>
<td>104/83.1</td>
<td>663-1536</td>
<td>884</td>
</tr>
<tr>
<td>41.7 Blomstølvatn</td>
<td>25.7</td>
<td>0.6</td>
<td>140/121.4</td>
<td>628-1134</td>
<td>922</td>
</tr>
<tr>
<td>41.8 Hellaugvatn</td>
<td>27.0</td>
<td>1.4</td>
<td>126/119.1</td>
<td>271-1263</td>
<td>904</td>
</tr>
<tr>
<td>42.2 Djupevad</td>
<td>31.9</td>
<td>0.0</td>
<td>108/100.3</td>
<td>88-1152</td>
<td>526</td>
</tr>
<tr>
<td>42.5 Rullestadvatn</td>
<td>105</td>
<td>0.8</td>
<td>95/96.3</td>
<td>97-1402</td>
<td>842</td>
</tr>
<tr>
<td>42.6 Baklihøl</td>
<td>19.9</td>
<td>0.0</td>
<td>152/115.8</td>
<td>196-1305</td>
<td>898</td>
</tr>
</tbody>
</table>

Nedbørfeltet til stasjonen 41.8 Hellaugvatn grenser til Nordelva i vest. Feltarealet er på 27.0 km² og er mindre enn hva som er tilfelle for Storelva og Nordelva. Måleserien har observasjoner siden 1981. Vannføringskurven er middels god på store vannføringer.

Målestasjonen 42.2 Djupevad ligger et stykke vest for Storelva og Nordelva, og nedbørfeltet ligger i snitt noe lavere. Djupevad er derfor litt mer preget av kystklima enn hva som er tilfelle for Storelva og Nordelva. Målestasjonen har observasjoner siden 1963 og datakvaliteten regnes som god etter 1975.

Målestasjonen 42.6 Baklihøl ligger litt nord for Nordelva. Målestasjonen har en del manglende observasjoner og dataene regnes som usikre før 1999 pga profilforandringer. Dataene f.o.m. 1999 regnes som gode. Analysegrunnlaget er derfor usikkert og av antatt dårlig kvalitet.
4. Beregning av flomverdier

Grunnlaget for flomonekartleggening er flomvannføringer for gitte gjentaksintervall som beskrevet i kapitel 1. Utgangspunktet for flomfrekvensanalysene er observasjonsserier av vannføring i Storelva og Nordelva, samt en sammenligning med nærliggende vassdrag og regionale flomfrekvenskurver (Sælthun et al., 1997).

4.1. Flomfrekvensanalyser

![Figur 7. Tilpasset fordelingsfunksjon til årsflommer (døgnmiddel) ved stasjon 41.8 Hellaugvatn. Vannføringen på Y-aksen er gitt som forholdet Q_T/Q_M.](image_url)
I flomsonekartprosjektet legges frekvensanalyse av årsflommer til grunn for beregningene (NVE, 2000). Det vil si at frekvensanalysen er basert på en serie som består av den største observerte døgnmiddelvannføringen for hvert år.

Med bakgrunn i dette er det utført flomfrekvensanalyser av årsflommer ved målestasjonene beskrevet i kapitel 3. Pga ukontrollerte data og kort observasjonsperiode er Hølland ikke benyttet i analysene. For de tre stasjonene Brekkeostøl, Buer og Breiborgvatn er observasjonsperioden så kort at kun middelflommen er estimert. For hver av de andre stasjonene tilpasses ulike fordelingsfunksjoner, og den frekvensfordelingen som vurderes best tilpasset de observerte årsflommene velges. Figur 7 viser fordelingsfunksjonen som synes å være best tilpasset de observerte årsflommene ved målestasjon 41.8 Hellaugvatn. Valgt frekvensfordeling for de forskjellige stasjonene er sammenfattet i Tabell 4. Midlere flom (Q_M) er oppgitt i absolutte og spesifikke verdier og flommer for ulike gjenomføringstid (Q_T) som forholdstallet (flomfrekvensfaktor) til midlere flom (Q_M/Q_T). Flomfrekvensfaktorene er også illustrert i Figur 8. Variasjonen i frekvensfaktorene for de ulike målestasjonene er stor og forholdstallet Q₅₀₀/Q_M ligger eksempelvis fra 2.12 ved Grimsvatn til 2.73 ved Baklihøl.

Det er også foretatt en sammenligning med regionale flomfrekvenskurver (Sælthun et al., 1997). I kystregionene er disse basert på årsflommer, og i Tabell 4 er flomfrekvensfaktorene for region K2 gitt. Region K2 dekker områdene innenfor den ytterste kyststripen og omfatter mange fjorder og kystnære strøk. Storelva og Nordelva ligger i denne regionen, og beregninger for denne regionen er derfor tatt med. De regionale kurvene er basert på avløpsfelt i størrelsesorden fra 20 km² og oppover. I så måte er størrelsen på nedbørfeltet til Storelva og Nordelva innenfor grunnlaget av hva de regionale kurvene dekker.

Flomforholdene i et nedbørfelt påvirkes både av klimatiske og fysiografiske forhold. Ved valg av representativ frekvensfordeling for umålte felt, er det antatt at klimatiske forhold har størst betydning. Alle stasjonene i Tabell 3 er noenlunde sammenlignbare med forholdene i Storelva.
og Nordelva. Nedbørfeltet til Djupevad ligger i gjennomsnitt noe lavere og lenger ut mot kysten sammenlignet med Storelva og Nordelva og avrenningsregimet har trolig mer kystpreg enn de andre stasjonene. Flomfrekvensfaktorene for de regionale kurvene (K2) ligger i overkant av gjennomsnittet for alle målestasjonene i Tabell 4.

Som representativ frekvensfordeling for Storelva og Nordelva er det valgt å bruke regionale frekvensfaktorer fra K2-regionen avrundet til nærmeste 0.05 pga usikkerheten i valg av kurve. Verdiene er litt høyere enn gjennomsnittet ved stasjonene, men det skiller ikke så mye. Frekvensfaktorene fra K2 regionen virker rimelige sammenlignet med resten av målestasjonene som er undersøkt.

Tabell 4. Flomfrekvensanalyser av årsflommer for aktuelle målestasjoner, sammen med regionale frekvenskurver for årsflommer (Sælthun et al., 1997).

<table>
<thead>
<tr>
<th>Stasjon</th>
<th>Periode</th>
<th>Ant. år</th>
<th>Areal km²</th>
<th>(Q_M) l/s·km²</th>
<th>(Q_{10}/Q_M)</th>
<th>(Q_{20}/Q_M)</th>
<th>(Q_{50}/Q_M)</th>
<th>(Q_{100}/Q_M)</th>
<th>(Q_{200}/Q_M)</th>
<th>(Q_{500}/Q_M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.13 Grimsvatn</td>
<td>1973-61</td>
<td>31</td>
<td>34.6</td>
<td>829</td>
<td>1.18</td>
<td>1.33</td>
<td>1.48</td>
<td>1.66</td>
<td>1.80</td>
<td>1.94</td>
</tr>
<tr>
<td>37.6 Brekkjestal</td>
<td>1948-56</td>
<td>8</td>
<td>14.4</td>
<td>854</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37.7 Halland</td>
<td>1983-89</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37.8 Buer</td>
<td>1983-97</td>
<td>10</td>
<td>18.8</td>
<td>1074</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37.27 Breiborgvatn</td>
<td>1996-d.</td>
<td>11</td>
<td>12.7</td>
<td>715</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>41.7 Blomstølvatn</td>
<td>1981-03</td>
<td>20</td>
<td>25.7</td>
<td>1249</td>
<td>1.24</td>
<td>1.43</td>
<td>1.61</td>
<td>1.85</td>
<td>2.03</td>
<td>2.21</td>
</tr>
<tr>
<td>41.8 Hellaugvatn</td>
<td>1981-d.</td>
<td>24</td>
<td>27.0</td>
<td>900</td>
<td>1.19</td>
<td>1.37</td>
<td>1.54</td>
<td>1.78</td>
<td>1.97</td>
<td>2.17</td>
</tr>
<tr>
<td>42.2 Djupevad</td>
<td>1963-d.</td>
<td>42</td>
<td>31.9</td>
<td>1034</td>
<td>1.20</td>
<td>1.37</td>
<td>1.53</td>
<td>1.75</td>
<td>1.91</td>
<td>2.08</td>
</tr>
<tr>
<td>42.5 Rullestadvatn</td>
<td>1967-81</td>
<td>14</td>
<td>105</td>
<td>1750</td>
<td>1.30</td>
<td>1.52</td>
<td>1.71</td>
<td>1.95</td>
<td>2.12</td>
<td>2.26</td>
</tr>
<tr>
<td>42.6 Baklihøl</td>
<td>1965-d.</td>
<td>23</td>
<td>19.9</td>
<td>1482</td>
<td>1.24</td>
<td>1.45</td>
<td>1.67</td>
<td>1.96</td>
<td>2.18</td>
<td>2.41</td>
</tr>
<tr>
<td>Storelva</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.25</td>
<td>1.45</td>
<td>1.60</td>
<td>1.85</td>
<td>2.05</td>
<td>2.25</td>
<td>2.50</td>
</tr>
<tr>
<td>Nordelva</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.25</td>
<td>1.45</td>
<td>1.60</td>
<td>1.85</td>
<td>2.05</td>
<td>2.25</td>
<td>2.50</td>
</tr>
<tr>
<td>Regional kurve K2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.24</td>
<td>1.44</td>
<td>1.59</td>
<td>1.87</td>
<td>2.05</td>
<td>2.27</td>
<td>2.49</td>
</tr>
</tbody>
</table>

4.2. Beregning av middelflom

Ved beregning av absolutte flomstørrelser bør feltkarakteristika som effektiv sjøprosent og feltareal i større grad inngå i vurderingen av representativ nedbørfelt enn i frekvensanalysen. Spesifikk middelflom antas å avta med økt størrelse på nedbørfeltet, ved at flomtoppene fra de ulike delfeltene vil nå hovedvassdraget til litt forskjellig tid. Spesifikk middelflom vil også avta med økt effektiv sjøprosent, ved at sjøer har en flomdempende effekt.

Spesifikk middelflom varierer relativt mye for stasjonene i området (Tabell 4) og ligger i størrelsesordenen fra 715 l/s·km² til 1750 l/s·km². Størst spesifikk middelflom har Rullestadvatnet og denne verdien virker stor sammenlignet med de andre stasjonene. Vannføringskurven er usikker ved stasjonen og det er derfor antatt at denne stasjonen overestimerer middelflommene. Breiborgvatn har minst spesifikk middelflom av stasjonene, men inneholder en del sjøer som vil

I Sælthun et al. (1997) er det utarbeidet regionale flomformler for beregning av spesifikk middelflom som bygger på regresjon mot felparametere. For Storelvas og Nordelvas nedbørter er følgende formel aktuell:

Region K2: \(\ln(Q_M) = 1.1524 \times \ln(Q_N) - 0.0463 \times A_{SE} + 1.57 \)

Spesifikk middelflom beregnes med bakgrunn i årlig middelavrenning i \(l/s \cdot km^2 \) (\(Q_N \)) og effektiv sjøprosent (\(A_{SE} \)). Spesifikk middelflom beregnet med formelen for K2 for Storelva og Nordelva gir henholdsvis 930 \(l/s \cdot km^2 \) og 1174 \(l/s \cdot km^2 \). Tilsvarende verdier for uregulerte restfelter (tabell 2) er for Storelva og Nordelva gir henholdsvis 654 \(l/s \cdot km^2 \) og 1139 \(l/s \cdot km^2 \). Disse verdiene er innenfor hva som er observert middelflom ved målestasjonene i området. Det er stor grunn til å anta at reguleringene i stor grad vil dempe flommene i vassdragene, og da i hovedsak for Storelva. Nordelva vil i mindre grad få dempet flommene, men også her vil de være litt redusert og da spesielt på flommer med lave gjentaksintervaller. Middelflom for vassdragene i uregulert tilstand er for Storelva og Nordelva antatt å være henholdsvis 900 \(l/s \cdot km^2 \) og 1175 \(l/s \cdot km^2 \).

Med valgte verdier for middelflom, og flomfrekvensfordelingen som antas representativ for Storelva og Nordelva (tabell 4), blir de resulterende flomverdiene for uregulerte forhold som vist i tabell 5. Flomverdier for restfeltet nedstrøms reguleringene er også gitt.

Tabell 5. Beregnet middelflom (\(Q_m \)) og resulterende flomverdier ved ulike gjentaksintervall i Storelva og Nordelva, døgnmiddelvannføring.

<table>
<thead>
<tr>
<th>Punkt i vassdraget</th>
<th>Areal (km^2)</th>
<th>(Q_{M1}) (l/s \cdot km^2)</th>
<th>(Q_{10}) (m^3/s)</th>
<th>(Q_{20}) (m^3/s)</th>
<th>(Q_{50}) (m^3/s)</th>
<th>(Q_{100}) (m^3/s)</th>
<th>(Q_{200}) (m^3/s)</th>
<th>(Q_{500}) (m^3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storelva (uregulert)</td>
<td>354</td>
<td>900</td>
<td>319</td>
<td>398</td>
<td>462</td>
<td>510</td>
<td>605</td>
<td>653</td>
</tr>
<tr>
<td>Storelva (restfelt)</td>
<td>38.6</td>
<td>655</td>
<td>25</td>
<td>32</td>
<td>37</td>
<td>40</td>
<td>48</td>
<td>52</td>
</tr>
<tr>
<td>Nordelva (uregulert)</td>
<td>81.9</td>
<td>1175</td>
<td>96</td>
<td>120</td>
<td>140</td>
<td>154</td>
<td>183</td>
<td>197</td>
</tr>
<tr>
<td>Nordelva (restfelt)</td>
<td>67.7</td>
<td>1140</td>
<td>77</td>
<td>96</td>
<td>112</td>
<td>123</td>
<td>147</td>
<td>158</td>
</tr>
</tbody>
</table>

4.3. Beregning av kulminasjonsvannføring

Flomverdiene som hittil er presentert representerer døgnmiddelvannføring (uregulerte forhold i tabell 5). I små vassdrag vil kulminasjonsvannføring være atskillig større enn døgnmiddelvannføringen. Dette er spesielt karakteristisk i vassdrag hvor vannføringen kan stige raskt og flommene har et spisst forløp. Små nedbørter med lav effektiv sjøprosent vil typisk ha et raskere og spissere flomforløp sammenlignet med større nedbørter med høyere effektiv sjøprosent. Storelva har et mellomstort nedbørfelt, mens Nordelva er forholdsvis lite. Det er ventet at det vil være forholdsvis stor flomdemping på grunn av mange magasiner i Storelva. For Nordelva vil flommene ha et spisst forløp.

Forholdet mellom kulminasjonsvannføring (momentanvannføring) og døgnmiddelvannføring (\(Q_{mom} / Q_{mid} \)) anslås fortrinnsvis ved å analysere de største observerte flommene i vassdraget. Forholdstallet beregnes da for én eller flere av de større flommene ved målestasjoner i

For Hellaugvatn er fem flommer (døgnmiddel) sammenlignet med tilhørende kulminasjonsvannføringer. Tabell 6 viser kulminasjonsvannføring, døgnmiddelvannføring og forholdstallet, Q_{mom}/Q_{mid}, mellom disse. Kulminasjonsvannføringen er i gjennomsnitt ca 50 % større enn døgnmiddelvannføringen for høstflommer. Den største registrerte flommen ved målestasjonen er en høstflom og har forholdstall 1.92, men flommen kulminerer ved midnatt slik at døgnmiddelverdiene fordeler seg over to dager.

<table>
<thead>
<tr>
<th>Dato</th>
<th>Kulminasjon m3/s</th>
<th>Døgnmiddel m3/s</th>
<th>Q_{mom}/Q_{mid}</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.11.2005</td>
<td>59.2</td>
<td>30.8</td>
<td>1.92</td>
</tr>
<tr>
<td>26.10.1983</td>
<td>55.6</td>
<td>45.6</td>
<td>1.22</td>
</tr>
<tr>
<td>14.09.2005</td>
<td>48.7</td>
<td>37.1</td>
<td>1.31</td>
</tr>
<tr>
<td>12.11.2004</td>
<td>48.0</td>
<td>30.6</td>
<td>1.57</td>
</tr>
<tr>
<td>14.12.1991</td>
<td>47.5</td>
<td>31.1</td>
<td>1.53</td>
</tr>
</tbody>
</table>

I Sælthun et al. (1997) er det utarbeidet ligninger som uttrykker en sammenheng mellom forholdet Q_{mom}/Q_{mid} og feltkarakteristika for vår- og høstsesong. For vårflommer gjelder formelen:

$$Q_{mom}/Q_{mid} = 1.72 - 0.17 \cdot \log A - 0.125 \cdot A_{SE}^{0.5},$$

mens formelen for høstflommer er:

$$Q_{mom}/Q_{mid} = 2.29 - 0.29 \cdot \log A - 0.270 \cdot A_{SE}^{0.5},$$

hvor A er feltarealet og A_{SE} er effektiv sjøprosent. I Storelva vil de største flommene som regel inntreffe om høsten. Formelen for høstflommer gav for uregulerte forhold i Storelva og Nordelva et forholdstall på henholdsvis 1.29 og 1.61, mens for restfeltene er forholdstallene henholdsvis 1.83 og 1.76. Dette tilsvarer verdier noe mindre og større enn det som er observert gjennomsnitt av forholdstallene fra de største observerte flommene ved Hellaugvatn for uregulerte forhold og større for restfeltene. Nordelva er antatt å være et nedbørfelt med rask respons, så forholdstallet for uregulerte forhold er antatt å være 1.7. For de resterende forholdstallene er verdiene funnet fra regionalt formelverk benyttet videre i analysene.

For dagens forhold er det ventet at reguleringene i vassdraget virker flomdempende, spesielt på flommer med lav gjenomstøt. Siden det fins lite med observasjoner i vassdraget, er flomforholdene i vassdragene også basert på flomberegninger utført etter retningslinjene for damsikkerhet (Sweco Grøner, 2004). Disse flomberegningene omfatter bl.a. beregning av flommer med gjenomstøtt på 10- og 1000 år (kulminasjonsverdier). Med bakgrunn i
beregninger for aktuelle dammer, samt å ta hensyn til uregulert restfelt mellom inntak/dammer, er det estimert flommer for regulerte forhold i vassdragene.

For større flommer i vassdraget er det antatt at betydningen av reguleringene vil avta og gå mot uregulerte forhold. I flomberøringene er dette tatt hensyn til at flomverdiene gradvis går fra regulerte forhold til uregulerte forhold. I Storelva er det antatt at reguleringene har dominerende betydning frem t.o.m. flommer med gjentaksintervall 50 år, mens forholdene gradvis går mot uregulerte forhold, og ved gentakstid 500 år vil flommene i vassdraget være tilnærmet uregulerte. Nordelva er i mindre grad regulert, og samme overgangen er antatt å inntreffe fra regulerte forhold ved en 20 års flom til uregulerte forhold ved en 200 års flom.

Resulterende kulminasjonsvannføringer ved flommer med forskjellige gjentaksintervall i Storelva og Nordelva er vist i Tabell 7.

Tabell 7. Flomverdier i Storelva og Nordelva ved utløpet i fjorden, kulminasjonsvannføringer.

<table>
<thead>
<tr>
<th>Punkt i vassdraget</th>
<th>Areal (km²)</th>
<th>Qₘₐₓ/ Qₘᵢᵈ</th>
<th>Q₅</th>
<th>Q₃</th>
<th>Q₂₅</th>
<th>Q₅₀</th>
<th>Q₁₀₀</th>
<th>Q₂₀₀</th>
<th>Q₅₀₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storelva (uregulert)</td>
<td>354</td>
<td>1.29</td>
<td>411</td>
<td>514</td>
<td>596</td>
<td>658</td>
<td>781</td>
<td>843</td>
<td>925</td>
</tr>
<tr>
<td>Nordelva (uregulert)</td>
<td>81.9</td>
<td>1.70</td>
<td>164</td>
<td>204</td>
<td>237</td>
<td>262</td>
<td>311</td>
<td>335</td>
<td>368</td>
</tr>
<tr>
<td>Storelva (restfelt)</td>
<td>38.6</td>
<td>1.83</td>
<td>46</td>
<td>58</td>
<td>67</td>
<td>74</td>
<td>88</td>
<td>95</td>
<td>104</td>
</tr>
<tr>
<td>Nordelva (restfelt)</td>
<td>67.7</td>
<td>1.76</td>
<td>136</td>
<td>170</td>
<td>197</td>
<td>217</td>
<td>258</td>
<td>278</td>
<td>305</td>
</tr>
<tr>
<td>Storelva (regulert del)</td>
<td>315</td>
<td>1</td>
<td>253</td>
<td>335</td>
<td>400</td>
<td>432</td>
<td>541</td>
<td>607</td>
<td>674</td>
</tr>
<tr>
<td>Nordelva (regulert del)</td>
<td>14.2</td>
<td>1</td>
<td>12</td>
<td>15</td>
<td>17</td>
<td>20</td>
<td>25</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>Storelva (regulert)</td>
<td>354</td>
<td>-</td>
<td>299</td>
<td>393</td>
<td>467</td>
<td>506</td>
<td>629</td>
<td>749</td>
<td>876</td>
</tr>
<tr>
<td>Nordelva (regulert)</td>
<td>81.9</td>
<td>-</td>
<td>147</td>
<td>184</td>
<td>214</td>
<td>237</td>
<td>292</td>
<td>325</td>
<td>368</td>
</tr>
</tbody>
</table>

4.4. Flomverdier ved samløpet mellom Storelva og Nordelva

Det er antatt at maksimal vannføring for en flom av gitt gjentaksstid nedstrøms samløpet mellom Storelva og Nordelva tilsvarer summen av tilsvarende kulminasjonsvannføring av flommen i Storelva, mens Nordelva bidrar med døgnmiddelvannføringen av samme flomstørrelse. Flomverdiene nedstrøms samløpet blir da som gitt i tabell 8.

Tabell 8. Flomverdier nedstrøms samløpet mellom Storelva og Nordelva, kulminasjonsverdier.

<table>
<thead>
<tr>
<th>Punkt i vassdraget</th>
<th>Areal (km²)</th>
<th>Qₘₐₓ/ Qₘᵢᵈ</th>
<th>Q₅</th>
<th>Q₃</th>
<th>Q₂₅</th>
<th>Q₅₀</th>
<th>Q₁₀₀</th>
<th>Q₂₀₀</th>
<th>Q₅₀₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storelva og Nordelva (reg.)</td>
<td>436</td>
<td>-</td>
<td>388</td>
<td>504</td>
<td>596</td>
<td>649</td>
<td>805</td>
<td>942</td>
<td>1093</td>
</tr>
</tbody>
</table>

Hydrologisk avdelings database er basert på døgnmiddelverdier knyttet til kalenderdøgn. I prinsippet er alle flomvannføringer derfor noe underestimerte, fordi største 24-timersmiddel alltid vil være større eller lik største kalenderdøgnmiddel.

En annen faktor som fører til usikkerhet i data, er at de eldste dataene i databasen er basert på én daglig observasjon av vannstand inntil registrerende utstyr ble tatt i bruk. Disse daglige vannstandsavlesninger betraktes å representere et døgnmiddel, men kan selvfølgelig avvike i større eller mindre grad fra det reelle døgnmiddelet.

I tillegg er dataene med fin tidsoppløsning ikke kontrollerte på samme måte som døgndataene og er ikke komplettterte i tilfelle observasjonsbrudd. Det foreligger heller ikke data med fin tidsoppløsning på databasen lenger enn cirka 20-25 år tilbake. Det er derfor mulig å utføre flombregrninger direkte på kulminasjonsvannføringer.

Å kvantifisere usikkerhet i hydrologiske data er meget vanskelig. Det er mange faktorer som spiller inn, særlig for å anslå usikkerhet i ekstreme vannføringsdata. Med basis i usikkerhetsmomentene nevnt ovenfor kan datagrunnlaget for beregningene karakteriseres som mangelfullt. Flombregrningen klassifiseres derfor i klasse 3, i en skala fra 1 til 3 hvor 1 tilsvarer beste klasse.
Referanser

Utgitt i Dokumentserien i 2007

Nr. 1 Lars-Evan Pettersson: Flomberegning for Steinkjerelva og Ogna. Flomsonekartprosjeket (16 s.)
Nr. 2 Erik Holmqvist: Flomberegning for Seljord. Flomsonekartprosjektet (18 s.)
Nr. 3 Lars Olav Fosse: Forretningsprosesser i kraftmarkedet (25 s.)
Nr. 4 Inger Sætrang: Statistikk over nettleie i regional- og distribusjonsnettet 2007 (54 s.)
Nr. 5 Lars-Evan Pettersson: Flomberegning for Spjelkavikelva. Flomsonekartprosjektet (21 s.)
Nr. 6 Erik Holmqvist: Flomberegning for Flatdøla, 016.CC0 (21 s.)
Nr. 7 Inger Sætrang: Oversikt over vedtak og utvalgte saker. Tariffer og vilkår for overføring av kraft i 2006 (15 s.)
Nr. 8 Thomas Væringstad: Flomberegning for Lierelva. Flomsonekartprosjektet (20 s.)
Nr. 9 Thomas Væringstad: Flomberegning for Aureelva. Flomsonekartprosjektet (19 s.)
Nr. 10 Roar Kristensen: Endringer i forskrift om systemansvar i kraftsystemet. Forskriftstekst og merknader til innkommende høringskommentarer (18 s.)
Nr. 11 Forslag til nye kvalifikasjonskrav etter damsikkerhetsforskriften. Høringsdokument 16. mai 2007
Nr. 12 Forslag til endringer i forskrift nr. 302. Økonomisk og teknisk rapportering, inntektsramme for nettvirksomheten og tariffer. Høringsdokument juni 2007 (24 s.)
Nr. 13 Lars Olav Fosse (red.) Endringer i forskrift 11. mars 1999 nr. 301 om måling, avregning mv. (27 s.)
Nr. 14 Thomas Væringstad: Flomberegning for Storelva og Nordelva. Flomsonekartprosjektet (21 s.)